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Hervé Claustre,
Centre National de la Recherche
Scientifique (CNRS), France

*CORRESPONDENCE

Junyu He

jxgzhejunyu@163.com

RECEIVED 18 September 2023
ACCEPTED 29 September 2023

PUBLISHED 05 October 2023

CITATION

He J, Du Z and Xiao X (2023)
Editorial: Spatiotemporal modeling
and analysis in marine science.
Front. Mar. Sci. 10:1296334.
doi: 10.3389/fmars.2023.1296334

COPYRIGHT

© 2023 He, Du and Xiao. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Editorial

PUBLISHED 05 October 2023

DOI 10.3389/fmars.2023.1296334
Editorial: Spatiotemporal
modeling and analysis in
marine science

Junyu He1,2,3*, Zhenhong Du2,4 and Xi Xiao1,2

1Ocean College, Zhejiang University, Zhoushan, China, 2Ocean Academy, Zhejiang University,
Zhoushan, China, 3Donghai Laboratory, Zhoushan, China, 4School of Earth Sciences, Zhejiang
University, Hangzhou, China

KEYWORDS

spatiotemporal, modeling, marine science, machine learning, time-frequency
Editorial on the Research Topic

Spatiotemporal modeling and analysis in marine science
Recent advancements in monitoring technologies have ushered in an era characterized

by an explosion of spatiotemporal data across diverse fields, notably within global oceans.

This surge of data, sourced from satellites, unmanned aerial vehicles, buoys, and unmanned

underwater vehicles, poses challenges in extracting meaningful insights and bridging the

gap between raw data and scientific understanding (Frankel and Reid, 2008; Wu et al.,

2020). Data-driven spatiotemporal modeling and analysis present potential solutions,

offering avenues to uncover inherent features within the data, delineate characteristics of

natural phenomena, refine general knowledge or theories, and bolster the management and

conservation of oceans. Consequently, based on these spatiotemporal, spatial or temporal

data, specific methodologies are tailored and employed for analysis. For instance, prevalent

machine learning and deep learning techniques excel in modeling the nonlinear and non-

stationary aspects of spatiotemporal, spatial, or temporal data (Ham et al., 2019; Reichstein

et al., 2019; Runge et al., 2019; Callaghan et al., 2021). Geostatistical methods adeptly

capture spatial or spatiotemporal correlations within such data (He and Kolovos, 2018; He

and Christakos, 2021; Wu et al., 2021). Additionally, time-frequency methods decompose

temporal data into distinct series for nuanced variation detection (Cazelles et al., 2008; Xiao

et al., 2019). Cutting-edge frameworks, such as those integrating geostatistical and machine

learning methods, have been proposed to more accurately reflect the natural phenomena

(Du et al., 2021). The primary objective of this Research Topic is to furnish a platform for

scholars to disseminate novel methodologies or insights within the spatiotemporal context

of marine or coastal regions.

Chen et al. posited that integrating artificial intelligence (AI) technology with extensive

datasets from ocean observations can significantly address challenges in advancing marine

science or theory, especially in the intermediate ocean depths ranging from approximately

100 to 1,000 meters. In their review titled “Deep Blue AI for Knowledge Discovery of

Intermediate Ocean,” they synthesized findings from satellite remote sensing at around 100

meters deep and in situ observations at approximately 1,000 meters. Additionally, they
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discussed three distinct AI methodologies: associative statistical,

physically informed, and mathematically driven neural networks.

The application of these methodologies was reviewed in context,

covering areas such as the 3-D identification and trajectory

prediction of oceanic eddies, the vertical reconstruction of Ekman

drift, internal wave forecasting, and subsurface chlorophyll

maxima prediction.

Wang et al. centered their research on predicting typhoon

activity to bolster decision-making aimed at mitigating associated

risks. A pivotal challenge in modeling arose when selecting the

optimal number of historical satellite images for future predictions.

Using too few images might not offer adequate information on

typhoon trajectories, while an excessive number could diminish the

size of the training dataset. To address this, the team devised a

feature enhancement module paired with a channel attention

module. This combination was designed to amplify the intrinsic

characteristics of typhoons and determine the appropriate number

of images for subsequent modeling. The spatiotemporal attributes

of typhoons were then modeled using a symmetrical encode-decode

module comprising convolutional long short-term memory

networks (ConvLSTM). Furthermore, a multi-scale strategy was

implemented to curtail information loss during the ConvLSTM

process. In their quest to design the optimal structure for the

Enhanced Multi-Scale Deep Neural Network (EMSN), the team

explored multi-scale components, channel attention modules, and

spatiotemporal capture units. By adjusting various parameters

within these modules, they assessed the accuracy of typhoon

predictions. Notably, the EMSN outperformed both the MSCIP

satellite image predictor and the conventional U-net.

While hyperspectral remote sensing data are limited and costly,

Hu et al. investigated the potential of reconstructing hyperspectral

images using economical RGB images, a development that could

enhance marine observations. By replacing the standard

convolution kernel with atrous convolution and incorporating a

multi-scale atrous convolution residual block, the image’s multi-

scale spatial features were more effectively extracted by integrating

images across different scales into a multi-scale feature layer

without increasing computational costs. The introduced Multi-

Scale Atrous Convolution Residual Network (MACRN) comprises

three segments: low-level feature extraction, high-level feature

extraction, and feature transformation. MACRN’s efficacy was

evaluated using clean and real-world datasets and benchmarked

against exsiting algorithms like HSCNN-R, HSCNN-D, HRNet,

AWAN, and MST++.

Li devoted significant effort to applying the greedy strategy for

mode identification with significantly crossed frequencies and

overlapped component separation. Consequently, the Spatio-

Temporal Nonconvex Penal ty Adapt ive Chirp Mode

Decomposition (STNP-ACMD) algorithm was proposed. It

addresses the limitations of traditional algorithms, such as ACMD

and Variational Mode Decomposition (VMD), which primarily

prioritize channel-wise processing without accommodating the

coupled nature and spatio-temporal characteristics. The STNP-

ACMD employs a recursive mode extraction approach to

segregate overlapped components or crossed intrinsic functions
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and accentuates the spatio-temporal relationship within the coupled

nature by refining the spatial and temporal matrices. Comparative

analysis, using both numerical and real-world case studies,

demonstrated that STNP-ACMD surpassed the Ensemble

Empirical Mode Decomposition and VMD.

Chiu et al. leveraged the spatial correlation traits found within

observed data to estimate blue carbon (BC) stocks in marsh soils. A

Bayesian linear mixed-effects model was devised to assimilate auxiliary

information from variables such as marsh type, soil category, soil

depth, and marsh site. This model assumed that site effects adhered to

the intrinsic conditional autoregressive (ICAR) spatial dependence. By

incorporating the ICARmarsh site effects, an inherent spatial clustering

of sites became discernible, a pattern not reflected in the primary

auxiliary predictors. Notably, the ICAR model produced a narrower

confidence interval for the marsh site effects’ coefficient compared to its

non-ICAR counterpart, highlighting the spatial correlation of BC stock

and underscoring the importance of including these characteristics in

BC assessment models.
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