
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Xuebo Zhang,
Northwest Normal University, China

REVIEWED BY

Jia Liu,
Chinese Academy of Sciences (CAS), China
Rongxin Zhang,
Xiamen University, China
Chong Xiao Wang,
Agency for Science, Technology and
Research (A*STAR), Singapore

*CORRESPONDENCE

Zhiping Xu

zhipingxu@jmu.edu.cn

RECEIVED 08 September 2023

ACCEPTED 20 November 2023
PUBLISHED 08 December 2023

CITATION

Zheng J, Zhao S, Xu Z, Zhang L and Liu J
(2023) Anchor boxes adaptive
optimization algorithm for maritime
object detection in video surveillance.
Front. Mar. Sci. 10:1290931.
doi: 10.3389/fmars.2023.1290931

COPYRIGHT

© 2023 Zheng, Zhao, Xu, Zhang and Liu.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 08 December 2023

DOI 10.3389/fmars.2023.1290931
Anchor boxes adaptive
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maritime object detection in
video surveillance
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With the development of themarine economy, video surveillance has become an

important technical guarantee in the fields of marine engineering, marine public

safety, marine supervision, and maritime traffic safety. In video surveillance,

maritime object detection (MOD) is one of the most important core

technologies. Affected by the size of maritime objects, distance, day and night

weather, and changes in sea conditions, MOD faces challenges such as false

detection, missed detection, slow detection speed, and low accuracy. However,

the existing object detection algorithms usually adopt predefined anchor boxes

to search and locate for objects of interest, making it difficult to adapt to

maritime objects’ complex features, including the varying scale and large

aspect ratio difference. Therefore, this paper proposes a maritime object

detection algorithm based on the improved convolutional neural network

(CNN). Firstly, a differential-evolutionary-based K-means (DK-means) anchor

box clustering algorithm is proposed to obtain adaptive anchor boxes to satisfy

the maritime object characteristics. Secondly, an adaptive spatial feature fusion

(ASFF) module is added in the neck network to enhance multi-scale feature

fusion. Finally, focal loss and efficient intersection over union (IoU) loss are

adopted to replace the original loss function to improve the network

convergence speed. The experimental results on the Singapore maritime

dataset show that our proposed algorithm improves the average precision by

7.1%, achieving 72.7%, with a detection speed of 113 frames per second,

compared with You Only Look Once v5 small (YOLOv5s). Moreover, compared

to other counterparts, it can achieve a better speed–accuracy balance, which is

superior and feasible for the complex maritime environment.

KEYWORDS

maritime video surveillance, object detection, anchor box, You Only Look Once,
adaptive spatial feature fusion
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1 Introduction
With the rapid development of global economy and trade,

maritime traffic is becoming heavier and denser, bringing a

higher risk of maritime traffic accidents. Accurate and rapid

maritime object detection is largely beneficial for maritime

surveillance, thus effectively reducing the risk of maritime traffic

accidents. Affected by maritime objects’ distance, weather, and sea

conditions, traditional maritime video surveillance mainly relies on

manual methods. However, the monitors will inevitably experience

visual fatigue when the monitoring behavior continues, leading to

false or missed detection of maritime objects and even grave

consequences. To solve these problems, an intelligent processing

algorithm is adopted to detect object instance in maritime images,

and it plays an increasingly important role in maritime object

detection tasks.

Traditional maritime object detection algorithms generally follow

a three-phase detection framework, namely, horizon detection, static-

background subtraction, and foreground segmentation (Lyu et al.,

2022). In the first phase, Fefilatyev et al. (2012) utilized Hough

transform to detect the horizon position and thus reduced the object

search space, and used threshold segmentation to obtain the maritime

ship object after image registration. In the second phase, Chen et al.

(2018) proposed a Gaussian mixture model to judge the pixels in the

foreground part of the image, and then utilized background

subtraction and adjacent frame continuity to segment the ship

object. In the last phase, Chan (2021) proposed a maritime noise

prior method to reduce the interference of noise on the sea surface,

and thus improved the accuracy of foreground detection in complex

maritime scenarios, and this method was based on a dark channel

prior and observation of sea surface characteristics. From these

works, it can be found that each phase of this traditional detection

framework needs to be designed carefully and manually to ensure the

detection performance. Furthermore, these algorithms (Fefilatyev

et al., 2012; Chen et al., 2018; Chan, 2021; Zhu et al., 2023) could

not efficiently extract high-dimensional semantic information; not

only do they need to consume more manpower and time resources,

but also the algorithms are easy to be disturbed by the complex

marine environment, and they find it difficult to achieve stable

maritime object detection.

Benefiting from deep learning (DL) technologies, the object

detection algorithms based on the convolutional neural network

(CNN) have aroused great interest of scholars. Based on the multi-

layer topology structure, CNN can realize the automatic extraction

of high-dimensional semantic information of images with stronger

anti-interference ability (Simonyan and Zisserman, 2014; Girshick,

2015). CNN-based object detection algorithms are divided into two

kinds: two-stage and one-stage algorithms. Generally, the former

represented by the R-CNN series has a higher accuracy with a lower

speed (Girshick, 2015; Ren et al., 2015; Sun et al., 2021). The latter

represented by You Only Look Once (YOLO) series runs faster with

a lower accuracy (Redmon and Farhadi, 2018; Bochkovskiy et al.,

2020; Ultralytics, 2021; Wang et al., 2023). These DL-based object

detection algorithms give a new direction for the research of

maritime object detection. Bousetouane and Morris (2016)
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proposed a Fast-R-CNN-based surveillance algorithm for ship

classification and detection in maritime scenarios to improve

accuracy with faster speed. To improve marine object detection

accuracy, Fu et al. (2021) fused a convolutional attention module in

the YOLOv4 framework to enhance valid features and suppress

invalid ones. Chang et al. (2022) proposed a modified YOLOv3

model with lower computation complexity through adjustment of

input image size, number of convolution kernel, and detection scale,

and then introduced the spatial pyramid pooling module to further

improve the maritime ship detection accuracy. Recently, many

useful technologies have emerged, such as multiple access (Chen

et al., 2023; Xie et al., 2023), joint/separated source and channel

coding (Xu et al., 2019; Xu et al., 2021; Fang et al., 2023; Xu et al.,

2023), index modulation (Dai et al., 2023), and multi-receiver

synthetic aperture sonar (Zhang et al., 2021; Zhang. et al., 2022;

Yang, 2023; Zhang, 2023; Zhang et al., 2023a; Zhang et al., 2023b;

Zhang et al., 2023c). The DL-based object detection algorithms

combined with different technologies can build a better maritime

object detection system to promote ocean observation.

In summary, DL-based maritime object detection algorithms are

simpler, more efficient, and more robust against sea surface noise

interference, compared with traditional algorithms. However, existing

DL-based maritime object detection algorithms mainly focus on the

improvement and optimization of CNN structures, neglecting the

characteristics of maritime object instances. To solve this problem,

an anchor box adaptive object detection algorithm based on the

characteristics of maritime object instances is proposed for maritime

video surveillance. The main contributions are as follows:
(1) A differential-evolutionary-based K-means (DK-means)

anchor box clustering algorithm is proposed to generate

adaptive anchor boxes to adapt for the characteristics of

maritime object instances, improving the detection

performance without extra computation.

(2) An adaptive spatial feature fusion (ASFF) module is added

in the neck network to enhance multi-scale feature fusion to

improve the detection performance.

(3) A new loss function that adopts focal loss and efficient

intersection over union (IoU) loss is defined for the

maritime object characteristics to improve network

convergence speed.

(4) On the Singapore maritime dataset, the proposed method

achieves 72.7% AP, outperforming the YOLOv5 small

(YOLOv5s) by 7.1% with 113 FPS.

(5) The proposed method can perform better than the

YOLOv5s in multi-scale maritime objection detection

with tighter predicted bounding boxes and fewer number

of redundant bounding boxes.
This paper is organized as follows: Section 2 describes the

overall research of the proposed methodology in detail. The

experimental results including ablation studies, performance

comparison, and detection results are shown in Section 3. The

paper is concluded in Section 4.
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2 Proposed model and optimization

In the maritime surveillance, both real-time and accuracy of

object detection need to be considered essentially. Thus, the one-

stage object algorithm is chosen as the detection algorithm, which

can realize speed–accuracy trade-off efficiently in the maritime

object detection. Moreover, compared with other one-stage object

algorithms, the YOLOv5s model is lightweight with a higher

detection accuracy; thus, we choose it as our baseline model. The

purpose of this study is to develop a maritime object detection

model considering the characteristics of maritime object instances,

and this optimized model can achieve higher accuracy while

remaining lightweight.

This section details the main method of the proposed anchor

boxes’ adaptive objection detection algorithm. Section 2.1 describes

the overall structure of our model. The details of the proposed

anchor boxes’ adaptive algorithm is described in Section 2.2.

Sections 2.3 and 2.4 introduce the adaptive spatial feature fusion

module and the loss function adopted, respectively.
2.1 Overall structure of our model

Figure 1 provides a detailed depiction of our model’s structure,

which is composed of three components: the backbone structure,

the enhanced neck, and the head. The backbone structure is tasked

with extracting features from input images using predefined anchor

boxes. Then, the enhanced neck is specifically designed to augment

the fusion of these features. Lastly, the head plays the role of

predicting maritime objects at three different scales. In the

context of object detection algorithms that employ the anchor

boxes’ mechanism, it is common practice to predefine nine

anchor boxes of varying sizes and scales for feature maps. This

strategy is implemented to ensure a high level of accuracy in object

detection. To adapt to the characteristics of maritime object
Frontiers in Marine Science 03
instances, we adopt the optimized anchor boxes (OABs) as a

predefined substitute for the original ones, and the OABs are

generated by the proposed DK-means algorithm.

In the training process, the input labeled images are performed by

data augmentation operations to increase feature diversity at first.

Then, the processed images are performed by feature extraction and

subsampling operations in the backbone network part. After three

subsampling stages, the backbone generates three different scale

feature maps. These feature maps are fed into the enhanced neck

network part to reinforce semantic information in shallow feature

maps and spatial information in deep feature maps. In the enhanced

neck network, the ASFF modules (Liu et al., 2019) are utilized to

enhance the multi-scale feature fusion, thus improving the multi-

scale detection ability. Finally, the enhanced feature maps are fed into

the head network part to obtain the predicted results. The loss values

are calculated by comparing them with the label values, and the

network parameters are updated through gradient information.

Moreover, to make the trained network parameters more

consistent with the characteristics of maritime objects, the loss

function used in YOLOv5s are also optimized and improved. In

the model inference process, the final detection results are obtained

after non-maximum suppression (NMS) operation.
2.2 Anchor boxes adaptive algorithm

The predefined anchor boxes in the original detection model are

sensitive to object scale: Specifically, smaller anchor boxes are

ineffective at detecting larger objects, while larger anchor boxes

struggle to accurately capture smaller objects. The mismatch

between the aspect ratio of anchor boxes and the objects will

result in the decrease in detection accuracy. How to obtain

appropriate anchor boxes that can satisfy the characteristics of the

maritime object instances is the key to improving the detection

accuracy of the maritime object instances.
FIGURE 1

The overall structure of the detection model.
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2.2.1 Characteristic analysis of maritime
object instances

In this part, the Singapore marine dataset (SMD) (Prasad et al.,

2017) is taken as an example to analyze the characteristics of the

maritime object instances. According to the standard of the

Common Objects in Context (COCO) dataset, the maritime

object instances in the SMD can be classified into three classes:

detection objects with an area less than 32×32 pixels are defined as

small objects, detection objects with an area greater than 32 × 32

pixels and less than 96 × 96 pixels are defined as medium objects,

and detection objects with an area greater than 96 × 96 pixels are

defined as large objects. With these definitions, the scale

distributions of the maritime object instances are shown in

Figure 2A. From this figure, it can be seen that different types of

maritime objects nearly have the different scales. Moreover, the

scales of the different types of maritime objects are mainly medium

and small. In Figure 2B, it can be found that maritime objects

generally have a relatively high aspect ratio. Furthermore, the aspect

ratio of the detection object can even reach 17.66 in extreme cases.

From the above analysis, it can be concluded that maritime

object detection usually faces the following problems:
Fron
(1) The detection object has varying scales.

(2) The detection object has large aspect ratio difference.
2.2.2 Details of the proposed algorithm

In the YOLO series frameworks, the K-means clustering

algorithm is usually adopted to generate adaptive anchor boxes,

which will be used for training the detection model (Redmon and

Farhadi, 2018; Bochkovskiy et al., 2020). However, influenced by the

initial clustering centers, the results of the K-means clustering

algorithm easily fall into the local optimal solution, making it

difficult to generate the optimal predefined anchor boxes. The
tiers in Marine Science 04
differential evolution (DE) algorithm (Storn and Price, 1997) is a

kind of global search optimization algorithm that achieves evolution

from the current population to the next generation through

operations such as mutation, crossover, and selection, thus

possessing the ability to search for global optimal solutions in the

solution space. To solve this problem, the DE algorithm is introduced

to reduce the dependence on the initial clustering centers and

enhance global search ability. Through this method, the

dependence of the K-means algorithm on initial values can be

reduced and more robust predefined anchors can be obtained. The

improved K-means clustering algorithm with the DE method is

named DK-means clustering algorithm, which is shown in

Algorithm 1. The parameters include the number of iteration Nt,

the number of anchor boxes K, the population size Np, andN ≜{1,2,
…, N p}. The sample dataset is denoted byD. The tth generation of the

population is denoted by c t = Xt
1,X

t
2,⋯,Xt

Np

n o
, and the i-th

candidate is denoted by Xt
i .

The algorithm mainly includes three parts:
1) Line 1: The first part generates the initial population c0

according to the sample dataset.

2) Lines 2–8: The second part finds Np candidates for group

anchor boxes by the DE process including mutation and

crossover operations at Nt generations.

3) Lines 9–11: The third part chooses the final optimized

results for the output group anchor boxes as the

clustering centers. Then, divide real anchors boxes into

clusters with corresponding clustering centers Xt+1
ibest

according to the closest distance principle.

4) Line 12: Return the optimized anchor boxes as the output of

this algorithm.
Remark 1: The best group anchors are chosen according to

maximizing the IoU values as follows:
FIGURE 2

Characteristics of maritime object instances in the SMD dataset. (a) area and number of large, medium and small objects of each class and (b) width
to height ratio distribution of class and bbox.
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Kbest = argmini∈N (f (X t)), (Eq: 1)

where the function f(·) returns the IoU values, and the Kbest-th

candidate in the population is the optimized results.
2.3 Adaptive spatial feature
fusion optimization

In the object detection, multi-scale features can be utilized to

improve the model detection performance. When an image is input

into CNN, different resolution feature maps can be obtained to detect

objects at different scales, according to the different downsampling

rates. Shallow feature maps with high resolution are suitable for

detecting small objects due to their rich detailed information and

small receptive fields, and deep feature maps with low resolution are

suitable for detecting large objects due to their strong semantic

information and large receptive fields. Therefore, fully utilizing the

semantic and detailed information of features at different scales is of

great significance for improving the object detection accuracy. To fully

utilize multi-scale features, an adaptive spatial feature fusion (ASFF)

module is introduced to the neck module to enhance multi-scale

feature fusion. Figure 3 shows details of the ASSF module. The

feature maps F4, F5, and F6 are fused adaptively and enhanced by

the ASFF module at different spatial scales, and then transferred to

head module. The feature fusion process can be represented by

ylij = a l
ij · x

1→l
ij + b l

ij · x
2→l
ij + g l

ij · x
3→l
ij , (Eq: 5)

where ylij represents the (i, j)-th feature vector of the output

feature yl, and xn→l
ij represents the (i, j) feature vector after adjusting

nth level feature map to the same size of the lth level feature map.

a l
ij, b l

ij, g l
ij ∈ 0, 1½ � represent spatial importance weights of three

different scale feature maps at the l-th level feature map,

respectively, and a l
ij + b l

ij + g l
ij = 1. They can be defined by the

softmax function. For example, a l
ij can be calculated by
Frontiers in Marine Science 05
a l
ij =

el
l
aij

el
l
aij + e

ll
bij + el

l
gij

, (Eq: 6)
Input: D, Nt, K, Np, real anchor boxes.

Output: Real anchor boxes cluster results.

1: Generate Np candidates Xi
0 randomly from D for i ∈ N,

and every candidate has K anchor boxes.

Here, Xt
i = (xi,1 ,xi,2,⋯,xi,K).

2: for t = 1 → Nt do

3: for i = 1→ Np do

4: Mutation operations are performed with random r1,r2,

r3 ∈ N, and r1   ≠ r2 ≠ r3:

Vt
i = Xt

r1 + 0:5(Xt
r2 − Xt

r3), (Eq: 2)

where Vt
i = (vt

i,1,v
t
i,2 ,⋯,vt

i,j), and j = {1,2,…,d} is the

dimension number of the sample in the dataset.

5: Crossover operations are performed:

ut
i,j =

vt
i,j ,with probability pc,

xt
i,j ,with probability 1 − pc;

(
(Eq: 3)

where Ut
i = (ut

i,1 ,u
t
i,2,⋯,ut

i,j), and j = {1,2,…,d}.

6: Fitness function calculation:

Xt+1
i =

Ut
i ,f Ut

i

� �
≤ f Xt

i

� �
Xt
i ,f Ut

i

� �
> f Xt

i

� �
(

(Eq: 4)

7: end for\∗ Np ∗\

8: end for\∗ Nt ∗\

9: ibest = argmaxi∈N(X
t+1
i )

10: Choose the results of Xt+1
ibest

as the clustering centers.

11: Divide real anchors boxes into clusters with

corresponding clustering centers Xt+1
ibest

according to

closest distance principle.

12: return cluster results.
FIGURE 3

Adaptive spatial feature fusion module.
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Algorithm 1. DK-means clustering algorithm.

where ll
aij
, ll

aij
and ll

bij are the control parameters of the

softmax function, which can be trained and learned by 1 × 1

convolution operation.
2.4 Loss function optimization

The loss function L used in our improved network is a

combination of three loss functions: the classification loss Lcls, the

localization lossLreg, and the confidence lossLobj. It is represented by

 L = l1Lcls + l2Lreg + l3Lobj, (Eq: 7)

where l1, l2, and l3 represent balance factors, whose values are 1.0,
0.05, and 0.1, respectively. They are used to control the impact of

different loss functions on the network training process. In the YOLOv5

model, cross entropy (CE) loss function Lce is adopted as classification

and confidence loss functions, and the complete IoU (CIoU) loss is

adopted as localization loss. The CE loss function is represented by

Lce (p, y)  =   − ylog (p)  −  (1  − y) log (1  − p), (Eq: 8)

where y denotes the true value of the label category and y ∈ { ± 1},

and p denotes category prediction probability when y = 1 and p∈ [0,1].

In the task of bounding box regression, the localization loss

function is divided into two categories: n-norm-based and IoU-

based loss (Tian et al., 2022). To reduce the sensitivity of the model

to the scale changes of object and improve convergence speed of the

model, the complete IoU (CIoU) loss is adopted as localization loss

in the YOLOv5 model and it is expressed by

Lciou(b
pr , bgt) = 1 − IoU +

r2 bpr , bgtð Þ
c2

+ lv, (Eq: 9)

where IoU represents the intersection over union between the

predicted bounding box and the ground truth bounding box, bpr and

bgt represent centers of the predicted bounding box and the ground

truth bounding box respectively, and c is the diagonal length of the

smallest covering box. r( · ) = bpr − bgtk k2 represents the Euclidean

distance between the center points of two bounding boxes, l
represents the balance factor, and v represents the consistency of the

aspect ratio between the predicted bounding box and the ground truth

bounding box. IoU can be described as Figure 4 and is expressed by

IoU =
bpr ∩ bgtj j
bpr ∪ bgtj j , (Eq: 10)

and v is expressed by

v =
4
p2 arctan 

wgt

hgt
− arctan 

wpr

hpr

� �
, (Eq: 11)

where wgt and wpr represent the width of the ground truth and

the predicted bounding boxes respectively, and hgt and hpr represent

the height of the ground truth and the predicted bounding boxes

respectively. Thus, Equation 7 becomes

L = l1Lcls
ce + l2Lreg

ciou + l3Lobj
ce (Eq: 12)
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where Lcls
ce and Lobj

ce represent the cross entropy loss adopted for

the classification loss and the confidence loss functions, and Lreg
ciou

represents the CIoU loss adopted for the localization loss function.

2.4.1 Focal loss function
To improve detection accuracy, the anchor box detection

mechanism usually requires a dense set of the distribution of

anchor boxes in images, which can easily lead to an imbalanced

problem between positive and negative samples. To alleviate this

imbalanced problem, a focal loss (FL) function (Lin et al., 2017) is

introduced. Define pt as

pt =
p, if   y = 1,

1 − p, otherwise :

(
(Eq: 13)

Thus, Equation 8 can be rewritten as

Lce(pt) = −log (pt) : (Eq: 14)

The FL function is expressed by

Lfocal = −at(1 − pt)
g log (pt), (Eq: 15)

where (1 − pt)
g represents an adjustment factor, g represents an

adjustable focusing parameter, and at represents a balanced

parameter. Equation 7 can be modified as

L = l1Lcls
focal + l2Lreg

ciou + l3Lobj
ce , (Eq: 16)

where Lcls
focal represents the FL function, which is adopted for the

classification loss.
2.4.2 Efficient IoU loss function
From Equation 11, it can be found that v just considers the

aspect ratio difference between the predicted bounding box and the

ground truth bounding box, ignoring the difference between specific

values of width and height. In this way, the penalty term v is almost

no longer effective, as the width and height cannot be

simultaneously enlarged or reduced. To make the detection model

more suitable for the maritime objects with varying scales in the

marine environment, we adopt the idea of the efficient IoU (EIoU)

(Zhang Y.-F.et al., 2022), and the v is modified as

v =
r2 wpr ,wgtð Þ

C2
w

+
r2 hpr , hgtð Þ

C2
h

, (Eq: 17)

where C2
w and C2

h are the width and height of the smallest

enclosing box covering the ground truth and predicted bounding

boxes, and r2(wpr ,wgt) and r2(hpr , hgt) are the width and height

difference between the ground truth bounding box and the

predicted bounding box, respectively. According to Equation 17,

Equation 16 can be further modified as

L = l1Lcls
focal + l2Lreg

eiou + l3Lobj
ce , (Eq: 18)

whereLreg
eiou is the EIoU loss function, and the only difference between

the EIoU used in this paper and the CIoU is the penalty term. The EIoU

loss will bring faster convergence speed and better localization effect.
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3 Experimental result and analysis

3.1 Dataset construction

In this section, the experiments adopt SMD (Prasad et al., 2017),

which contains large video data with labeled bounding boxes.

Detection objects in SMD include nine categories, namely, ferry,

buoy, vessel/ship, speed boat, boat, kayak, sail boat, flying bird/

plane, and other. In the DL-based object detection algorithms, the

construction of a sizable and representative dataset is the first and

important step. By sampling images from the SMD at one time per

five frames, 6,350 maritime images are obtained, and each image

has a resolution of 1,920 × 1,080 pixels. They are split into train,

validation, and test sets at a ratio of 6:2:2 with COCO style. The

dataset construction process is shown in Figure 5.
3.2 Experimental environment

The experiments are all carried out using PyTorch 1.12.1 and

CUDA 11.3 on an NVIDIA RTX 3090 GPU and an Intel Core i9-

10920X CPU. The details of the experimental hardware and

software environment are shown in Table 1. A momentum

gradient descent algorithm with a momentum value of 0.937 is

adopted in the train model. In the train process, the input image is
Frontiers in Marine Science 07
fixed at 640 × 640, the batch size is set to 32, and the total number of

train epochs is set to 150. The initial learning rate is set to 0.0025

and the linear decline strategy is used as the learning rate

attenuation strategy. Moreover, to maintain the stability of the

model in the initial train stage, a warm-up training strategy is

adopted in the first three epochs to gradually increase the learning

rate from 0 to the initial learning rate. Moreover, for each stage in

Figure 1 (represented as S1,S2,S3,S4), we respectively configure the

number of bottlenecks as [3, 6, 9, 3], and perform downsampling

operation within the first convolution layer of each stage. In

addition, we adhere to the yolov5s configuration, setting the

scaling factors for width and depth to 0.5 and 0.33, respectively.
3.3 Evaluation metrics

Average precision (AP) (Padilla et al., 2021) is utilized as an

indicator to evaluate the accuracy of the maritime object detection

algorithm. AP can be expressed by

AP =
1
No

N

i=1
∫10P(R)dR, (Eq: 19)

where N represents the number of object categories, and P and

R represent precision and recall rate respectively, which are

expressed by
FIGURE 4

Description of IoU.
FIGURE 5

The construction process of the dataset.
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P =
TP

TP + FP
, (Eq: 20)

R =
TP

TP + FN
, (Eq: 21)

where TP represents the number of correct predicted positive

samples, FP represents the number of negative samples predicted as

positive samples, and FN represents the number of positive samples

predicted as negative samples. From Equations 19–21, it can be

inferred that P and R measure the model’s ability to accurately

predict and locate objects respectively, and AP is the comprehensive

evaluation of these two indicators. Here, the AP value means that

the IoU threshold is set from 0.50 to 0.95 with a 0.05 step. AP50 and

AP75 mean that the IoU threshold is set to 0.5 and 0.75, respectively.

APS, APM, and APL denote small, medium, and large ground-truth

objects, respectively.

Moreover, frames per second (FPS) is used to measure model

detection speed. Model size and floating point operations (FLOPs)

are used for evaluating the occupied memory of the model and

calculation complexity, respectively, and they are as follows:

Params = KW · KH · Cin · Cout , (Eq: 22)

FLOPs = KW · KH · Cin · Cout · FW · FH , (Eq: 23)

Where KW and KH represent the width and height of the

convolutional kernel, respectively, Cin and Cout represent the

number of input and output channels, respectively, and FW and

FH represent the width and height of the feature map.
3.4 Detection performance comparison
with different anchor box algorithms

In this part, the predefined anchor boxes, which are obtained

from different clustering algorithms, are shown in Table 2 and the

detection performance on the SMD dataset with different anchor

boxes is shown in Table 3. From Table 3, it can be seen that

YOLOv5s with predefined anchor boxes generated by the K-means

and DK-means algorithm improve AP value by 1.9% and 3.3%,

respectively, when compared with the original method, and the DK-

means algorithm can perform better than the K-means algorithm

by 1.4%. Moreover, when the threshold of IoU increases to 0.75, the
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DK-means algorithm can achieve 6.0% AP value improvement,

compared with the original method. Furthermore, in the DK-means

method, the small object detection performance APS is improved by

6.5% and the medium object detection performance APM is

improved by 4.3% with a slight large object detection

performance loss, when compared with the original method.
3.5 Ablation studies

This section presents the ablation studies to illustrate the effects

of FL function, ASFF module, and the DK-means algorithm in the

detection model. The ablation studies are shown in Table 4, where

✓ and ✗ denote the detection model with or without relevant

modules or algorithm, respectively. The first line in this table show

the YOLOv5s (baseline model) without any improvement. When

single EIoU, FL function, or the ASFF module is adopted, the AP

values are increased by approximately 0.4%, 2.2%, or 1.7% with

improvement of multi-scale detection ability, respectively. As

shown in the last line in this table, when the DK-mean algorithm

is further adopted, the AP value is increased by 3.3%. Compared to

the standard detection model, the optimized scheme can achieve

4.8% improvement and the small and medium object detection

performances are also increased by 10.9% and 4.8% respectively.
3.6 Detection performance comparison
with other object techniques

In this part, the proposed detection model performance

comparison with other object detection techniques is shown in

Table 5. The comparison models include YOLOX-s (Ge et al., 2021),

YOLOv8-s (Ultralytics, 2023), YOLOv7-tiny (Wang et al., 2023),

YOLOv5s (Ultralytics, 2021), YOLOv5m (Ultralytics, 2021), and

YOLOv5l (Ultralytics, 2021). From Table 5, it can be seen that the

proposed detection model can achieve best results between accuracy

and detection speed. The AP value of our model is 0.6%, 1.6%, 1.6%,

3.7%, 4.8%. and 5.7% higher than that of YOLOv5l, YOLOv5m,

YOLOv8s, YOLOX-s, YOLOv5s, and YOLOv7-tiny, respectively,

which means that our proposed model has the best accuracy among
TABLE 1 Experimental hardware/software environment.

Configuration Project Model Parameter

Hardware
Environment

CPU RAM Intel Core i9-10920X
64 GB

GPU NVIDIA RTX3090 (24GB)

Software Environment
System Pytorch Ubuntu 20.04

V1.12.1

Python V3.8

CUDA V11.3
TABLE 2 The results of different anchor box algorithms.

Algorithm 80 × 80 40 × 40 20 × 20

(10,13) (30,61) (116,90)

Original method (16,30) (62,45) (156,198)

(33,23) (59,119) (373, 326)

(11,9) (54,15) (46,53)

K-means (22,8) (34,26) (149,52)

(20,15) (87,23) (263,94)

(11,9) (45,13) (47, 39)

DK-means (19, 7) (31,22) (135,41)

(17,12) (69,18) (189,70)
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these counterparts. The proposed model’s FPS value is 113 and

detects faster than YOLOv51, YOLOX-s, and YOLOv5s. Moreover,

the model size of the proposed model is smaller than YOLOv5m

and YOLOv5l, and the FLOPs of the proposed model are fewer than

YOLOX-s, YOLOv5m, YOLOv51, and YOLOv8s. All these show

that the proposed model can achieve satisfactory results among

accuracy, detection speed, model size, and calculation complexity.

The detection results on the SeaShips dataset (Shao et al., 2018) are

shown in Table 6. The SeaShips is a large dataset dedicated to maritime

shipping detection, and it includes 31,455 images with 7,000 open-source

images.We also divided the open-source part of the Seaships dataset in a
Frontiers in Marine Science 09
6:2:2 ratio with a COCO format, which is consistent with the processing

method of the SMD dataset. Here, the proposed method is compared

with the baseline YOLOv5s. From this table, we can see that our

proposed model performs better than the YOLOv5s in many aspects.

These means that our model can perform well on other datasets.
3.7 Detection results on the SMD dataset

Figure 6 shows the detection results of the proposed model in

different weather and light intensity conditions on the SMD dataset.

Figure 7 shows the detection result comparisons between

YOLOv5s and the proposed model. The subfigures in the first

column are the detection results of YOLOv5s, and those in the

second column are the detection results of the proposed model. From

this figure, it can be seen that the proposed detection model can

achieve more accurate detection of maritime object instances with

tighter predicted bounding boxes and fewer number of redundant

bounding boxes.
4 Conclusions

In this paper, we propose a maritime object detection

algorithm for maritime video surveillance. At first, a DE-based
TABLE 4 Ablation experiments.

EIoU FL function ASFF module DK-means AP AP50 AP75 APS APM APL

✗ ✗ ✗ ✗ 67.9% 96.1% 73.3% 52.2% 61.8% 87.3%

✓ ✗ ✗ ✗ 68.3% 96.2% 75.7% 54.8% 61.1% 87.4%

✗ ✓ ✗ ✗ 70.1% 96.2% 76.9% 56.8% 64.1% 87.5%

✗ ✗ ✓ ✗ 69.6% 97.0% 74.7% 55.0% 62.9% 87.8%

✗ ✗ ✗ ✓ 71.2% 97.5% 79.3% 58.7% 66.1% 86.6%

✓ ✓ ✗ ✗ 69.9% 96.6% 77.3% 60.0% 63.7% 87.7%

✗ ✓ ✓ ✗ 71.1% 97.2% 77.4% 58.6% 64.5% 88.5%

✓ ✓ ✓ ✓ 72.7% 97.7% 81.1% 63.1% 66.6% 87.0%
fro
The bold values mean that the best values in the relevant columns of the table.
TABLE 5 The experi|mental results with different object detection
algorithms on the SMD dataset.

Methods AP Model
Size

FLOPs FPS

YOLOX-s (Ge
et al., 2021)

69.0% 8.97M 13.40G 86

YOLOv8s
(Ultralytics, 2023)

71.1% 11.14M 14.28G 182

YOLOv7-tiny
(Wang

et al., 2023)

67.0% 6.23M 6.89G 143

YOLOv5s
(Ultralytics, 2021)

67.9% 7.24M 8.27G 131

YOLOv5m
(Ultralytics, 2021)

71.1% 21.19M 24.53G 104

YOLOv5l
(Ultralytics, 2021)

72.1% 46.56M 54.65G 82

Proposed model 72.7% 10.14M 10.81G 113
The bold values mean that the best values in the relevant columns of the table.
TABLE 6 The experimental results on the Seaships dataset.

Methods AP AP50 AP75 APS APM APL

YOLOv5s
(Ultralytics, 2021)

68.2% 97.7% 81.7% − 51.2% 69.3%

Proposed model 80.1% 98.9% 92.7% − 61.5% 81.3%
ntie
TABLE 3 The experimental results of different anchor box algorithms on the SMD test dataset.

Algorithms AP AP50 AP75 APS APM APL

Original method 67.9% 96.1% 73.3% 52.2% 61.8% 87.3%

K-means 69.8% 97.2% 78.1% 54.3% 64.4% 86.8%

DK-means 71.2% 97.5% 79.3% 58.7% 66.1% 86.6%
The bold values mean that the best values in the relevant columns of the table.
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K-means anchor box clustering algorithm, considering the

maritime object characteristics, is proposed to realize the

adaptive anchor boxes. Then, to enhance the multi-scale feature

fusion, the neck network adopts the ASFF module. Lastly, the loss

function integrates the focal loss and efficient IoU loss is defined to

alleviate the samples’ imbalanced problem and consider the

varying scales of the maritime objects. All consider the

complexity characteristic of maritime objects. The ablation

studies show that the proposed algorithm meets the multi-scale
Frontiers in Marine Science 10
maritime object detection performance. The experimental results

show that AP can reach 72.7%, which is 4.8% higher than

YOLOv5s, and better than YOLOv5m and YOLOv5l; this

algorithm does not occupy high additional computational

resources, and its inference speed can reach 113 FPS, which can

achieve better speed–accuracy balance.

How to make the proposed model lightweight for resource-

constrained devices with less detection accuracy loss will be a

meaningful topic for future research.
FIGURE 6

Detection results of the proposed model in various environment conditions.
FIGURE 7

Detection result comparisons of different object detection algorithms.
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