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Observations on the embryonic
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Yin Fu1,2, Chun-Yan Ma1* and Zhi-Qiang Liu1*

1Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural
Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences,
Shanghai, China, 2College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China,
3Ningbo Yifeng Aquaculture Co. LTD, Ningbo, China
To investigate the embryonic development of the mud crab Scylla

paramamosain, we analyzed three critical parameters: egg color of, embryo

morphology (through conventional and laser scanning confocal microscopy),

and the distribution of cell divisions. During embryonic development, the egg

color exhibited a progressive transition, shifting from orange to reddish-orange,

then to brown, before ultimately darkening to black. Each embryo displayed a

spherical shape, measuring approximately 280 mm in diameter, characterized by

a smooth surface devoid of any depressions. The embryonic cell division was in

the form of mixed oogenesis, comprised of complete division in the early stage,

spiral oogenesis in the middle stage and surface division in the late stage. It is

noteworthy that the blastopore appeared at the position where the transparent

area and cell aggregation just appeared under the microscope, and the

blastomere was a characteristic of the embryo entering the gastrulation stage.

After entering the gastrulation stage, the cells aggregated towards the blastopore

and formed two symmetrical cell clusters, which formed a V-shape with the void

of the classic blastopore. When the transparent region occupied approximately

1/5 of the embryo’s volume, the embryo entered the nauplius stage, and the

thoracic and abdominal armor, as well as the optic lobe and abdominal limb

primordia, could be clearly distinguished. The appearance of the compound eye

pigment band indicated the stage of compound eye pigment formation. At this

time, the transparent area accounted for 1/4 of the embryo and a large number

of ganglia appeared. The change of the compound eye pigment band from red to

black was also one of the reasons for the blackening of the egg color of the crabs.

The data obtained through this study have potential applications in the

determination of embryonic development status and obtaining of high-quality

seeds for S. paramamosain culture.
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1 Introduction

The mud crab Scylla paramamosain (Crustacea, Decapoda,

Portunidae, Scylla) is one of the most important marine crab

species widely cultured along the coasts of southern China, and is

also an important inshore fishery resource for many countries in the

Indian and Pacific Oceans (Takano et al., 2005; Ma et al., 2011). In

China, the aquaculture and fishing yield of S. paramamosain

exceeded 220 thousand tons in 2022 (Bureau of Fisheries and

Fishery Management, 2023). However, despite its high economic

value, the production of S. paramamosain has not yet been able to

meet the growing demand of the consumer market. Therefore, there

is an urgent need to further increase the production. Until now,

there are still many scientific and technological problems

that have not yet been effectively solved in S. paramamosain

culture. In particular, the development of S. paramamosain

culture requires a large amount of crablets. However, these seeds

for S. paramamosain artificial farming mainly come from wild

source supplements (Azra et al., 2015). The inconsistent supply and

unreliable quantity of the natural seedings hinders the sustainable

development of S. paramamosain culture.

Embryonic development is a key step in the crab breeding

process and has significant effect on the growth and development of

the crab individual. In the context of the urgent need for upgrading

and expansion of the S. paramamosain culture industry, as well as

the urgent need to break through the problems of low survival rate

and unstable yield in nurseries, it is necessary to systematically

study the embryonic development of S. paramamosain. Currently,

studies on this crab species have focused on the genetic structure of

geographic populations, comparison of differences among

geographic populations, molecular markers (Lu et al., 2009; Ma

et al., 2011; Ma et al., 2012; Liu et al., 2018), the effects of nutrient

regulation on growth and development (Xu et al., 2020; Farhadi

et al., 2022; Luo et al., 2023), as well as cloning and validation of

functional genes, e.g. genes related to sex determination regulation,

genes for various enzymes, and immune-related genes (Wan et al.,

2021; Wang et al., 2021; Zhang et al., 2021; Ma and Zhu, 2021). In

addition, the range of adaptiveness to environmental factors, such

as temperature, salinity, light and dissolved oxygen content, the

effects of changes in environmental factors on growth and

development (Chen et al., 2021; Yao et al., 2021; Ji et al., 2022), as

well as histology level (Wang et al., 2022), have been mostly studied.

In contrast, studies on systematic morphological observation of the

whole embryonic development period of S. paramamosain have

seldom been reported.

There is a long history of research on the morphology of

crustacean embryos and researchers have accumulated a large

amount of valuable information to describe the embryo

morphology. The study of crustacean embryology began in 1888

with morphological observations and descriptions of the internal

structure of embryos in species with large fertilized eggs, such as

trachypods and decapods, using freehand sectioning (Anderson,

2013). Tissue sectioning techniques became widely used in the

study of decapod crustaceans in the 20th century. In particular, the

paraffin sectioning technique is still used today by some crustacean

developmentalists to characterize the histological changes in the
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embryo (Mann and Hyne, 2008), the neural organs (Chansela et al.,

2012), the yolk sac, and many other aspects of organogenesis (Wu

et al., 2009). As technology advanced further, transmission electron

microscopy (TEM) began to be employed for observing the internal

ultrastructure of objects of study. For instance, TEM has been used

to study the ultrastructure of fertilized eggs and early crustacean

embryos (Hubble and Kirby, 2007). In addition, confocal laser

scanning microscopy (CLSM) has become one of the popular

instruments to build up 3D images for cell analysis. For example,

CLSM has been used to successfully analyze the morphological

characteristics of cell migration in Bythotrephes longimanus from

the beginning of oocyte cleavage to the 16-cell stage (Alwes and

Scholtz, 2014).

For S. paramamosain, the mode of cell division and the process

of cell migration and differentiation during embryonic development

have yet to be adequately explored owing to difficulty in taking

photos in the early stage. The embryo is the starting point of

individual development, and in-depth study of the embryo’s

development can help in understanding the biology of individual

development and obtaining sufficient and high-quality S.

paramamosain seedings. Therefore, in this study we describe the

observations on the important events in the development of the S.

paramamosain embryo from fertilized egg to the hatching

preparation stage, focusing on observations regarding egg color

change, morphology of the embryonic development under

microscope, and distribution of cell division using CLSM.
2 Materials and methods

2.1 Experiment animals

In our study, ten pairs of healthy and high-quality male (weight

415 ± 30g, carapace length 80.70 ± 6.10mm, carapace width

117.40 ± 8.21mm) and female (weight 375 ± 20g, carapace length

85.73 ± 5.03mm, carapace width 124.01 ± 7.22mm) S.

paramamosain parents were obtained fromthe S. paramamosain

genetic breeding innovation team of the East China Sea Fisheries

Research Institute of the Chinese Academy of Fishery Sciences,

Ninghai Experimental Center, Zhejiang Province. All the crabs were

temporarily kept in a 4×8 m cement pond with a water depth of

50 cm, and with a shade net covering over the pool. An inflatable

pump continuously aerated the water body. The water temperature

was 26-28°C, and the salinity was 24-28‰. All the crabs were fed

with fresh clams daily, and the water was exchanged by 1/3 once a

day to maintain the freshness of the water in the pond. Before

mating, the male would hold the female that was about to undergo a

reproductive molt. Once the reproductive molt occurred, the male

would immediately mate with her and transfer the sperm from his

body to the spermathecae of the female, and then the mating was

completed. The abdominal region of the female crab changed

significantly after mating (Supplementary Figure 1). The

umbilicus of an unmated female was relatively narrow, while that

of a mated female was bluntly rounded with bristles appearing on

the edge of the umbilicus. After mating, the males were removed

from the pond. After spawning, six ovigerous crabs were
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immediately transferred to a black incubation vat with the same

temperature and salinity seawater as described above. The seawater

in the vat was replaced every day to clean away the excreta and

residual feeds. During this period, the overall egg color of the

ovigerous crabs were photographed and recorded. Meanwhile, the

embryos were checked every 30 min. The embryos at blastocyst

stage, gastrulation stage, nauplius stage, compound eye pigment

formation stage and the stage of preparation for hatching were

collected and fixed with 4% paraformaldehyde.
2.2 Embryo sampling

Upon collection, the embryos were placed in a Petri dish

containing 1× PBS solution and brought under a light microscope

for observation and photographing. In the meantime, some embryo

samples were fixed in 4% paraformaldehyde solution and stored at

4°C overnight.
2.3 Embryonic nucleus staining

After fixation with paraformaldehyde solution, the embryos

were rinsed with 1× PBS three times and stored in pure methanol

until use. The staining procedure was carried out with Sytox®

Green (Molecular Probes) according to the procedure from a

previous study (Ma et al., 2019). Generally, all the embryo

samples were gradually rehydrated in methanol, with gradient

concentrations of 90%, 80%, 70%, and then 50%, for 5 min in

each concentration. Next, all the samples were rinsed thrice using

PBST solution (1× PBS with Tween 20). Then, the embryos were

stained in Sytox® Green with dilution of 1:20,000 for 3 h.

Subsequently, the stained embryos were rinsed twice with PBST

solution for 30 min and placed on a microscope slide (Sigma-

Aldrich, USA). After adjusting angle of the embryos on the slide, we

observed the embryos with a laser scanning confocal microscope

(Olympus, Japan), and photographed them.
3 Results

The typicall developmental characteristics of the S.

paramamosain embryo are summarized in Table 1.
3.1 Fertilized eggs and cleavage stage

The cleavage stage is the time between the fertilized egg and the

blastocyst stage, when the fertilized egg develops to the blastocyst

stage after eight divisions. At fertilization, the overall egg color of

the crabs was clearly yellowish (Supplementary Figure 2A). The

fertilized eggs, each about 280 mm in diameter, were spherical in

shape, medium-yolked, smooth and without cracks. The nucleus

located in the center of each embryo was encapsulated by a layer of

yolk, and the dark brown spots on the surface were the cell poles

(Figure 1A). The surface of the embryo was wrapped by a
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membrane that encapsulates the yolk. This secondary membrane

plays both protective and adhesive roles during the egg laying

process, in which the eggs would be pulled by the bristles in the

umbilicus of the mother crab, before becoming attached to the setae

on the mother crab’s abdomen (Figure 1A). For the embryos stained

with sytox, the nuclei did not have obvious fluorescence, but the cell

poles on the surface did display obvious fluorescence (Figure 1B).

The first cleavage of the embryo was an inward depression of

the fertilized egg, splitting the embryo into two cells, or blastomeres,

of different sizes (Figure 1C), which was similar to the

corresponding cell division in spot prawns (Biffis et al., 2009). In

accordance with a previous study (Hertzler, 2005), we named the

larger and smaller blastomeres as CD and AB, respectively

(Figure 1C). During this 2-cell period, there were distinct

fluorescent dots present on the embryo (Figure 1D). In addition,

the first round of division of the fertilized egg did not have a

significant cleavage sulcus, compared to the one that would form

the 4-cell stage.
TABLE 1 Representative characteristics during embryonic development
in the S. paramamosain.

Embryonic
stage

Representative characteristic

Cleavage 1-
cell

yellowish, smooth and without cracks, cell poles obvious

2-
cell

split into two cells of different sizes by the cleavage sulcus

4-
cell

cleavage sulcus obvious, cell numbers countable, with two
brownish-black dots

8-
cell

cleavage sulcus obvious, cell numbers countable, a larger
cell surrounded by crown cells

16-
cell

(same as above)

32-
cell

cleavage sulcus obvious, cell numbers countable

64-
cell

cleavage sulcus unclear, cell numbers countable

128-
cell

cleavage sulcus very unclear, cell numbers hard to count

Blastocyst cleavage sulcus disappeared, uniformly distributed nuclei
recessed inward along the embryo major axis

Gastrulation blastopore and many cell clusters (VPR, OL, MN etc.)
appeared

Nauplius embryo overall size increased, semicircular ventral limb
primordia appeared,

Abdominal limb
formation

abdominal limb primordia differentiated into abdominal
limbs

Compound eye
pigmentation

heart, ventral nerve cord and two reddish-brown bands of
compound eye pigment appeared

Pre-zoea
(preparation for
hatching)

color changed to black, embryonic develop complete, new
larva fully formed
frontiersin.org

https://doi.org/10.3389/fmars.2023.1296509
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xu et al. 10.3389/fmars.2023.1296509
The following 2nd to 6th rounds of division were in the form of

spiral oogenesis, dividing the embryo sequentially into 4, 8, 16, 32

and 64 cells (Figures 1E, G, I, 2A, C). The 7th to 8th rounds of

division changed from spiral oogenesis to embryonic

surface oogenesis.

At the 2nd round of division, the CD blastomere divided into a C

blastomere and a D blastomere while the AB blastomere divided
Frontiers in Marine Science 04
into an A blastomere and a B blastomere (Figure 1E). At the 4-cell

stage, two brownish-black dots appeared on the surface of the

embryo suggesting that the larger black dot on the surface of the D

blastomere was an intracellular body and the black dot on the

surface of the embryo was a polar body. Moreover, two smaller

fluorescent dots other than the nucleus were also observed on the
FIGURE 1

Cleavage stages of S. paramamosain embryos: from 1-cell to 16-
cell stages. (A, C, E, G, I) were observed under light microscopy.
(B, D, F, H, J) were observed under a laser scanning confocal
microscope. PB, polar body; ICB, intracellular body; N, nucleus.
FIGURE 2

Morphology of 32-cell stage to blastocyst of S. paramamosain
embryos under light microscopy (A, C, E, G, I) and a laser scanning
confocal microscope (B, D, F, H, J). The blastocyst stage embryo
concaved in the direction of the arrow (J). PB, polar body; ICB,
intracellular body; N, nucleus.
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surface of the embryo (Figure 1F). At the 8-cell stage, a larger cell,

surrounded by crown cells, was observed (Figure 1G). A similar

pattern was observed at the subsequent 16-cell stage, where

brownish-black dots appeared on the larger cells (Figure 1I). For

the 4-cell to 128-cell stages (Figures 1E-J, 2A-F), the number of cells

was increased, and the oval groove disappeared after the 128-

cell period.
3.2 Blastoderm and gastrulation stage

After the 8th cleavage, the S. paramamosain embryo entered the

blastocyst stage, in which many nuclei were distributed on the

surface of the embryo (Figure 2H). Additionally, the cleavage

furrow on the embryo surface was difficult to visualize

(Figures 2G-J). At the late blastocyst stage, the uniformly

distributed nuclei began to recess inward along the major axis of

the embryo (Figure 2J). Unfortunately, the position of the

intracellular body and the cellular polar body were not clearly

observable during this period.

In the early stage of gastrulation, the blastopore was formed

because of the migration of some cells into the endosomes. Due to

the dense aggregation of cells, the yolk around the blastopore was

rapidly consumed in comparison to the areas where the cells were

more dispersed. Hence, a transparent area appeared where the

blastopore was located (Figure 3A). It could be clearly observed

that the blastopore had taken shape, based on the small pore

formed by cell aggregation in the embryo (Figure 3B). With

further development, the transparent region was enlarged and

inverted triangularly concave toward the inner part of the embryo

(Figure 3C). At this period, a large number of cells around the

blastopore were found to be aggregated into clusters on the

surface of the embryo, and the nuclei of the cells in the region

were small and densely packed, whereas the cells in the region

outside the blastopore were larger and more loosely arranged

(Figure 3D). After the blastopore’s appearance, the transparent

region of the embryo was elongated toward both ends into a

crescent shape, and the yolk color above the concavity of the

transparent area became lighter, showing that there were cell

clusters in this area (Figure 3E). The cell cluster around the

blastopore (called Ventral plate rudiment, VPR) divided

continuously and gradually surrounded the blastopore. In

addition, another two cell clusters (called optic lobe primordia,

OL) also appeared above the VPR. Usually, the VPR and OL

spatially form a V-shape (Figure 3F). Next, the transparent zone

of the embryo expanded to the periphery. At the same time, the

color of the inner area of the transparent region was further

lightened (Figure 3G). More cell clusters appeared between the

OL and VPR, and these cell clusters subsequently developed into

the mandible (MN) and maxilliped (MX) primordia (Figure 3H).

The area of the intermediate cells, with sparser cell distribution,

developed into the stomodaeum (ST) (Figure 3H). With further

cell division, transparent areas were reduced in size compared to

the previous stage, and the color fading was more pronounced

(Figure 3I). The MN primordia, MX primordia and VPR joined
Frontiers in Marine Science 05
together to form a single body called the thoracoabdominal fold,

TF, and from the left and right sides of the TF would emerge the

antennal (AL) primordia (Figure 3J).
FIGURE 3

Morphology of embryos during the gastrulation stage under light
microscopy (A, C, E, G, I) and laser scanning confocal microscope (B,
D, F, H, J). OL, optic lobe primordium; VPR, ventral plate rudiment; TF,
thoracoabdominal fold; BL, blastopore; MN, mandibular; MX,
maxilliped; ST, stomodaeum.
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https://doi.org/10.3389/fmars.2023.1296509
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xu et al. 10.3389/fmars.2023.1296509
3.3 Nauplius stage and abdominal limb
formation stage

Following the gastrulation stage, the embryonic development

entered the Nauplius stage. The whole egg changed its color from

orange-red to orange-yellow (Supplementary Figures 2B, C), and

the overall size of the embryo increased significantly compared with

the previous developmental stage. The transparent area of
Frontiers in Marine Science 06
the embryo was crescent-shaped and accounted for about 1/5 of

the egg. Part of the semicircular ventral limb primordia could be

seen within the transparent area (Figure 4A). Moreover, distinct

zonation occurred on the TF and evolved into distinct protostomes.

From the top to bottom as shown in Figure 4B, these were the OL,

MN, MX, AL, first maxilliped primordia (FMA), second maxilliped

primordia (SMA), and caudal papilla (CP). Thereafter, the

transparent region of the embryo occupied about 1/4 of its
FIGURE 4

Morphological changes of the S. paramamosain embryos at nauplius stage. (A, C, E, G) were observed under a light microscopy. (B, D, F, H) were observed
under a laser scanning confocal microscope. The hemispherical was indicated by the arrow (C). OL, optic lobe primordium; MN, mandibular; MX, maxilliped;
ST, stomodaeum; FMA, first maxilliped primordium; SMA, second maxilliped primordium; CP, caudal protopod; AL2, antennule tentacles.
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volume, and wavy projections appeared within the transparent

region (Figure 4C). The elongated ends of the FMA and SMA

diverged, and the CP lengthened to evolve a ventral segmental

partition, with an inwardly curved end (Figure 4D). Later, the

nauplius wrapped around the yolk in an arc shape and extended to

both ends (Figures 4E, F). Then the crescent-shaped transparent

zone continued to expand into the inner yolk (Figure 4G).

Meanwhile, the abdominal limbs gradually differentiated from the

abdominal limb primordia, and the optic lobe primordia extended

radially towards the two sides of the embryo (Figure 4H).
3.4 Compound eye pigment formation and
preparation for hatching

With the extension of the optic lobe primordia, two reddish-brown

bands of compound eye pigment radially appeared on both sides of the

embryo, which was a sign that the embryo had reached the stage of

compound eye pigment formation (Figure 5A). The boundaries of the

thorax and the abdomen appeared to be differentiated by the position

of the prothorax (Figure 5B). The pigmented bands of the compound

eyes gradually thickened and deepened in color (Figure 5C). Another

pair of antennule tentacles (AL2) appeared anterior to the compound

eyes, and specificmorphological structure appeared in theMN andMX
Frontiers in Marine Science 07
primordia, with the FMA and SMA becoming elongated and

segmented (Figure 5D). Subsequently, a large number of black

ganglia appeared on the abdomen, cephalothorax, and base of the

appendages of the embryo (Figure 5E). The compound eyes increased

in size to about one-half the size of the embryo, and reticular zoning

appeared on the surface of each compound eye. The heart appeared at

the base of the compound eyes, and striated tentacles appeared at the

anterior end of the compound eyes (Figure 5F). The ventral nerve cord

(VNC) could be observed, wrapped around the sides of the gut and

running from the protoconch to the caudal end (Figure 5G). Three

pairs of appendages were clearly distributed on both sides of the

abdomen, the longest of which was FMA, followed by the SMA, and

the shortest being AL (Figure 5H). At this time, the overall egg color of

the embryos gradually changed from brown to black (Supplementary

Figures 1D-F). The yolk was rapidly consumed and contracted to form

a butterfly shape (Figure 5K), which accounted for about one-half of

the egg (Figure 5I). The AL curled inward and began to segment

internally and externally (Figure 5J). The TF extended to differentiate

the thorax and abdomen. As the abdomen emerged, the end of the

abdominal segment also began to diverge (Figure 5L). After this stage,

the mother crab would user her stepping feet to pluck the egg particles

away from the setae to which they had been attached, freeing them into

the water, where the larvae would break through their egg membranes

and develop into the zoea I stage (Supplementary Figure 3).
FIGURE 5

Morphological changes of embryos during the compound eye pigmentation stage to the pre-zoea I stage under light microscopy (A, C, E, G, I, K)
and laser scanning confocal microscope (B, D, F, H, J, L). AL, antennule; AL2, antennule tentacles; MN, mandibular; MX, maxilliped; FMA, first maxilliped
primordium; SMA, second maxilliped; primordium; VNC, ventral nerve cord.
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4 Discussion

The whole process of embryonic development is basically

independent of the mother and develops regularly, and the organs

and systems are basically fully developed and finalized at the late

stage of embryonic development. Therefore, it is necessary to carry

out an in-depth and systematic study on this key link of embryonic

development to clarify the internal mechanism of embryonic

development and to describe and stage the key developmental

events. A great deal of work has been done on the staging of

embryonic development in decapods of the Crustacea, as shown in

Table 2. Although the species are different, there are a lot of

similarities in the descriptions of the key events during embryonic

development. For example, the staging basis for the cleavage stage,

blastocyst stage, gastrulation stage and nauplius stage is almost

same, but the difference is that the 7th cleavage of the black tiger

prawn and the shrimp Penaeus is an uneven cleavage producing 122

cells, while the 7th cleavage of the mud crab is a surface cleavage

producing 128cells. In addition, with the saw-margined blue crab,

the stage of the formation of the appendages is subdivided into the

5-pair appendages and the 7-pair appendages, which is likely related

to the means of observation.

Monitoring changes in egg coloration stands as the

predominant method for assessing the stage of embryonic

development within the S. paramamosain nursery process. For

example, during the cleavage stage, eggs typically exhibit a light

orange-yellow hue, while in the later stages, when pigment bands in

the compound eyes form, the egg color transitions to brown and

then black. A similar trend of color changes was also observed in the

study of embryonic development of the orange mud crab (Scylla
Frontiers in Marine Science 08
olivacea) (Azra et al., 2015). This method of determining the period

of embryonic development just from the egg color is intuitive and

does not require any cost. However, it can only give a rough

estimate of the period of embryonic development and cannot

accurately distinguish the specific stages. The processes occurring

at the microscopic level during the embryonic development period

seem to be a better explanation of the apparent changes. To that

end, this study has systematically demonstrated the embryonic

development of S. pramamosain through the observations from 1-

cell to pre-zoea I periods. When using the light microscope, the

emergence of blastopore, formation of attached branches, and

compound eye pigment banding could be distinctly observed. In

addition, the fluorescence staining method directly enabled

observation of the changes in nuclear migration and aggregation

without interference from the yolk background color, overcame the

blurring of the morphology of the vital organs and appendages in

the transparent zone, and provided a good description of cell

migration and aggregation during the formation of the blastocyst.

Cleavage refers to the process of high-speed division of the

fertilized egg. The result of cleavage is to multiply the number of

embryonic cells and prepare the basic conditions for further

development and differentiation. Generally, the mode of cleavage of

the fertilized egg varies according to species (Chen, 2007). In S.

paramamosain, the first cleavage was observed to be a complete

cleavage, the 2nd to 6th were spiral cleavage, and the 7th to 8th were

surface cleavage. In contrast, in the Chinese mitten crab (Eriocheir

sinensis), the first five cleavages were complete, and it was only from the

sixth that surface cleavage began (Du et al., 1992). While in the

swimming crab (Portunus trituberculatus), surface cleavage occurred

from the first cleavage (Xue, 1998). It is worth noting that the S.

paramamosain embryo split into two unevenly sized cells after the first

egg cleavage, which was similar to that observed in the Spotted Shrimp

(Penaeus monodon), with two unevenly sized cells during the 2-cell

stage (Biffis et al., 2009). On the other hand, the difference in size

between the two cells was more pronounced for S. paramamosain.

The slower division and slightly larger size of the D blastomere

than the surrounding crown cells may be well explained by the

function of intracellular bodies, enriched with large amounts of

RNA, which were thought to play an important role in determining

germline fates, causing D blastomere division to be delayed (Pawlak

et al., 2010). This delay in cell division may influence the mode of

cleavage of the S. paramamosain embryo, and the intracellular

bodies maybe used as indication of the location of blastoderm

emergence to some extent (Biffis et al., 2009). However, whether this

indication can be applied in S. paramamosain embryonic

development needs to be verified in a future study.

The proto-gut of S. paramamosain was mainly formed through

the invagination of the embryo in the late blastocyst stage, and a

transparent zone appeared at one end of the proto-gut, which was

consistent with the process of formation of the proto-gut in the

swimming crab (Portunus trituberculatus) (Xue and Du, 2001) and

the Japanese shrimp (P. japonicus) (Hudinaga, 1942). In our study,

the embryos were found to have cell aggregation in the internal trap

area to form the blastopore. Usually, the location of cell aggregation
TABLE 2 Embryonic development in different species.

Crustaceans Stage Reference

Bythotrephes
longimanus

Fertilized eggs, 2cell, 4cell, 8cell, 16cell Alwes and
Scholtz, 2014

Macrobrachium
nipponense

Fertilized eggs, cleavage stage,
blastoderm stage, gastrulation stage,

nauplius stage, zoea stage

Ma et al., 2019

Penaeus monodon Fertilized eggs, 2cell, 4cell, 8cell, 16cell,
32cell, 64cell, 122cell, gastrulation stage

Biffis et al.,
2009

Litopenaeus
vannamei

Fertilized eggs, 2cell, 4cell, 8cell, 16cell,
32cell, 64cell, 122cell, 244cell, Later

stages of gastrulation

Hertzler, 2005

Scylla olivacea Fertilized eggs, blastoderm stage,
gastrulation stage, 3 days embryo, 4
days embryo, 5 days embryo, 6 days

embryo, 7 days embryo

Azra et al.,
2015

Scylla serrata Fertilized eggs, cleavage stage,
blastoderm stage, gastrulation stage,
nauplius stage, 5 pairs of appendages
stage, 7 pairs of appendages stage, eye-
pigment formation stage, prehatching

stage, hatching stage

Chen, 2007
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could generate a transparent zone. This can be explained as due to

the rapid depletion of yolk leading to the emergence of a

transparent zone (Chen et al., 2021). In other words, the

transparent zone was the result of the action of the blastopore in

the mud crab embryos.
5 Conclusion

In the current study, the whole embryonic development of S.

paramamosain has been observed, focusing on the overall color of

all the eggs, the morphological changes of individual embryos, and

the changes of nuclei migration. The first cleavage of the embryo

was an unequal cleavage, and the 2nd-6th cleavages were spiral

oogenesis. The larger D cell during the 4-cell period exhibited

delayed division relative to the smaller crown cells surrounding it.

The 7th-8th cleavages were surface cleavage, and the cleavage

furrow was difficult to observe after the sixth oocyte cleavage. In

the early gastrulation stage, the embryo concaved inwards to form

the blastopore. The cells gathered around the blastopore to further

differentiate into different appendage primordia. This work fills a

significant gap in our knowledge about the embryonic

development of S. paramamosain at the nucleus level, and the

data obtained will help in the determination of embryo

development status and also potentially in the obtaining of

high-quality mud crab seedlings.
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