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Particulate organic carbon
export fluxes across the
Seychelles-Chagos thermocline
ridge in the western Indian
Ocean using 234Th as a tracer
Junhyeong Seo1, Intae Kim1,2, Dong-Jin Kang2,3, Hyunmi Lee1,
Jin Young Choi1, Kongtae Ra1,2, TaeKeun Rho1,
Kyungkyu Park1,2 and Suk Hyun Kim1*

1Marine Environmental Research Department, Korea Institute of Ocean Science and Technology
(KIOST), Busan, Republic of Korea, 2Department of Ocean Science, University of Science and
Technology (UST), Daejeon, Republic of Korea, 3KIOST School and Academic Program Division,
Korea Institute of Ocean Science and Technology (KIOST), Busan, Republic of Korea
We investigated the export flux of particulate organic carbon (POC) using 234Th

as a tracer in the western Indian Ocean along 60°E and 67°E transects in 2017 and

2018. The Seychelles-Chagos Thermocline Ridge (SCTR), where production is

relatively high due to nutrient replenishment by upwelling of subsurface water,

was observed at 3°S – 12°S in 2017 and 4°S – 13°S both 60°E and 67°E in 2018.

POC fluxes in 2017 showed no differences between the SCTR and non-SCTR

regions. However, in 2018, the POC fluxes in the SCTR regions (8.52 ± 7.89mmol

C m–2 d–1) were one order of magnitude higher than those observed in the non-

SCTR regions (0.63 ± 0.07 mmol C m–2 d–1), which appeared to be related to the

strong upwelling of subsurface water. These POC fluxes were comparable to

those observed under bloom conditions, and thus, are important for estimating

the efficiency of carbon sequestration in the ocean.
KEYWORDS
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1 Introduction

Biological carbon pump (BCP) plays a crucial role in the global carbon cycle, as they

involve the vertical export of particulate organic carbon (POC) produced by biological

activity in surface waters (Falkowski et al., 1998; Sabine et al., 2004). Atmospheric carbon

dioxide can be sequestered into the deep ocean through the BCP on a decadal to millennial

timescales (Boyd et al., 2019). Therefore, examining BCP is important for understanding

the oceanic carbon cycle. Globally, the POC export flux has shown latitudinal patterns in

the ocean. For example, POC export fluxes are higher at high latitudes, ~20 – 30 gC m–2 yr–1
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compared to ~1 – 10 gC m–2 yr–1 than at low latitudes (Henson et al.,

2012). However, high POC fluxes are observed even in oligotrophic

low latitudes due to regional processes and climatological effects such

as mesoscale eddies, typhoons by extreme atmospheric forcing, and

upward Ekman pumping in thermocline ridge. In the subtropical

Western North Pacific, POC fluxes below the euphotic zone at the

edge of warm eddy were observed to be 3 – 5 times higher than 26 –

35 mg C m–2 d–1 determined in the nutrient-depleted oligotrophic

oceans (Shih et al., 2015). In the East China Sea, the POC flux for five

days immediately after the typhoon passed was found to be 1.7 times

higher than the 140 – 180 mg Cm–2 d–1 in the period when there was

no typhoon (Hung et al., 2010). Moreover, El Niño events showed

POC fluxes four times higher than average flux (1.74 mg C m–2 d–1)

in the 10°N thermocline ridge area of the northeastern equatorial

Pacific (Kim et al., 2012).

The Indian Ocean shows unique circulation features, including

the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation

(ENSO) (Klein et al., 1999; Baquero-Bernal et al., 2002). In the

western Indian Ocean, the Seychelles-Chagos Thermocline Ridge

(SCTR) is a persistent upwelling region characterized by a relatively

shallow thermocline and a thin mixed layer (Woodberry et al., 1989;

McCreary et al., 1993; Schott et al., 2009). The SCTR upwelling is

generally observed south of the equator (5°S –15°S) because the

wind direction in this region is westerly, which differs from that in

the Pacific and Atlantic Oceans (Schott and McCreary, 2001;

McPhaden et al., 2009). The strength of the SCTR upwelling is

influenced by air-sea interactions, including local winds (Lee et al.,

2022). For example, during the positive phase of the IOD and(or)

ENSO, the SCTR upwelling can be enhanced because of the

stronger suppression of upwelling caused by downwelling Rossby

waves in this region (Masumoto and Meyers, 1998; Rao & Behera,

2005). Further, the SCTR is recognized as an important region for

biogeochemical cycles because upwelling can transport nutrients

from the subsurface to the surface ocean (Xie et al., 2002; George

et al., 2018). Kim et al. (2022) reported that the abundance of

mesozooplankton in the SCTR was higher than that observed in the

non-SCTR regions. This has also been observed through satellite

observations that indicated relatively higher primary production in

the SCTR regions than in the non-SCTR regions (Dilmahamod

et al., 2016). However, carbon cycles in the SCTR regions are still

poorly understood, particularly the effects of upwelling on the BCP.

Biogeochemical studies in the SCTR regions were mostly focused on

the variability of nutrient increase due to upwelling, primary

productivity from satellite images and physical variables, or

biological production using ocean carbon models (Lévy et al.,

2007; Resplandy et al., 2009; Liao et al., 2014; Dilmahamod et al.,

2016; George et al., 2018; Sreeush et al., 2018; Sreeush et al., 2020;

Vinayachandran et al., 2021; Karnan and Gautham, 2023).

Extensive studies to understand BCP in the ocean have been

conducted through international and national programs such as

JGOFS (Joint Global Ocean Flux Study) (Knap et al., 1996),

VERTIGO (VERtical Transport In the Global Ocean) (Buesseler

and Lampitt, 2008), GEOTRACES (Group S. W, 2007), and so on.

POC fluxes have been mainly estimated by direct measurements of

settling particles using sediment traps (Honjo, 1978; Baker et al.,

1988; Buesseler et al., 2007; Honjo et al., 2008; Lampitt et al., 2008;
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Owens et al., 2013; Engel et al., 2017) or indirect approaches derived

from the 210Po/210Pb and the 234Th/238U disequilibria (Friedrich

and van der Loeff, 2002; Cochran and Masqué, 2003; Murray et al.,

2005; Stewart et al., 2007; Verdeny et al., 2009; Wei et al., 2011;

Roca-Martı ́ et al., 2016), nutrient uptake (Pondaven et al., 2000;

Sanders et al., 2005; Le Moigne et al., 2013), satellite empirical

algorithms (Dunne et al., 2007; Henson et al., 2011; Laws

et al., 2011).
234Th/238U disequilibria approach has been widely used as a

means to estimate POC fluxes in the ocean over a period exceeding

50 years. It has already advanced our understanding of the

magnitude and controls of particle export in the ocean (Buesseler

et al., 2006; Ceballos-Romero et al., 2022). 234Th (half-life: 24.1 d) is

particle-reactive, but its parent, 238U (half-life: 4.5 x 109 years), is

chemically conservative and proportional to salinity in oxygenated

seawater (Bhat et al., 1968; Djogić et al., 1986).
234Th/238U disequilibria have the advantage of allowing a

downward flux to be determined by integrating the deficit of
234Th in the upper water column and coupling it to the

POC/234Th ratio in sinking particles (Puigcorbé et al., 2020). In

addition, the half-life of 234Th is only 24.1 days. This makes
234Th/238U disequilibria particularly suited for studying

biologically mediated and other relatively fast (physical) processes

that occur on time scales of days to weeks, which are typical in the

upper ocean. However, the factors that control changes in the

POC/234Th ratio as a function of area, time, particle size and

type, and water column depth are not yet well understood

(Waples et al., 2006; Puigcorbé et al., 2020). Comparisons of C

fluxes derived from 234Th show good agreement with independent

estimates of C flux, including mass balances of C and nutrients over

appropriate space and time scales (within factors of 2–3) (Buesseler

et al., 2006). In this study, POC fluxes were investigated across the

SCTR regions using 234Th as a tracer in 2017 and 2018 to examine

the impact of upwelling processes due to shallow thermocline.
2 Materials and methods

2.1 Sampling

Samples were collected onboard the R/V Isabu from July 5 to 22,

2017, along the 67°E transect, and from April 6 to 25, 2018, along

the 60°E and 67°E transects (Figure 1). Hydrographic parameters,

such as temperature and salinity, were obtained using a

conductivity-temperature-depth (CTD) mounted on a Rosette

sampler. Seawater and particulate samples were collected using a

12 L Niskin sampler. For chlorophyll-a (Chl-a) analysis, 2 L of

seawater samples were filtered through a pre-combusted (4 h, 450°

C) glass fiber filter (Whatman, 0.7 mm pore size) and stored in a

cryogenic freezer (–80°C) before measurement. The 15 mL filtrated

seawater was collected and stored in a refrigerator (4°C) for

dissolved inorganic nitrogen (DIN) analysis. To measure

dissolved 234Th (234Thdis), 4 L of seawater samples were

immediately filtered through a silver membrane filter (Sterlitech,

1.2 µm pore-size, 25 mm diameter) and acidified with concentrated

HNO3 to adjust to pH ~2. For particulate 234Th (234Thpart), an
frontiersin.org
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additional 2 L of seawater was filtered through the silver filter after

filtering 4 L of seawater for 234Thdis samples. POC samples were

collected by filtering 4 L of seawater through the silver membrane

filter, sonicating with ethanol and acetone, and washing with

deionized water before filtration to reduce residual POC.
2.2 Analysis

Chl-a concentrations were measured using a fluorescence

sensor (WET Labs ECO-AFL/FL), and onboard calibration was

performed using a Turner Designs 10-AU fluorometer. Onboard

measurements of DIN concentrations were conducted using an

automatic nutrient analyzer (New QuAAtro39, SEAL Analytical).

To measure the 234Thdis activity, an internal standard (230Th,

6.5 dpm) was added to 4 L of the sample, and the pH was raised to

~8 by adding NH4OH after isotopic equilibration (~12 h). KMnO4

and MnCl2 were then added and allowed to stand for over 6 h to

form MnO2 precipitates while heating above 80°C (Cai et al., 2006).

After the Mn precipitates were formed, they were filtered through

the silver filter and covered with two layers of aluminum foil.

Onboard measurements were conducted using a low-level beta

counter (RISØ National Laboratories, Denmark). Procedural

blanks (n = 3) accounted for less than 5% of the average sample

activity. The measurements were conducted five times to confirm
234Th activity. After beta counting, 230Th recovery was measured by

adding a 229Th spike and further separating Th using an anion-

exchange column (Bio-Rad Laboratories, Hercules, CA). Both 229Th

and 230Th were measured using a magnetic sector field inductively

coupled plasma mass spectrometer (Element 2, Thermo Scientific)

(Pike et al., 2005). On-board measurements of 234Thpart were also

conducted using a low-level beta counter. After that, in the land-

based laboratory, the measurements were conducted five times as

well. Total 234Th (234Thtotal) activity was determined by summing
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the activities of 234Thdis and
234Thpart.

234Th flux was calculated

using 238U/234Th disequilibria following the one-dimensional

particle flux model given (Bacon et al., 1996; Owens et al., 2015):

PTh@ z = lTh
Z z

0
(AU − ATh)dz

where PTh@ z is the particulate flux of 234Th integrated with

depth z.

To measure the POC concentration, the sample was

decarbonated by HCl fumigation in a desiccator, and

measurements were conducted using an elemental analyzer (EA

2400 CHNS/O Series II, PerkinElmer, USA) (Knap et al., 1996). The

procedural blanks (n = 10) were below the detection limit of the

elemental analyzer (0.03 µM).
3 Results and discussion

3.1 Hydrological characteristics

In 2017, potential temperature and salinity in the upper 200m of

the study area ranged from 12 to 30°C and 34.73 to 36.43, respectively

(Figure 2). Relatively higher salinity was observed in the surface layer

along 5°N – 10°S in 2017, and this was also observed in the subsurface

layer (~200 m) in 2018. The surface mixed layer (SML) defined by the

vertical distribution of the potential temperature was approximately

50 m. The potential temperature range in 2018 was similar to that

observed in 2017 (Figure 2). The salinity ranged from 33.83 to 35.70,

slightly lower than the values observed in 2017. In the surface layer,

the low-salinity water was observed in the entire region of the 60°E

line and along 5°S – 20°S of the 67°E line. The SML in both 60°E and

67°E lines ranged from 25 to 50 m. On the 67°E line, the northern

regions (5°S – 15°S) had a relatively shallower SML than the southern

regions (15°S – 25°S). The SCTR regions in 2017 and 2018, defined as

a 20°C isotherm depth with a shallow thermocline, were observed at

3°S – 12°S and 4°S – 13°S both in 60°E and 67°E lines, respectively.

Chl-a concentrations in 2017 and 2018 ranged from 0.00 to 1.62

µg L–1 and 0.00 to 1.87 µg L–1, respectively (Figure 2). In 2017, a

subsurface chlorophyll maximum (SCM) was observed between 50

to 91 m, with no significant differences between 5°N – 14°S.

However, Chl-a concentrations in the surface layer (< 50 m) of

the SCTR regions were higher than those in the non-SCTR regions.

In 2018, SCM depths were similar to those observed in 2017 but

were much shallower in the SCTR regions than in the non-SCTR

regions (15°S – 24°S). The euphotic zone, defined as the depth at

which photosynthetically active radiation (PAR) reaches 1% of the

surface layer, ranged from 43 to 161 m in 2017 (103 ± 46 m; mean ±

standard deviation), where PAR values were available

(Supplementary Table S1). In 2018, the euphotic zone ranged

from 31 to 135 m, with an average of 73 ± 27 m. No clear

differences were observed between the 2017 and 2018 observations.

DIN concentrations in 2017 and 2018 ranged from 0.01 to 38.39

µM and 0.01 to 37.98 µM, respectively (Figure 2). In 2017, the

vertical distribution of DIN showed a depleted concentration in the

surface layer, which gradually increased with depth. No clear
FIGURE 1

Sampling site (pink rectangle) in the western Indian Ocean in 2017
(yellow rectangles) and 2018 (black triangles).
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differences were observed between the SCTR and non-SCTR

regions. The vertical distribution of DIN in 2018 was similar to

that observed in 2017. However, in the SCTR regions, the DIN

concentrations in the subsurface layer (75 – 100 m) were one order

of magnitude higher than those in non-SCTR regions.
3.2 Distributions of 234Th and POC

In 2017 and 2018, 238U activity ranged from 2.41 to 2.48 dpm L–1

and 2.36 to 2.49 dpm L–1, respectively, based on salinity calculations

(Owens et al., 2011). In 2017, 234Thtotal and
234Thpart activities were

1.63 – 2.88 dpm L–1 and 0.06 – 0.48 dpm L–1, respectively (Figure 3).

A deficiency in 234Thtotal relative to
238U was observed mainly in the

surface layer (0 – 100 m). In the surface layer of the SCTR regions,
234Thtotal deficiencies and

234Thpart concentrations were higher than

those observed in the non-SCTR regions. In 2018, 234Thtotal and
234Thpart concentrations were 0.34 – 2.78 dpm L–1 and 0.05 – 0.66

dpm L–1, respectively (Figure 3). The 234Th deficiency in the SCTR

regions was higher than that observed in the non-SCTR regions.

Below the surface layer, 234Thtotal activities were close to the

equilibrium value in both years, indicating that particle settling
Frontiers in Marine Science 04
mainly occurred within the 100 m layer. The excess 234Thtotal in

the subsurface layer could be due to the release of 234Th following

remineralization of organic matter.

The POC concentrations in 2017 and 2018 ranged from 0.01 to

0.48 µM and 0.01 to 3.51 µM, respectively (Figure 3), which were

within the typical range (0.40 – 1.09 µM) observed in the equivalent

region (Subha Anand et al., 2017; Subha Anand et al., 2018), except

for the 60°E transect in 2018. The vertical distribution of POC in

both years decreased gradually with increasing depth from the

surface layer. In 2017, no clear latitudinal differences in POC

concentration except 5°N region were observed; however, in 2018,

POC concentrations in the SCTR regions were one to two orders of

magnitude higher than those observed in the non-SCTR regions.
3.3 234Th based POC fluxes

We calculated 234Th flux at a depth of 100 m to examine the

POC flux as recommended by Buesseler et al. (2006). The integrated
234Th fluxes at a depth of 100 m in 2017 and 2018 varied from 237

to 991 dpm m–2 d–1 and 270 to 3191 dpm m–2 d–1, respectively

(Table 1). A comparison of stations at similar latitudes (10°S and
A

B

C

D

E

F

G

H

FIGURE 2

Latitudinal distributions of temperature, salinity, Chl-a, and DIN in the study region in 2017 (A–D) and 2018 (E–H). Solid lines (gray) and circles (gray)
indicate the sampling stations. Contour lines (solid) indicate the temperature of the study regions. The numbers on the figure indicate the station.
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15°S) in both years revealed no significant differences, except for

Station 4 (5°S) in 2018. In 2017, no clear differences were observed

between the SCTR (3°S – 12°S) and non-SCTR regions. However, in

2018, 234Th fluxes in the SCTR regions (4°S – 13°S), 1402 ± 1097

dpm m–2 d–1, were several times higher than those observed in the

non-SCTR regions (15°S – 24°S), 482 ± 189 dpmm–2 d–1. The range

of 234Th flux in the study regions, except for Station 3 in 2018 (3191

± 167 dpm m–2 d–1), was similar to that observed in the western

Indian Ocean (88 to 2645 dpm m–2 d–1; Subha Anand et al., 2017;

Subha Anand et al., 2018).

The POC flux through the 100 m layer was calculated by

multiplying the ratio of POC to 234Thpart by
234Th flux. In 2017,

the POC flux ranged from 0.49 to 3.15 mmol C m–2 d–1, with no

evident differences between the SCTR and non-SCTR regions

(Table 1). However, in 2018, POC flux increased significantly in

the SCTR regions (1.1 – 18.8 mmol C m–2 d–1) compared with that

in the non-SCTR regions (0.6 – 0.7 mmol C m–2 d–1). The measured

POC fluxes in the study region, except at Stations 3 and 4 in 2018,

fell within the typical values for equivalent regions (0.1 – 9.0 mmol

C m–2 d–1; Subha Anand et al., 2017; Subha Anand et al., 2018). The

POC export fluxes at Stations 3 and 4 in 2018 (> 15 mmol C m–2 d–1)

were comparable to those in highly productive regions, such as the

Equatorial Atlantic (15 ± 10 mmol C m–2 d–1; Thomalla et al., 2008)

and the Arctic Atlantic (20 ± 10 mmol C m–2 d–1; Le Moigne et al.,

2013). Based on the distributions of salinity and DIN at 5°S in 2018, a

strong upwelling of cold water with high concentrations of nutrients

was observed (Figures 2E, H) and could enhance the POC flux.
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Similarly, in the SCTR regions, high primary productivity was usually

observed due to the upwelling process (Dilmahamod et al., 2016).

However, this regional phenomenon showed high variations in the

magnitude of upwelling in the subsurface layer of the SCTR regions,

which depend on air-sea interactions. Therefore, our results imply

that the impact of the upwelling process in the SCTR on the POC flux

depends on its magnitude and should be cautioned to examine the

POC flux in these regions.
3.4 Export efficiency of the BCP

The efficiency of BCP in the surface layer can be examined by the e-

ratio (%), which represents the POC export flux divided by the net

primary production (NPP). The NPP at each station was estimated

using a carbon-based productivity model (CbPM; Westberry et al.,

2008) based on Moderate Resolution Imaging Spectroradiometer

satellite data provided by Oregon State University Ocean

Productivity (http://www.science.oregonstate.edu/ocean.productivity/).

Compared to earlier Chl-based models, the CbPM can provide

more accurate NPP values since it includes information on the

influence of biological and physiological states (Behrenfeld et al.,

2005; Westberry et al., 2008). NPP in 2017 and 2018 ranged from 21

to 45 mmol C m–2 d–1 and from 13 to 49 mmol C m–2 d–1,

respectively (Table 1). In both years, higher NPP values were

observed with increasing latitude; however, there was no significant

difference in the orders of NPP. The e-ratios in 2017 and 2018 were
A

B

C

D

E

F

FIGURE 3

Latitudinal distributions of POC, total 234Th (234Thtotal), and particulate 234Th (234Thpart) in the study region in 2017 (A–C) and 2018 (D–F). Circles (gray)
indicate the sampling stations. Contour lines (solid) indicate the temperature at the study regions. The numbers on the figure indicate the station.
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2% – 15% and 3% – 68%, respectively (Table 1, Figure 4). The range

of e-ratio was similar to that observed in the Indian Ocean (0.3 –

32.4%; Subha Anand et al., 2017; Subha Anand et al., 2018), except in

Stations 3 and 4 in 2018. Generally, the e-ratio in the open ocean

under non-bloom conditions was below 10% (Buesseler & Boyd,

2009; Black et al., 2018). However, under bloom conditions, the e-
Frontiers in Marine Science 06
ratio could reach 50%, owing to the extensive scavenging of 234Th by

organic particles (Buesseler et al., 1992). For Stations 3 and 4 in 2018,

the high Th and POC fluxes suggested efficient scavenging in the

SCTR regions, mainly due to the production of large particles in 2018.

High primary production by smaller size of plankton such as

picoplankton contributes less POC flux from the surface to the

deeper layer due to their smaller size, slow sinking, and fast

consumption in the microbial loop. Whereas larger size micro

(diatoms) and nanophytoplankton contribute more POC flux to

the upper layer of the ocean than to primary production

(Richardson and Jackson, 2007). A positive Chl-a anomaly,

especially for the winter season (June – August), was observed in

2018 based on the multi-sensor ocean-color Chl-a products (Ma

et al., 2022), indicating the vigorous PP in the study area.

Additionally, 234Thpart concentrations were lower in SCTR regions

than those observed in non-SCTR regions, indicating an increase in

Th ligands in solution or the production by the plankton

communities with larger size (Buesseler et al., 2006). Thus, the

relatively high export flux of POC observed in the SCTR regions in

2018 (> 45%), coupled with the relatively high NPP values and DIN

concentrations, could be due to the production of fresh organic

particles by PP in the surface layer. Therefore, our results suggest that

the nutrient input through upwelling in the SCTR regions can

enhance POC flux with efficient export comparable to bloom

conditions. Our results implied that these persistent physical

phenomena play a significant role in estimating the efficiency of

carbon sequestration in the global oceans. However, because various

conditions, such as light, biomass, and nutrients, are also important

for POC flux in the surface layer, caution should be exercised in

interpreting POC flux, and further consistent observations with high

resolution are necessary.
TABLE 1 Th flux (dpm m–2 d–1), POC flux (mmol C m–2 d–1), CbPM-based NPP (mmol m–2 d–1), and e-ratio for all stations in 2017 and 2018 cruises.

Station Depth (m) Latitude Longitude Th flux POC flux CbPM-based NPP
e- ratio

(%)

17_1 3400 4.00°N 67.00°E 529 2.44 45 5

2 2410 0.00 67.00°E 591 1.01 42 2

3 2730 3.00°S 67.00°E 643 1.45 36 4

4 3210 5.27°S 67.90°E 237 0.49 29 2

5 2970 9.00°S 67.00°E 980 1.84 29 6

6 3290 12.00°S 67.00°E 489 0.63 19 3

7 3230 15.00°S 67.00°E 991 3.15 21 15

18_1 3670 13.00°S 60.00°E 1212 5.67 32 18

2 275 9.00°S 60.00°E 865 2.24 49 5

3 4050 5.00°S 60.00°E 3191 18.83 28 68

4 3600 5.00°S 67.00°E 1470 14.79 30 49

5 3325 10.00°S 67.00°E 270 1.04 23 5

6 3230 15.00°S 67.00°E 366 0.68 21 3

7 2690 20.00°S 67.00°E 700 0.56 13 4

8 3890 24.00°S 67.00°E 380 0.66 18 4
fro
FIGURE 4

Plot showing the association between net primary production (NPP)
and POC flux. The data for comparison are from Buesseler and Boyd
(2009); Black et al. (2018), and Subha Anand et al. (2017, Subha
Anand et al., 2018). Dash lines indicate export efficiencies of 10%,
30%, 50%, and 80%.
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4 Summary and conclusions

In this study, we examined the POC export flux using
238U/234Th disequilibria method in July 2017 and April 2018 in

the western Indian Ocean along 60°E and 67°E transects. In 2017,

the POC export flux did not differ significantly between the SCTR

and non-SCTR regions. However, in 2018, the SCTR regions

showed an efficient POC export, characterized by high 234Th

deficiencies and elevated POC concentrations. Furthermore, the

e-ratios in the SCTR regions were comparable to those observed

during the algal blooms (i.e., diatoms). These results suggested

extensive scavenging of 234Th with newly formed organic particles

by primary production because replete nutrients were provided

through upwelling in the SCTR regions. Therefore, this persistent

regional physical process plays a significant role in determining the

efficiency of carbon sequestration in the global oceans. However,

owing to various conditions (i.e., light, biomass, and nutrients) that

influence POC fluxes in the surface layer, continuous high-

resolution surveys in the future are necessary.
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