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Manitoba, Winnipeg, MB, Canada
Reports have shown an increase in the use of disinfectants in wastewater treatment

plants, prompted by the detection of residual viruses in sewage. However, the

release of disinfection byproducts (DBPs) in final effluents has raised concerns about

their potential adverse effects, such as endocrine disruption, on aquatic

environments. Despite these concerns, few studies have examined the endocrine-

disrupting effects of DBPs on fish, which may be vulnerable to DBPs. The aim of this

case study was to investigate the endocrine-disrupting properties of four commonly

formed DBPs: chloroiodomethane (CIM), dibromochloromethane (DBCM),

bromodichloromethane (BDCM), and trichloroacetic acid (TCA) on the estrogen

receptor-a in zebrafish (zERa). The results indicated that all four DBPs have high

anti-estrogenic activity against zERa; with CIM, BDCM, DBCM, and TCA yielding

80.8%, 78.4%, 49.0%, and 64.1% anti-estrogenic effects on zERa, respectively.
Moreover, all DBPs demonstrated negligible estrogenic effects on zERa. Our study

sheds new light on the adverse effects of DBPs, particularly the endocrine-disrupting

activity of CIM, which, as part of the dihalomethanes group, has received limited

research attention in the past. This study shows the molecular interactions in terms

of the endocrine disruption of DBP on zERa, warranting further studies to

understand the overall impact of fish in affected aquatic ecosystems.
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1 Introduction

Since the emergence of the rampant Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, the frequent

detection of coronavirus in untreated wastewater has become a

widespread public concern (Bivins et al., 2020; Kataki et al., 2021) as

viruses can remain infectious in faeces for an extended period of

time (Casanova et al., 2009). As a result, disinfectant usage was

increased to inactivate viruses in public facilities, hospitals, and

wastewater treatment plants (Dewey et al., 2021). In fact, the

disinfectant market grew significantly by 17.2% from 2019 to

2020 (Klemes ̌ et al., 2021) as efforts to manage the pandemic

intensified. Chlorine-based disinfectants were primarily

implemented, as chlorine rapidly reacts with three chemical

moieties in the viral protein, namely cysteine, tyrosine, and

tryptophan amino acid residues (Noss et al., 1986; Garcıá-Ávila

et al., 2020; Kály-Kullai et al., 2020; WHO, 2020). These

disinfectants make up 16% of the disinfectants used, according to

the United States Environmental Protection Agency (EPA) (https://

cfpub.epa.gov/wizards/disinfectants/).

Apart from the desired disinfecting features, chlorine reacts with

natural organic matter (NOM) or inorganic compounds, such as

bromide and iodide, to form halogenated disinfection byproducts

(DBPs) (Allard et al., 2015; Li et al., 2021). Halomethanes (HMs) and

haloacetic acids (HAAs) are representative DBP groups derived from

chlorine-based disinfectants. Trihalomethanes (THMs) and

dihalomethanes (DHMs) are halogen-substituted carbon

compounds with the molecular formula CHnXn, where X

represents a halogen, such as fluorine, bromine, iodine, or chlorine

(Waller et al., 1998). HAAs are formed by monochloramination with

NOMs in water (Padhi et al., 2019). Both HMs, especially THMs and

HAAs, pose carcinogenic risks and cause adverse reproductive

outcomes in humans (Kujlu et al., 2020).

DBPs discharged from WWTPs directly into aquatic

environments are likely to affect organisms such as fish. Many

studies on endocrine disruption have focused on human

reproductive defects (Ahn and Jeung, 2023; Interdonato et al.,

2023). Whereas toxicological data on fish have also included

histological as well as biochemical adverse effects (Lata et al.,

2023). Regarding the endocrine disruption of DBPs, some studies

have investigated the effects of DBPs in fish (Chaves et al., 2020;

Wang et al., 2022), including endocrine disrupting effects on

medaka fish estrogen receptor a (Sui et al., 2022). However,

limited information exists on their effects on zebrafish estrogen

receptor a (zERa) (Lee et al., 2023). Thus, this study focused on

investigating the endocrine-disrupting effects of DBPs using a

zERa-transfected model system. Danio rerio (zebrafish) is

considered a model organism for ecotoxicological investigations

as a bioindicator of environmental pollution (Dai et al., 2014). The

zebrafish’s high fecundity, fast embryonic development and

conserved neuroendocrine system have made it a powerful model

for testing endocrine disruptors (Löhr and Hammerschmidt, 2011).

Although different sensitivities for endocrine-disrupting chemicals

can appear between in vivo and in vitro tests, their relative

estrogenic potency is not separated by a pattern (Kolle et al.,

2010). In fact, in vivo and in vitro tests have the same estrogenic
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activities according to the relative dose response. Furthermore, in

vitro tests can more accurately demonstrate the response of a target

receptor, assayed using the reporter gene assay, and provide an

assessment of early targeted molecular responses caused by

estrogenic and anti-estrogenic activities (Park et al., 2022).

Therefore, this study adopted the in vitro reporter gene assay for

the zERa-transfected model. Even though the employed reporter

gene assay cannot be used to conclude on the overall impact on fish

in the environment, it does show preliminary insights into the

potential endocrine-disrupting effects of DBPs on a molecular level.

Therefore, this study aimed to assess the in vitro potential effects of

four common DBPs on zERa as an indication of endocrine

disruption at a molecular level.
2 Materials and methods

2.1 Chemicals and reagents

Chemicals were purchased from the following vendors: liquid

types of chloroiodomethane (242861; Sigma-Aldrich, Germany;

CIM), dibromochloromethane (206326; Sigma-Aldrich, Germany;

DBCM), bromodichloromethane (139181; Sigma-Aldrich,

Germany; BDCM), and crystalline type of trichloroacetic acid

(T6399; Sigma-Aldrich, Germany; TCA). Based on the M-clarity

program of Sigma Aldrich, CIM, DBCM, and BDCM obtained a

quality level of 100, and TCA obtained a quality level of 200. Quality

levels of 100 or 200 mean the ISO 9001. All the chemicals had high

purity levels: CIM, DBCM, and BDCM were > 97.0% purity; TCA

was American Chemical Society level purity (> 99.0%). The

chemicals were dissolved in DMSO (dimethyl sulfoxide, D8418, >

99.9% purity) according to experimental methods detailed by Kim

et al. (2020). Given its tight linkage with the result, the integrity of

the chemical purity was ensured for both cell viability and

endocrine-disrupting effects assessing experiments.
2.2 Cell viability analysis

The cytotoxic effects of the DBPs were assessed with the cell

counting kit-8 colourimetric assay (HY-K0301, MedChemExpress,

USA; CCK-8) using HEK293 normal cells. HEK293 cell

(ATCC#CRL-1573) line present in this study was purchased from

the American Type Culture Collection (ATCC). This method was

selected considering the advancement of alternative methods to

animal testing. Additional advantages to usage include high protein

production efficiency, easy transfection, rapid growth, and easier

maintenance compared to other cell lines (Thomas and Smart,

2005). A competitive assay with E2 was performed for all chemicals

tested in the estrogenic response reaction. Additionally, in the anti-

estrogenic response experiments, 4-hydroxytamoxifen (4-HT) was

used as a positive control. We conducted ligand-receptor binding

competition assays by adding varying concentrations of 4-HT or

DBPs depending on a 96-well plate in the presence of E2 (at a

concentration where it binds 100% to the ER). To normalize the

toxicity response, each well of a 96-well plate was seeded with 1 ×
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104 cells (n = 6, the experiment was duplicated, and three times

reproducible tests were performed) and incubated in Dulbecco’s

Modified Eagle Medium (DMEM) in a 37°C chamber containing

5% CO2 for 24 h. DBPs were dissolved in half-logarithmic (3.16-

fold) serial dilutions in DMSO, resulting in the following exposure

concentrations: 10-4.8 to 10-2.3 M for CIM, DBCM, and BDCM, and

10-8.8–10-4.5 M for TCA. DBPs were inoculated into fresh media

with a final DMSO concentration of 0.5% (v/v) (n = 6). The negative

control was prepared without DBPs in 0.5% DMSO. After 24 h of

chemical exposure, the growth medium was aspirated, and CCK-8

was added to a 10-fold dilution with DMEM. After 2 h of incubation

in 5% CO2 at 37°C, cell viability was assessed by spectrophotometric

analysis at 450 nm using a TECAN microplate reader (TECAN,

Männedorf, Switzerland). Cytotoxicity was expressed as a

percentage of the responses, calculated using the following

equation:

V( % ) =
OD450, s
OD450, d

� 100

where V is the percentage response of cytotoxicity, OD450, s is

the absorbance of the sample exposed to DBPs at 450 nm, and

OD450, d is the absorbance of the sample exposed to 0.5% DMSO

(negative control) at 450 nm.
2.3 Estrogenic and anti-estrogenic activity
evaluation for endocrine disruption

Both DBP-induced estrogenic and anti-estrogenic activities were

assessed using the Luciferase Reporter Assay System (E1500,

Promega, Germany) in HEK293-ERE-zEsr1 cells. Cells at a

concentration of 1 × 104 cells per well were seeded in a 96-well

plate and incubated in DMEM with puromycin and neomycin (1 mg/
mL and 0.2 mg/mL) in a 37°C chamber with 5% CO2 for 24 h. The

selective estrogen receptor agonist, 17b-estradiol (E2), was used as a

reference (positive control) at concentrations ranging from 10-13 to

10-9 M. DBPs in estrogenic tests were dissolved in half-logarithmic

(3.16-fold) serial dilutions in DMSO, resulting in the following

exposure concentrations: from 10-14 to 10-4 M for CIM; from 10-7.8

to 10-3.3 M for DBCM and BDCM; and from 10-11.8 to 10-3.3 M for

TCA. Similarly, 4-hydroxytamoxifen (4-HT), a selective anti-

estrogen, was used as a reference at concentrations ranging from

10-9 to 10-6 M. E2 was also used as a relative estrogen agent against 4-

HT at a fixed concentration of its 100% estrogenic activity (10-10 M)

to demonstrate the competitive anti-estrogenic activity of 4-HT.

DBPs in anti-estrogenic tests were dissolved in half-logarithmic

(3.16-fold) serial dilutions with DMSO, resulting in the final

exposure concentrations: from 10-8.4 to 10-3.9 M for CIM; from

10-7.8 to 10-3.3 M for DBCM and BDCM; and from 10-7.8 to 10-3.3

M for TCA.

After 24 h of incubation with 5% CO2 at 37°C, the growth

medium was aspirated, and the cells were rinsed with 1X phosphate

buffer saline (pH 7.4). Passive lysis buffer (E194A, Promega,

Germany) was then added and gently mixed for 10 min. The

prepared lysates were added, and luciferase activities were

measured using a microplate reader (TECAN, Männedorf,
Frontiers in Marine Science 03
Switzerland) at a relative luminescence unit with 3 s integration

time and 1 s settling time. The percentage induction was calculated

from the responses of the estrogen receptor against E2 using the

following equation:

I( % ) =
(OD570, s − OD570, d)
(OD570, E2 − OD570, d)

� 100

where I is the percentage induction, OD570, s is the absorbance

of the sample exposed to DBPs at 570 nm, OD570, d is the

absorbance of the sample exposed to 0.5% DMSO (negative

control) at 570 nm, and OD570, E2 is the maximum induced

absorbance by E2.
3 Results

3.1 Effects of DBPs on cell viabilities of
HEK293 cell culture

To verify the endocrine-disrupting effects in the model cell line,

a cytotoxicity test was performed before the reporter gene assay. As

a result, CIM and DBCM were found to be cytotoxic to HEK293

cells (Figures 1A, B) at an LC50 of 34.1 mM (CIM) and 192.0 mM
(DBCM), respectively. The response percentage exponentially

decreased with increasing log CIM concentrations (Figure 1A).

Specifically, 63.4 ± 7.2% of cells were nonviable at the highest

inoculation concentration. Cells remained viable with no response

to increasing DBCM concentrations; however, 62.4 ± 4.3% cell

death was observed at the highest concentration (Figure 1B).

BDCM and TCA did not show dose-dependent response

percentages (Figures 1C, D).
A B

C D

FIGURE 1

Cytotoxicity of HEK 293 (human embryonic kidney 293) cells for the
target DBPs, (A) CIM, (B) DBCM, (C) BDCM, and (D) TCA. Data points
represent mean percentage response ± standard deviation (SD) (n = 6).
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3.2 Endocrine-disrupting effects of DBPs
on zERa

The dose-response curves of the estrogenic and anti-estrogenic

responses to zERa were plotted in Figures 2A–H. The estrogenic

activities of all DBPs were lower than 20% in zERa. The maximum

estrogenic effects of CIM, DBCM, BDCM, and TCA were 10.4 ±

1.7%, 12.0 ± 3.1%, 8.74 ± 2.3%, and 16.9 ± 5.7%, respectively

(Figures 2A–D). Conversely, all DBPs showed anti-estrogenic

activities against zERa. CIM (80.8% ± 6.9% at 125 mM) and

BDCM (78.4 ± 7.6% at 500 mM) showed prominent inhibition of

E2 (Figures 2E, G). In contrast, DBCM (49.0 ± 4.4% at 500 mM) and

TCA (64.1 ± 15.0% at 15.85 mM) showed relatively weak anti-

estrogenic responses (Figures 2F, H). The EC50 of E2 (estrogen) was

0.1 nM, calculated from the 100% induction value of E2; that of 4-

HT (anti-estrogen) was 0.003 nM (Figure 2).
4 Discussion

Excessive disinfectant usage can induce DBP over-generation.

However, the concentrations of DBPs detected in the environment

to date have been below the cytotoxic level (Tables 1, 2). Moreover,

the concentrations of DBPs in WWTPs (wastewater treatment

plants) and drinking water were significantly lower than the

WHO guideline values (Tables 1, 2). The guideline values of

DBCM and BDCM were 32.5- and 43.3-fold lower than the

lowest treatment concentrations, respectively (CIM data is

absent). Although the WHO guideline value for TCA is 1,190-

fold higher than the lowest treatment concentrations, a negligible

cytotoxic effect from the environmental TCA exposure level can be

derived from the cytotoxicity test results. No cell death was

observed with exposure to BDCM and TCA (Figures 1C, D),
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which aligns with a previous report on the non-toxic effects of

BDCM and TCA on the Sheepshead minnow, Cyprinodon

variegatus (Fisher et al., 2014). Nevertheless, the cytotoxicity

results suggest that attention should be paid to the endocrine-

disrupting effects of DBPs in aquatic organisms. The escalating

concentrations of DBPs in the ecosystem and their potential

cytotoxic consequences should not be underestimated, especially

considering the projected 1.7-fold increase in the demand for

disinfectants (Ahuja, 2022).

Aside from receptor-mediated inhibition, other mechanisms of

anti-estrogenic responses include protein synthesis or enzyme

inhibition (Fic et al., 2014). However, the study by Kim et al.

(2020) reported that the anti-estrogenic activity of DBPs was

positively correlated with E2 treatment of the human estrogen

receptor. Thus, the anti-estrogenic responses from the current

study support estrogen receptor-mediated reactions by small

molecules, such as DBPs. Estrogens interact with the ERs (estrogen

receptors), while anti-estrogens (DBPs in this study) inhibit normal

ER-mediated processes during ovarian development in Oryzias

latipes (Kawahara and Yamashita, 2000). Specifically, these anti-

estrogenic activities could adversely affect fish-sex ratios by

decreasing the ratio between females and undifferentiated fish

(Andersen et al., 2004). Therefore, DBP overproduction could

inevitably contribute to endocrine disruption in freshwater

organisms within the receiving environment.

THMs and HAAs are commonly studied in various aquatic

animals, such as zebrafish, the most prominently used lower

vertebrate model. THMs result in developmental aberrations,

embryonic DNA damage, and mortality, whereas HAAs induce

embryonal malformations (Teixidó et al., 2015). Among

halogenated DBPs, iodinated forms are more toxic than

chlorinated and brominated forms (Boorman, 1999). However,

there are few reports of endocrine disruption by iodinated DHM
A B C D

E F G H

FIGURE 2

Estrogenic response (%) of CIM (A), DBCM (B), BDCM (C), and TCA (D) with positive reference estrogenic activity material, black line (E2). Anti-
estrogenic response (%) of CIM (E), DBCM (F), BDCM (G), and TCA (H) with reference anti-estrogenic material, black line (4-HT). Data points
represent average estrogenic response percentage response ± standard deviation (SD) (n = 6).
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(CIM in this study) in both human and animal studies because

DHMs are not routinely detected in environments (Supplementary

Figure 1). CIM may be as toxicologically relevant as regulated

THMs and HAAs (Linge et al., 2013; Richardson and Postigo, 2015;

Padhi et al., 2019). This study also found that CIM exposure

resulted in the most substantial estrogenic inhibition in zERa.
Therefore, environmental exposure to CIM may be more

prominent, given the surge in chlorine-based disinfectants. This

study therefore demonstrates the adverse consequences of DBP-

induced endocrine disruptions in zERa using reporter gene

responses. However, the results of this study cannot be used to

predict the responses in living organisms, as it focuses solely on

ligand-receptor competitive interactions between DBPs and the

ligand of zERa. Therefore, further intensive in vivo tests are

needed to inquire into DBPs, particularly CIM, which have less

significant cytotoxicity at the current environmental concentrations

but have the most concerning anti-estrogenic effects.

In the present study, the data shows that the tested DBPs, CIM,

DBCM, BDCM, and TCA, had anti-estrogenic activities in zERa.
Specifically, CIM, which has an 80.8% anti-estrogenic effect in zERa
needs to be investigated in depth, alongside other DBPs. Although

the reporter gene assay in this study may not entirely reflect the in

vivo test results, it has been reported that response values induced

by DBPs can indirectly represent estrogenic mimic effects (Ihara

et al., 2015).
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TABLE 1 Concentrations of DBPs in WWTPs, drinking water, recommendations, and adverse effect levels.

World Health
Organization (WHO)

DBPs Level in
WWTPs (mM)

Levels in
drinking
water
(mM)

Guideline
value
(mM)

Potential health
effects
(mM)

References

Chloroiodomethane
(CIM)

ND NM NM NM WHO, 2000; Richardson et al., 2008; Zhang et al.,
2010; Hladik et al., 2014

Dibromochloromethane
(DBCM)

0.0002-0.004 0.0004 0.48 > 0.38

Bromodichloromethane
(BDCM)

0.0005-0.002 0.0004 0.36 > 0.49

Trichloroacetic
acid (TCA)

0.001-0.11 NM 1.19 > 0.36
TABLE 2 LC10 and IC50 calculated based on cytotoxicity related to DBP exposure.

DBPs L/H* on cytotoxicity (mM) L/H* on EDC
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LC10
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activity (IC50)
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LC10 (lethal concentration 10) represents the concentration at which the DBPs were lethal to 10% of the cells, while IC50 (half maximal inhibitory concentration) denotes the concentration of
DBPs that led to a 50% biological inhibition of the cells. ND, not detected; L/H*, lowest and highest exposure concentration; ++, strong positive; +, positive.
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