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The coastal environment in the Saemangeum area has experienced

persistent physical stresses owing to the irregular operation of the sluice

gates and related artificial disturbances since seawall construction, which has

led to restricted freshwater-seawater circulation. To understand the impacts

of stress, we performed long-term (1999-2022, 24 years) in situ

measurements of relevant biotic and abiotic parameters and employed the

random forest (RF) technique to determine the phytoplankton community

response to environmental disturbance. Specifically, we estimated

chlorophyll-a (Chl-a) concentrations using an RF model based on various

environmental factors such as sea surface temperature (SST), sea surface

salinity (SSS), dissolved oxygen saturation (DO), dissolved inorganic nitrogen

(DIN), and dissolved inorganic phosphorus (DIP) as input variables. From the

RF analysis, each environmental factor contributed to variation in Chl-a

concentration as follows: SSS (42.91%), SST (17.88%), DIP (14.38%), DIN

(13.36%), and DO (11.48%). In addition, we performed sensitivity

experiments by altering the salinity, which was revealed to be the most

influential environmental parameter. As a result, Chl-a concentration

increased by approximately 1.79 times in lower salinity conditions (from 7

to 27 psu) compared to the normal salinity conditions prior to the seawall

construction (from 12 to 32 psu) in both areas, including the inside and

outside the seawall. More importantly, lower salinity conditions stimulated

dinoflagellate blooms, that is, red tides, implying that restricted freshwater-

seawater circulation could worsen coastal ecosystems. Thus, this study

contributes to understanding the impacts of environmental changes

caused by sluice gate manipulation on marine ecosystems, such as

phytoplankton community dynamics. Moreover, this study recommends an

ecologically suitable operation scheme for Saemangeum sluice gates to

ensure a healthy coastal ecosystem.
KEYWORDS

anthropogenic disturbance, chlorophyll-a concentration, random forest, coastal
environmental changes, phytoplankton community
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1 Introduction

In an estuarine region, the interplay between freshwater and

seawater is influenced by dynamic physical environmental factors

such as freshwater discharge and tidal flows (Ryther, 1969). Coastal

ecosystems in estuarine regions are recognized as systems with high

levels of biodiversity and productivity due to the nutrient supply

from the land (McLusky and Elliott, 2004; Wetz et al., 2011; Cloern

et al., 2014). It is also notable that estuarine areas are known to

undergo eutrophication and algal blooms due to excessive nutrient

input from the land (Paerl et al., 2014; Jeong and Yang, 2015). These

areas are also stressed by changes in salinity (Telesh, 2004; Bianchi,

2007). Moreover, anthropogenic disturbances related to coastal

development, including dam construction and the irregular

exchange of freshwater and seawater, can significantly accelerate

the physical stress in the coastal environment, including salinity

differences (Park and Sin, 2022). Anthropogenic disturbances have

the potential to induce unstable and unpredictable changes in

coastal ecosystems, such as phytoplankton dynamics (Elliott and

Quintino, 2007; Borja et al., 2010; Domingues et al., 2012).

Recognizing that the first chain of the coastal ecosystem’s

production system is primary production (Cloern et al., 2014),

anthropogenic perturbations may directly lead to variations in

phytoplankton biomass and community composition (Domingues

et al., 2007; Choi et al., 2013). Ultimately, this affects the quantity

and quality of higher trophic levels in the food web (Frederiksen

et al., 2006; Kang et al., 2017), leading to changes in coastal

ecosystem functioning.

The Saemangeum seawall is the longest man-made dike ever

built globally, accounting for 33.9 km in length (Figure 1). The

internal water of the seawall is affected by seawater (part of the

Yellow Sea, YS) outside the seawall and influenced by two rivers

(Dongjingang, and Mangyeonggang) inside the seawall (Lee and

Ryu, 2008). After the completion of the seawall construction in

2006, the mixing of freshwater and seawater (i.e., estuary, brackish

water) has been controlled through two sluice gates (Sinsi and

Garyeok) on the southern part of the seawall (Figure 1B). When

sluice gates are opened, ecological and hydrological changes occur

due to the inflow of seawater from the outside and the outflow of

freshwater from the inside, considering the tidal range and water

depth of the mixing area, causing changes in the marine

environment (Yang et al., 2008; Choi et al., 2013; Baek et al.,

2019). The Saemangeum seawall sluice gates irregularly control

freshwater and seawater exchange, contributing to increased

environmental stress (Lee et al., 2009; Kim et al., 2020). In

summer, when freshwater inflow is high owing to increased

precipitation (Park and Sin, 2022), the influence of low salinity

on freshwater becomes more pronounced, leading to strong

stratification of internal waters (Kim et al., 2006; Oh and Choi,

2015). The outer region has an average salinity above 28 psu in the

outer region, whereas the inner region has an average salinity below

25 psu. In addition, chlorophyll-a (Chl-a) concentration, used as a

proxy for phytoplankton biomass, was nearly four times higher

inside than outside the area. Choi et al. (2013) and Jeong and Yang

(2015) reported a positive relationship between nutrients and Chl-a

concentrations before and after seawall construction from 2006 to
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2009 and 2002 to 2010, respectively. Interestingly, increased oxygen

concentrations in internal waters are caused by phytoplankton

photosynthesis (Choi et al., 2013). Conversely, other studies have

reported that phytoplankton respiration consumes oxygen,

contributing to decreased oxygen concentrations (Jeong and

Yang, 2015).

Other studies in similar conditions have also articulated the

environmental changes and addressed impacts driven by dike

construction. Domingues et al. (2007) investigated the

relationship between physicochemical environmental factors, Chl-

a, and phytoplankton communities during the construction of the

Alqueva Dam in the Guadiana River (Spain) from 2002 to 2003.

They observed that an increase in nitrates led to an increase in Chl-a

concentration and alterations in the composition of phytoplankton

communities. Additional analyses for the same regions between

2007 and 2009 showed similar environmental changes to those

observed by Domingues et al. (2007), while the phytoplankton

community composition returned to prior conditions for dam

construction (Domingues et al., 2012). These findings indicate

that coastal ecosystems adapt to rapid environmental changes due

to natural or anthropogenic disturbances, but challenges in

identifying adaptation may begin with long-term and continuous

data. Jiao et al. (2007) reported an increase in Chl-a related to

reduced salinity during the construction of China’s Three Gorges

Dam on the Yangtze River. Similarly, Wei et al. (2021) analyzed

environmental changes in the same region during the summer

seasons in 2008 and 2013, demonstrating that the combination of

low salinity and high nitrate levels in the Yangtze River resulted in

increased Chl-a and oxygen levels (Wei et al., 2021).

Despite scientific findings on the relationship between dike

construction and its impact on the environment, these studies have

focused on understanding the short-term ecological responses of

coastal ecosystems based on the nutritional differences between

freshwater and seawater (Jiao et al., 2007; Choi et al., 2013; Wei

et al., 2021). However, two other limitations exist to understanding

coastal ecosystem dynamics under anthropogenic disturbances.

First, physical stresses, including stratification and river discharge,

have not been considered in previous studies focusing on the

nutritional perspective (Jiao et al., 2007; Choi et al., 2013).

Second, the data for analysis were limited to short-term (Wei

et al., 2021) and discontinuous data. Discontinuous or short-term

(less than ten years) data constrain a comprehensive understanding

of coastal environmental variations, such as phytoplankton

adaption, shifts in phytoplankton communities, and changes in

coastal ecosystem productivity. Therefore, it is essential to conduct

long-term (over ten years) multiparametric data analyses,

considering the complexity and variability of physical

environmental changes driven by natural and anthropogenic

interventions, to understand coastal ecosystems (Park and Sin,

2022). Many recent studies have employed machine learning

(ML) techniques to explain the relationships between factors such

as sea surface temperature (SST), nitrogen, and marine ecosystems.

Park et al. (2015b) used an artificial neural network (ANN) model,

specifically a support vector machine (SVM), to examine the

relationship between nutrient levels (nitrate and phosphate) and

phytoplankton blooms in the Nakdong River in South Korea (Kim
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et al., 2019). Park et al. (2020) employed a random forest (RF)

model to quantify the relationships and influences of various

environmental factors, including light and Chl-a.

Our study aimed to assess and quantify the long-term

environmental and ecological impacts of the Saemangeum seawall

construction off the west coast of the Korean Peninsula, focusing on

the relationship between Chl-a and various environmental factors,

including SST, salinity, and nutrients. First, we analyzed the main

coastal environmental changes caused by the Saemangeum seawall

structure using long-term (1999-2022) data (Section 3.1). We

considered four conditions: before and after seawall construction

and differences in circulation times for freshwater and seawater.

Second, we assessed and explained the contribution of each

environmental factor to the coastal ecosystems using the RF model

(Section 3.2). Third, we simulated and examined the coastal
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ecosystem response to multivariate effects and the combined

impacts of two or more factors on Chl-a (Section 3.3). Finally, we

discuss the biological responses induced by environmental changes

caused by long-term anthropogenic disturbances, such as shifts in

phytoplankton community composition and the occurrence

conditions for red tides caused by dinoflagellate blooms (Section 4).
2 Data and methodology

2.1 Study area

The Saemangeum is a tidal flat located in the southwestern part

of the Korean Peninsula, and the Saemangeum Seawall construction

was built by a national project, the Saemangeum Reclamation
A

B

FIGURE 1

Location of the Saemangeum seawall in South Korea adjacent to the coastal Yellow Sea (A) and the studied sampling stations (B). The blue and
orange colored squares indicate the sites sampled outside and inside of the Saemangeum seawall, respectively. The bathymetry data was obtained
from the GEBCO 2020 with 1-arc resolution.
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Project, to reclaim regions and use them for agricultural purposes.

The Saemangeum seawall is located where two rivers (Dongjingang

and Mangyeonggang) meet the coastal YS and the western coast of

Korea (Figure 1A). The YS affects the outside of the seawall (Jin

et al., 2013). In contrast, the interior of the seawall is influenced by

freshwater enriched with nutrients predominantly originating from

land, including agricultural areas (approximately 50%) and forests

(approximately 35%) (Jeong and Kwak, 2021). From April 2006 to

December 2010, the sluice gates on the southern parts of the seawall

remained open, allowing unrestricted interaction between

freshwater and seawater. However, from January 2011 to August

2014, the sluice gates were opened selectively twice daily (daytime

and nighttime) for one hour to manage the water levels within the

inner area (Oh and Choi, 2015). The sluice gates were opened once

daily for less than one hour between Sep. 2014 and Nov. 2020.

Considering the water quality, the gates were opened twice daily

(daytime and nighttime) (Oh and Choi, 2015). The bottom

topography of the estuary inside the Saemangeum seawall is

generally flat, with an average depth of approximately 20 m

(Figure 1B) (Lee and Ryu, 2008; Oh and Choi, 2015; Jeong and

Kwak, 2021).

In addition, the study area has a typical temperate climate and

distinct seasonal variations in SST (Kim et al., 2020). It also has

typical East Asian monsoon characteristics with precipitation. Based

on the Korea Meteorological Administration (KMA) (https://

data.kma.go.kr), the precipitation increases in summer (from July

to September, 22.95 ± 8.20 cm) and decreasing in winter (from

January to March, 3.81 ± 1.33 cm) (Wang et al., 2017) (Figure 2A).

As a result, the Saemangeum seawall discharges a larger volume of

freshwater during the summer (63.95 ± 34.62 m3s-1) than during

winter (20.86 ± 8.83 m3s-1) (Oh and Choi, 2015; Cho et al., 2020)

(Figure 2B). Moreover, freshwater causes lower sea surface density,

resulting in strong stratification inside and outside the Saemangeum

seawall (Oh and Choi, 2015).
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2.2 Data

The SST and sea surface salinity (SSS) were measured on-site

using a handheld multiparameter meter (YSI, model Pro Quatro).

Dissolved oxygen saturation (DO), essential for phytoplankton

respiration and growth, was measured using the YSI and

converted into dissolved oxygen saturation (%) to eliminate the

potential effects of seasonal water temperature and salinity

variations. Dissolved inorganic nitrogen DIN (NH4
+ + NO3

- +

NO2
-) and dissolved inorganic phosphorus (DIP, PO4

3-) were

analyzed as nutrient sources for phytoplankton. The DIN and

DIP concentrations were measured using absorption spectrometry

with sulfanilamide, sodium nitroprusside, and potassium persulfate

methods, respectively (Armstrong et al., 1967; Jeong and Kwak,

2021). Chl-a was measured in the water samples. The collected

water samples (500 mL) were passed through GF/F filters with a

diameter of 47 mm. The filters were then placed in 90% acetone and

stored in a dark room for 24 h before measurement with a

fluorescence spectrophotometer (provided by Water and Eco-Bio

Co., Ltd.). In addition, phytoplankton abundance and species

composition were analyzed in samples collected between 2019

and 2022 and preserved in acidic Lugol’s solution using the

settling and siphoning method (Welch, 1948). After thorough

mixing, each phytoplankton species in 1 mL Sedgwick–Rafter

counting chambers was counted under an optical microscope.

Outside the Saemangeum seawall, observations collected in

February, May, August, and November from 1999 to 2022 were

obtained from the Korea Marine Environment Management

Corporation (KOEM) under the Ministry of Oceans and Fisheries

(https://www.meis.go.kr). Monthly environmental factors inside the

Saemangeum seawall from 2012 to 2022 were obtained from the

Saemangeum Area Integrated Environmental Management System

(SAIEMS), managed by the Ministry of Environment (https://

www.eariul.go.kr) (Figure 1B; Table 1). Irregularly acquired data
BA

FIGURE 2

Time series of monthly averaged precipitation (A), discharge (B) from 2013 to 2022. The pink and blue shade shows the winter season (from January
to March) and summer season (from July to September), respectively. In B, over the zero (0) means seawater, likes outside in the seawall, inflow into
the freshwater, likes inside in the seawall. Conversely, under zero (0) indicates freshwater outflow to seawater.
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from 2014 to 2022 were provided by Water & Eco-Bio Co. Ltd.

(Figure 1B; Table 1).

A total of 2,341 samples were collected, with 68% representing

surface depths (shallower than 5 meters) and 32% representing

bottom depths (deeper than 5 meters), following the regulations set

forth by the Ministry of Oceans and Fisheries of Korea (MOF) and

the Ministry of Land, Infrastructure and Transport (MOLIT). Out

of these, 1,162 samples pertain to the period between 2012 and 2022

within the inner Saemangeum seawall, while 1,179 samples

correspond to the period from 1999 to 2022 outside the seawall.

It’s worth noting that salinity values between the surface and

bottom layers exhibited similarity at most stations (though not

shown), indicating well mixed within both the water masses in the

inner and outer areas of the seawall (Kim et al., 2006; Jeong and

Kwak, 2021). In the scope of this study, our primary focus is to

investigate potential coastal ecological changes that might be

associated with the construction of the Saemangeum seawall. To

this end, we organized the spatially sampled data, with external

samples representing a marine environment and internal samples

representing a blend of freshwater and seawater circulation

environments. The data underwent monthly averaging to mitigate

the influence of irregular observation dates, following the

methodology outlined by Oda et al. in 2018.
2.3 Method

2.3.1 Random forest as machine
learning approach

The RF model is a tree-based algorithm with high randomness

that minimizes errors and enhances performance. The randomness in

the RF model plays a critical role in preventing overfitting and

enhancing the prediction performance. The model was constructed

by setting two essential parameters: the number of single decision

trees (Ntrees) and the number of features (Mtry) (Baek et al., 2022).

Each tree randomly selects a subset of the dataset and chooses the

best-split function from the selected subset to split the nodes (Park

et al., 2020). Finally, the results averaged for each tree were assembled
Frontiers in Marine Science 05
to conclude. Thus, Ntrees andMtry are significant parameters in the RF

model. In this study, we employed an empirical trial to set Ntrees to 52

single decision trees, whereas Mtry was set to five, based on the

convention (Baek et al., 2022). Five variables (predictors) were used as

inputs for the RF model. The predictors were the SSS and other

environmental factors (SST, DO, DIN, and DIP). We determined the

significance of the predictors using the Boruta algorithm, and all

input data were normalized using the Z-score method. A 5-fold cross-

validation method was used to evaluate the accuracy of the RFmodel.

For the model training set, 60% (1404) of the total data were used,

while 20% (468) were used for the validation set, and the remaining

20% (469) were used as the test set.

Several statistical metrics were used to evaluate the performance

of the model, including the Pearson correlation coefficient (r),

coefficient of determination (R2), root mean square error (RMSE),

and percentage model bias (P-bias). r displays the relationship

between the in-situ and predicted values, R2 represents the index

of variability that the model can explain, and RMSE indicates the

difference between the observed and predicted values. Finally, P-

bias assesses whether the model underestimates or overestimates

observations (Bae and Seo, 2018; Liao et al., 2021). A strong

correlation is indicated when r > 0.6 (Liao et al., 2021), a value of

R2 closer to 1, and a smaller value of RMSE indicates a better model

fit to the observed data (Li et al., 2013). The P-bias indicates the

model’s bias, such that values closer to zero suggest a lower bias. A

P-bias negative value implied an underestimation of the observed

values by the model, whereas a positive value indicated an

overestimation (Bae and Seo, 2018).

2.3.2 Explainable Artificial Intelligence
To offer understandable and reasonable explanations for the

ML model developed in this study, we used explainable artificial

intelligence (XAI) techniques, such as variable importance (VI), the

Shapley additive explanations (SHAP) approach, and partial

dependence (PD) plots. The VI is a method provided by the RF

model to calculate the impact of each predictor on the target

variable (Breiman, 2001). The VI indicates the extent to which a

model’s prediction accuracy is affected by removing a particular

variable (Cutler et al., 2007). VI is a normalized value calculated by

assigning scores to each feature after the model has completed

training, with a sum of 1. Hence, the closer a variable’s VI value is to

1, the more essential it is for the model’s prediction. SHAP explains

the impact of multiple predictors on outcomes using game theory to

analyze causal relationships using modern ML techniques

(Lundberg and Lee, 2017). The limitations of inherent feature

importance information, such as VI, in RF models, are

compensated for by utilizing SHAP values (Jang et al., 2022). The

SHAP value for the input variables was the weighted average of the

marginal contribution of the input variable (Eq. (1)).

ji =oS⊆ Fn if g
Sj j ! ( Fj j − Sj j − 1) !

Fj j !  ½PS∪  if g(xS∪  if g) − PS(xS)�

where ji represents the SHAP value of the i-th input variable, F

indicates the set of all input variables, and S represents all the

subsets without the i-th input variable. Additionally, xS the subset S

without the i-th input variable, and xS∪​ if g represents the dataset
TABLE 1 Description of the in-situ measurement, including sea surface
temperature (SST), sea surface salinity (SSS), dissolved oxygen saturation
(DO), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus
(DIP), and chlorophyll-a concentration (Chl-a).

Observation
Date
(year/
month)

Variables Sites
Observation
institution

1999-2022/
02,05,08,11
(regularly)

SST, SSS,
Chl-a, DIN,
DIP, and DO

Outside
Korea Marine Environment

Management (KOEM)

2012-2022/01-
12 (regularly)

SST, SSS,
Chl-a, DIN,
DIP, and DO

Inside

Saemangeum Area
Integrated Environmental

Management
System (SAIEMS)

2014-2022/01-
12 (Irregularly)

SST, SSS,
Chl-a, DIN,
DIP, and DO

Both Water and Eco-Bio Co.Ltd
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that includes the i-th input variable. where P(xS) shows the

predicted value based on xS. For further information, please refer

to the study by Lundberg and Lee (2017). The SHAP values were

calculated using Eq. (1) can indicate the contribution of each input

feature to the target and its correlation and responsiveness,

including the value and direction (positive or negative) of the

output factor for the condition range of each input factor

(Mangalathu et al., 2020; Rodrıǵuez-Pérez and Bajorath, 2020;

Smith and Alvarez, 2021). An optimized Tree SHAP was used to

explain the RF model (Mangalathu et al., 2020; Rodrıǵuez-Pérez

and Bajorath, 2020).

Finally, the PD plots help interpret the prediction results of the

models because they visualize the interactions between variables

and explain the model results (Friedman, 2001; Park et al., 2022). In

particular, PD plots show how the model’s prediction reacts to

changes in the values of one or two variables (Baek et al., 2022).

Thus, we can identify how a variable affects the model’s prediction

and understand its operational mechanisms. The PD plot analysis

was performed as follows:

f s(Xs) =  EXc
½f̂ (Xs,  Xc)� =  

Z  
f̂ (Xs ,Xc)pc(Xc)dXc

where XS represents the variable visualized through PD plots, and

Xc denotes the variable used in the RF model (f̂ , estimated value). In

general, Xs composes one or two factors and shows changes in the

predicted values for complex effects among multiple variables. Set S

is the set of variables desired to identify partial dependence. The PD

plots for set S were calculated by designating a specific variable of XS

and averaging all values of Xc, which are the other variables. For

further details, refer to Baek et al. (2022).
3 Results

3.1 Changes in the coastal environment
before and after the Saemangeum
seawall construction

3.1.1 Overall spatiotemporal change of the
environmental variables

We examined the environmental changes in the outer area of

the Saemangeum seawall from 1999 to 2010, when freshwater and

seawater exchanges were unrestricted (Figure 3; Table 2). The

average SST was 14.15 ± 7.90°C, increasing to 0.83°C from 1999

to 2010 (Figure 3A). The average SSS maintained a stable 31.29 ±

0.80 psu regardless of the season. Although there was a slight

increase of 0.12 psu in SSS during the same period (1999-2010), the

difference was not statistically significant (Figure 3B). The mean DO

was 103.45 ± 12.97%, with an increase of 1.91%p in the same period

(Figure 3C). The average DIN from 1999 to 2010 was 143.14 ±

111.50 mg m-3, while the mean DIP was 19.24 ± 13.11 mg m-3.

Unlike other environmental factors, DIN showed a decreasing trend

of 43.11 mg m-3, and DIP showed a decrease of 2.42 mg m-3 over

time (Figures 3D, E). The average Chl-a concentration was 2.76 ±

2.85 mg m-3, gradually increasing during the same period, with

approximately 0.32 mg m-3 (Figure 3F).
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Figure 4A shows that the increasing SST trend from 2011 to

2022 inside the Saemangeum seawall was higher than outside

(Table 3). The overall average SST in the outer area is 15.48 ±

7.98°C, exhibiting an increase of around 1.48°C (Table 3). On

average, SST in the inner area is 14.43 ± 8.58°C and has increased

by approximately 2.13°C. Figure 5A shows the seasonal SST

changes in both areas inside and outside the seawall, clearly

depicting the continuous increase in temperature from winter

(from January to March) to summer (from July to September). In

the outer area, the average seasonal temperature ranged from 5.46 ±

1.75°C in winter to 25.14 ± 1.79°C in summer. In the inner area, the

average SST is 4.51 ± 2.36°C in winter and 26.12 ± 2.32°C in

summer (Figure 5A). Both regions demonstrate typical seasonal

variations characteristic of temperate climate zones, with the inner

area experiencing a higher rate of temperature increase than the

outer area. In addition, the SST warming trend in both regions

increased by more than twice from 2011 to 2022 compared with the

previous period (1999-2010).

The average SSS is 30.91 ± 0.90 psu, and the SSS trend exhibited

a slight decrease of 0.31 psu in the outer area from 2011 to 2022

(Figure 4B). Similarly, the inner area averaged SSS is 24.59 ± 4.83

psu, and the SSS tendency decreased by 2.77 psu, which shows a

drastic change compared to the slight increase of 0.12 psu from

1999 to 2010. Notably, the inner and outer areas showed

exceptionally low salinity values in 2018 and 2020 compared to

other years (Figure 4B). Additionally, SSS showed a distinct

seasonal variation opposite to that of SST, decreasing in summer

and increasing again in winter (Figure 5B). In the outer region,

conditions were characterized by seawater, with salinity changes

decreasing from 31.30 ± 0.28 psu in winter to 30.73 ± 0.10 psu in

summer (Kim et al., 2020). The inner part conditions as brackish

water showed a more unstable pattern in terms of salinity variations

compared to the outer area, with average winter salinity from 29.08

± 0.94 psu to 20.10 ± 0.21 psu in the summer season (Figure 5B).

Both regions, including the outside and inside of the seawall,

exhibit average DO levels of 98.42 ± 13.09% and 99.70 ± 15.78%,

respectively (Figure 4C). Based on these results, the outer and inner

areas displayed decreasing trends of 2.77% and 6.09%, respectively

(Figure 4C). Moreover, the outer area of average seasonal DO

ranged from 110.07 ± 6.30% in winter to 89.39 ± 6.85% in

summer (Figure 5C). In inner areas, the seasonal average DO

value from 2012 to 2022 during winter was 101.75 ± 3.38%, while

during summer, it slightly decreased to 94.70 ± 6.40%, indicating a

lower saturation level compared to winter (Figure 5C).

The average DIN concentration in the outer area was

approximately 106.56 ± 84.42 mg m-3, while in the inner area, it

is around 222.25 ± 132.31 mg m-3, indicating that the inner area has

roughly double the nutrient level compared to the outer area

(Figure 4D). Similar to DO, DIN also showed a decreasing trend

in the outer and inner areas, at approximately 10.99 mg m-3 and

84.62 mg m-3, respectively. The inner and outer areas exhibited low

DIN values in 2017 and 2019, respectively. In the case of seasonal

variation, in the outer area, the average DIN concentration during

winter and summer is about 135.77 ± 65.04 mg m-3 and 75.57 ±

25.79 mg m-3, respectively (Figure 5D). On the other hand, in the

inner area, the average DIN level during winter and summer is
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TABLE 2 Index of the six features statistics values from 1999 to 2010. The positive sign (+) as indicating ‘increased trend’ and the negative sign (-) as
indicating ‘decreased trend’ from 1999 to 2010.

Variables (unit) Min Max Mean Trend

SST (°C) 2.92 27.27 14.15 ± 7.90 (+) 0.83

SSS (psu) 28.61 32.31 31.29 ± 0.80 (+) 0.12

DO (%) 67.09 128.88 103.45 ± 12.97 (+) 1.91

DIN (mg m-3) 13.75 460.33 143.14 ± 111.50 (-) 43.11

DIP (mg m-3) 1.24 44.68 19.24 ± 13.11 (-) 2.42

Chl-a (mg m-3) 0.02 17.55 2.76 ± 2.85 (+) 0.32
F
rontiers in Marine Science
 07
B

C

D

E

F

A

FIGURE 3

Time series of spatially monthly averaged SST (A), SSS (B), DO (C), DIN (D), DIP (E), and Chl-a (F) are shown for the sampled period from 1999 to
2010. The blue bar and blue dotted line indicate each parameter value and trend. The black line shows the changed environmental conditions that
completed seawall construction.
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approximately 232.93 ± 44.36 mg m-3 and 195.65 ± 40.11 mg m-3,

respectively, with both regions exhibiting higher DIN

concentrations during winter than summer (Figure 5D).

The average DIP concentration in the inner and outer areas is

around 16.61 ± 10.68 mg m-3 and 14.57 ± 8.77 mg m-3, respectively,

indicating a slight difference from DIN levels (Figures 4D, E). DIP

levels showed an increasing trend of approximately 3.78 mg m-3 in

the outer area, while in the inner area, it showed a decreasing trend

of around 10.50 mg m-3, indicating contrasting patterns. In

particular, the inner area exhibited higher DIP values in 2017,

whereas the outer area showed lower DIP values in 2019, in contrast
Frontiers in Marine Science 08
to the DIN values (Figure 4E). As in Figure 4E, the average DIP

levels during winter and summer in the outer area are

approximately 12.50 ± 3.27 mg m-3 and 13.54 ± 2.55 mg m-3,

respectively (Figure 5E). In the inner area, the average DIP levels

during winter and summer are approximately 9.42 ± 2.59 mg m-3

and 15.95 ± 3.02 mg m-3, respectively, with significant seasonal

differences observed (Figure 5E). In contrast to DIN, DIP levels

were higher in summer than in winter.

The average Chl-a in the outer and inner regions of the seawall is

approximately 5.97 ± 4.03 mg m-3 and 13.81 ± 8.54 mg m-3,

respectively, with the inner area having more than twice the values
B
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FIGURE 4

The spatially monthly averaged changes in SST (A), SSS (B), DO (C), DIN (D), DIP (E), and Chl-a (F) are depicted from 2011 to 2022 on the outside
and inside of the Saemangeum seawall. The blue square and dotted line show each variable value and trend the sampled outside the seawall,
respectively. The orange circle and dotted line present values and tendencies of environmental factors inside the seawall, respectively. The green
and red triangles indicated in 2017 and 2019, respectively. The orange shaded represents the period during which the sluice gates were scheduled to
open and close only once per day (from September 2014 to November 2020).
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compared to the outer area (Figure 4F). The Chl-a concentration in

the outer part showed an average decrease of 1.83 mg m-3, whereas

that in the inner area represented an average increase of 4.68 mg m-3.

Chl-a concentrations were generally higher inside than outside the

seawall during the entire time series but were more pronounced

during the period during which the sluice gates were only opened

once per day (Figure 4F). The highest concentrations in the inner

region were over 30 mg m-3 in 2019 and 2020, and the Chl-a levels

were exceptionally low in 2017. In contrast, the Chl-a values in the

outer area were similar to those in other years. Additionally, the

average Chl-a concentration in the outer area during winter and

summer is approximately 9.22 ± 0.37mgm-3 and 5.11 ± 0.91mgm-3,
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respectively (Figure 5F). In the inner area, the average Chl-a during

winter and summer is approximately 9.42 ± 2.59 mg m-3 and 15.95 ±

3.02 mg m-3, respectively, indicating a higher concentration during

both seasons. Interestingly, Chl-a exhibited distinct spatial and

seasonal bloom patterns, with the inner area showing summer

blooms and the outer area showing winter blooms (Figures 4F

and 5F).

3.1.2 Environmental changes associated with
sluice gate operations

To investigate the environmental changes associated with

variations in sluice gate opening times within the Saemangeum
TABLE 3 Index of the six variables statistics values divided to inside and outside of the Saemangeum seawall from 2011 to 2022.

Variables
(unit)

Min Max Mean

Inside Outside Inside Outside Inside Outside

SST (°C) 0.22 1.54 29.18 28.53 14.43 ± 8.58 15.48 ± 7.98

SSS (psu) 12.54 27.30 31.49 32.40 24.59 ± 4.83 30.91 ± 0.90

DO (%) 57.49 66.82 138.45 133.34 99.70 ± 15.78 98.42 ± 13.09

DIN (mg m-3) 10.56 2.57 548.17 366.51 222.25 ± 132.32 106.56 ± 84.42

DIP (mg m-3) 2.00 0.29 45.50 39.34 16.61 ± 10.68 14.27 ± 8.75

Chl-a (mg m-3) 0.50 0.36 44.41 26.36 13.91 ± 8.54 5.97 ± 4.03
B C

D E F

A

FIGURE 5

Time series of monthly means of SST (A), SSS (B), DO (C), DIN (D), DIP (E), and Chl-a (F) inside and outside the Saemangeum seawall from 2011 to
2022. The blue square and orange circle indicate the monthly averaged value for each parameter inside and outside the seawall, respectively. The
pink and blue shade shows the winter season (from January to March) and summer season (from July to September), respectively.
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seawall, we examined fluctuations in relevant abiotic and biotic

factors, including Chl-a, across three distinct periods: Period 1 (P1,

from January 2011 to August 2014, with the sluice gate opened

twice daily), Period 2 (P2, from September 2014 to November 2020,

with the sluice gate opened once per day), and Period 3 (P3, from

December 2020 to December 2022, with the sluice gate opened

twice per day). The average SST in the outer areas during P1, P2,

and P3 was 14.94 ± 8.87 °C, 15.72 ± 7.84 °C, and 14.92 ± 8.21 °C,

respectively. In the inner areas, the mean SST for P1, P2, and P3 was

13.65 ± 9.11 °C, 14.42 ± 8.47 °C, and 15.29 ± 8.59 °C, respectively.

Notably, SST in the outer areas exhibited a gradual increase,

although no significant spatial or temporal differences were

observed. Regarding SSS, the average values for the outer areas

during P1, P2, and P3 were 30.83 ± 0.92 psu, 30.94 ± 0.95 psu, and

30.83 ± 0.69 psu, respectively. In the inner areas, the averaged SSS

for P1, P2, and P3 was 26.98 ± 3.56 psu, 23.46 ± 4.98 psu, and 25.02

± 4.74 psu, respectively. It is worth noting that the SSS inside and

outside the seawall displayed significant differences concerning the

sluice gate opening. Furthermore, the average DO levels in the outer

areas over the same periods were 105.17 ± 9.10%, 96.25 ± 13.10%,

and 101.70 ± 13.84%, respectively. In the inner areas, the average

DO for P1, P2, and P3 was 96.01 ± 17.95%, 102.26 ± 16.70%, and

96.80 ± 8.08%, respectively. However, no notable changes in DO,

which remained nearly saturated at all times, were associated with

the operation of the sluice gate.

In P1, the average DIN concentrations in the outer and inner

areas were 67.41 ± 61.82 mg m-3 and 251.23 ± 111.65 mg m-3,

respectively. In addition, the averaged DIN concentrations for P2

were 118.53 ± 78.77 mg m-3 and 223.27 ± 149.00 mg m-3 in the

outer and inner areas, respectively. In P3, the averaged DIN values

were 89.97 ± 66.44 mg m-3 and 188.21 ± 96.78 mg m-3 in the outer

and inner areas, indicating significant spatial and temporal

differences variation. In the case of the DIP, the average DIP

concentrations during P1 were 9.21 ± 7.78 mg m-3 and 14.50 ±

6.94 mg m-3 in the outer and inner areas, respectively. In P2, DIP

values were 15.86 ± 8.62 mg m-3 and 19.51 ± 11.48 mg m-3 on the

outside and inside of the seawall, respectively. In P3, DIP levels were

11.96 ± 8.31 mg m-3 in the outer area and 8.94 ± 7.84 mg m-3 in the

inner area, respectively, showing a clear temporal difference in both

areas. Chl-a concentration depicted outside averages of 6.36 ± 3.69

mg m-3, 6.31 ± 4.25 mg m-3, and 4.24 ± 2.97 mg m-3 during P1, P2,

and P3, respectively. In averaged Chl-a concentration, higher values

in the inner area with averages of 10.15 ± 4.86 mg m-3, 15.66 ± 9.83

mg m-3, and 13.31 ± 6.53 mg m-3 in P1, P2, and P3, respectively.

The Chl-a concentration changed more in the inner than the outer

area according to temporal variations.
3.2 Chl-a estimation on a RF model

3.2.1 RF model performance to Chl-a
The scatter plots in Figures 6A, B illustrate the RF model

performance of the validation and test sets for the in situ and

predicted Chl-a. The RF model training set showed r = 0.97,

R2 = 0.93, RMSEChl-a = 1.91 mg m-3 (p<.001) (not shown). The

validation set (Figure 6A) had r = 0.78, R2 = 0.62, RMSEChl-a = 4.02
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mgm-3 (p<.001), and the test set (Figure 6B) had r = 0.73, R2 = 0.54,

RMSEChl-a = 3.73 mg m-3 (p<.001), respectively. Figures 6A and 6B

display a slightly different pattern, where the values were divided

into two groups centered around the Chl-a values of 10 mg m-3. The

left group in Figure 6B accurately represents the Chl-a levels outside

the Saemangeum seawall, whereas the right group effectively

captures the higher Chl-a levels inside the seawall (Figures 3F and

6B; Tables 2, 3). Furthermore, upon evaluating the P-bias, which

indicates the model’s bias, it was found that the predicted Chl-a

predicted by the model was underestimated by 10.85% (training),

14.03% (validation), and 18.54% (test) compared with the in-situ

Chl-a, respectively. The RF model slightly underestimated the Chl-a

values higher than 31 mg m-3 because of the limited number of

training data points, with only 82 (3.50%) out of 2,341 data.

Although the performance of the validation and test sets

decreased slightly compared to the training results, all cases

showed a high correlation between predicted and in-situ Chl-a

with r > 0.6 and R2 > 0.5, and P-bias was also very low (below 20%).

Based on the prediction model, a performance table presented by

Bae and Seo (2018), the R2 of our model was at a good level, and the

P-bias was at a good, confirming that the RF model performed well

(Liao et al., 2021).

3.2.2 Contribution of individual environmental
factors to estimated Chl-a

We used the VI provided by the RF model to identify the

importance of each parameter affecting Chl-a levels. The relative

contribution of SSS was the highest at 42.91 ± 2.81%, followed by

SST (17.88 ± 2.26%), DIP (14.38 ± 2.67%), DIN (13.36 ± 2.45%),

and DO (11.48 ± 1.88%). The SHAP analysis performed to examine

the quantitative relationships between individual factors and Chl-a

yielded the same results as those obtained with the VI, as shown in

Figure 6C. As the SHAP value on the x-axis became positive, the

likelihood of the corresponding parameter contributing to an

increase in Chl-a concentration increased. SSS was found to have

the greatest impact on the estimated Chl-a, as shown by the highest

negative correlation among the parameters (Figure 6C). In the SSS

case, when the SHAP value is above 0, the mean SSS is 25.47 ± 4.51

psu, and the corresponding Chl-a is 14.01 ± 10.59 mg m-3. When

the SHAP value is below 0, the average SSS is 31.18 ± 0.81 psu, and

the Chl-a is 4.47 ± 4.19 mg m-3. Furthermore, the SHAP value is

over 0.25 (tipping point in the feature value of SSS), an average SSS

of 22.85 ± 4.31 psu, and the Chl-a is 17.53 ± 11.70 mg m-3. SST was

the second most important factor in estimating Chl-a, which was

also negatively correlated with Chl-a. In the SHAP value is above 0,

the average SST is 9.10 ± 8.12°C, and the corresponding Chl-a is

11.09 ± 9.94 mg m-3. When the SHAP value is below 0, the average

SST is 17.70 ± 6.04°C, and the Chl-a is 7.33 ± 8.16 mg m-3.

Especially, SHAP value is less than -0.30, with an average SST at

2.49 ± 3.51°C, and the Chl-a is 0.55 ± 0.71 mg m-3, which indicates

remarkably low temperature and Chl-a (Figure 6C).

DIP was the third most significant factor affecting the variation

in Chl-a, which exhibited a negative correlation. For DIP

concentrations, when the SHAP value is higher than 0, the

average DIP concentrations are 5.95 ± 5.18 mg m-3, and the

corresponding Chl-a level is 10.20 ± 9.65 mg m-3. When the
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SHAP value is under 0, the mean DIP value is 20.90 ± 11.06 mg m-3,

and the Chl-a is 6.35 ± 7.42 mg m-3. In the case of DIN similar to

DIP (Figure 6C), the SHAP value is higher than 0, the average DIN

concentrations are 68.96 ± 61.69 mg m-3, and the corresponding

Chl-a is 10.40 ± 9.73 mg m-3. Conversely, the SHAP value is lower

than 0, the average DIN concentrations are 221.79 ± 125.41 mg m-3,

and the corresponding Chl-a is 6.48 ± 7.51 mg m-3. Thus, as DIP

and DIN decreased, Chl-a increased, resulting in a negative

relationship (Morais et al., 2009; Zhou et al., 2017). The final

contributor was DO, which is associated with phytoplankton

respiration and photosynthesis. It was positively correlated with

Chl-a. When the SHAP value in DO exceeds 0, the average DO is

103.57 ± 18.83%, and the corresponding Chl-a is 11.32 ± 10.53 mg

m-3. When the SHAP value is below 0, the average DO is 96.12 ±

15.26%, with Chl-a at 6.41 ± 6.78 mg m-3. Consequently, the RF

model can reveal the oceanic physicochemical relationships

between the five environmental variables and Chl-a through the

VI and SHAP approaches.
3.3 Environmental variables affecting Chl-a

3.3.1 Links between Chl-a and salinity changes
In Section 3.2, we found that salinity was the most influential

driving factor of Chl-a variation. To further investigate the effect of

SSS on Chl-a, we designed a sensitivity experiment using the RF
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model under three conditions: (1) SSS-5 psu, (2) SSS, and (3) SSS+5

psu (Figure 7; Table 4). The 5 psu means the difference between the

salinity levels between the brackish water (average SSS at 26.25 ±

4.63 psu) and seawater (averaged SSS at 31.14 ± 1.11 psu) from 1999

to 2022. Hence, we simulated the estuarine salinity condition by

reducing it by 5 psu (Case 1) and oceanic salinity condition by

increasing it by 5 psu (Case 3) from the original condition. The

original salinity condition (Case 2) has ranged from approximately

24 to 32 psu (averaged SSS 28.71 ± 4.15 psu), including the lowest

value (12.44 psu) and the highest value (38.42 psu), with a mean

Chl-a at 8.59 ± 8.99 mg m-3. Figure 7 shows the experimental

results. In Case 1, when the SSS was reduced to 5 psu, the mean

salinity distribution was approximately 19–27 psu (Figure 7;

Table 4). At this time, Chl-a responded more sensitively, with

mean values of 15.41 ± 6.71 mg m-3, about 1.79 times higher than

the original condition. Conversely, when the SSS was increased for 5

psu (case 3), the mean salinity range was approximately 29 to 37

psu, with mean Chl-a of 4.22 ± 4.53 mg m-3, about half of the

original condition’s levels at case 2. In the outside seawall

(seawater), when SSS was decreased (maintaining SST, DO, DIN,

and DIP levels at the original conditions), there was a notable

increase in Chl-a. However, despite having nutrient-rich conditions

in the estuary compared to the outer area, there was a decrease in

Chl-a when the SSS was increased. Therefore, these results support

that SSS has a negative correlation between SSS and Chl-

a (Figure 7).
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FIGURE 6

Scatter plots of probability density estimate (PDE) compared between in-situ Chl-a and estimated Chl-a performance evaluation of a model for
validation set (A) and test set (B). SHAP values of each parameter show an impact on Chl-a (C). The feature value colors signify each environmental
parameter’s value, from low (blue) to high (red). In addition, each factor order shows by high contribution to estimated Chl-a.
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3.3.2 Differences in phytoplankton community
according to spatiotemporal change

Additionally, we identified the dominant phytoplankton

communities, which are driving the decrease in Chl-a when

salinity increases in the study area from 2019 to 2022 in spring

(April) and summer (August). Figure 8 shows the phytoplankton

abundance in each community, both inside and outside the seawall.

During the research period, the phytoplankton community could be

broadly classified into eight categories, including the communities

of Bacillariophyceae (Baci), Dinophyceae (Dino), Raphidomonadea

(Raph), Cryptophyceae (Cryp), Dictyochophyceae (Dict),

Ch lo rophyceae (Ch lo ) , Cyanophycea e (Cyan) , and

Euglenophyceae (Eugl) in both regions, as reported by Choi et al.

(2013). Among the various phytoplankton communities, Baci and

Dino show very high abundances compared to the

other communities.
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In the inside during spring seasons of both 2019 and 2020, there

was an internal dominance of dinoflagellates, constituting 99.90%

and 74.66% of the total phytoplankton abundance, respectively

(Figure 8A). In the summer seasons of 2019 and 2020, diatoms

contributed to phytoplankton community composition at 71.06%

and 92.30%, respectively (Figure 8C). The outside environment also

showed that diatoms dominated over dinoflagellates (Figures 8B,

D). In the case of outside, similar to inside, dinoflagellates

dominated in Apr. 2019 and 2020 at 98.51% and 84.97%,

respectively. Diatoms also was most frequently represented in

Aug. 2019 and 2020, at 84.95% and 97.78%, respectively. These

results suggest that dinoflagellates dominate the spring blooms

(Choi et al., 2013), whereas diatoms prevail during summer

blooms. Spatially, the outside of the Saemangeum seawall, such as

seawater, has a high diatom abundance, and the inside of the

seawall, such as brackish water, has a greater abundance of

dinoflagellates. However, when mixing increased to twice daily in

2020, the dominant phytoplankton community shifted from

dinoflagellates to diatoms.
4 Discussions

We provide the first comprehensive analysis of long-term

(1999-2022) environmental changes due to artificial disturbances

in the inner and outer areas of the Saemangeum Seawall (Figures 3–

5; Tables 2, 3). Despite previous efforts to understand ecological

changes in coastal ecosystems resulting from anthropogenic

disturbances, most studies have focused only on short-term

investigations, providing limited insights into short-term brackish

water environmental changes (Lie et al., 2008; Lee et al., 2009; Oh

and Choi, 2015). Consequently, we examined the spatiotemporal
TABLE 4 The estimated Chl-a levels according to changes in salinity
condition through sensitivity test. The experiment under three
conditions: SSS-5 psu (1), SSS (2), and SSS+5 psu (3).

Variables
(unit)

Condition (1)
(Original -
5 psu)

Condition
(2)

(Original)

Condition (3)
(Original +

5 psu)

SSS 7.52 – 27.78 12.52 – 32.78 17.52 – 37.78

Min Chl-a (mg
m-3)

2.78 0.01 0.14

Max Chl-a (mg
m-3)

40.46 54.00 35.10

Mean Chl-a
(mg m-3)

15.47 ± 6.77 8.63 ± 8.96 4.27 ± 4.59
FIGURE 7

Sensitivity experiment shows Chl-a according to SSS. The test conditions include (1) a 5 psu decrease in the normal SSS (orange square and red line),
(2) the SSS value (grey star and black dashed line), and (3) a 5psu increase in the normal SSS (blue circle and blue line).
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distributions of the long-term data, including four periods:

unrestricted exchange of freshwater and seawater (1999-2010),

Period 1 (P1, from January 2011 to August 2014), Period 2 (P2,

from September 2014 to November 2020), and Period 3 (P3, from

December 2020 to December 2022). We found that salinity was

spatially and temporally predominant due to artificial disturbances,

playing a dominant role in Chl-a level changes. Ultimately, the

analysis of long-term data represents the environmental changes in

the study area and emphasizes the essential consideration of salinity

in Chl-a estimation.
4.1 Three factors influencing
environmental changes; sluice gate
operation, climate change, land-
based activities

Using long-term data analysis, we inferred three potential

impacts on coastal environmental changes, including differences

in freshwater residence time depending on the sluice gate operation,

global warming, and land-based activities.

First, irregular sluice gate operations can influence the

difference in freshwater residence time (Oda et al., 2018; Jeong

and Kwak, 2021), leading to notable disparities in environmental

conditions between the inner and outer areas of the seawall. We

observed an intensified spatial salinity and nutrient gradient during

P2, characterized by longer freshwater residence times than those in

P1 and P3. The contrasting salinity patterns in the inner and outer

areas suggest that the dominant influence of freshwater is controlled

by the opening time of the sluice gate (Yang et al., 2008; Kim et al.,

2020). Similar to salinity, nutrients (DIN and DIP) showed higher
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accumulation in the inner area than in the outer area, with longer

freshwater residence times (Yang et al., 2008; Boyer et al., 2009; Kim

et al., 2013; Sin et al., 2013). As a result, Chl-a showed a high

concentration during P2, while the Chl-a concentration decreased

toward P3 when the residence time of the freshwater decreased

again. In conclusion, the operation of the sluice gate contributed to

the determination of environmental changes in the study area. This

has a significant effect on nutrient salinity and phytoplankton

dynamics. It provides evidence of the association between

freshwater residence time and the basis of coastal ecosystem

based on the findings of this study (Moradi and Moradi, 2020).

Thus, selecting the appropriate timing for sluice gate operation

helps to enhance the ecological efficiency of the coastal ecosystem in

the study area.

Second, warming trends indirectly affect physical coastal

environmental changes. SST demonstrated a gradual increase in

the inner and outer regions of the seawall (Figures 3A and 4A;

Tables 2 and 3). The average SST warming trend was 0.14°C yr-1

from 1999 to 2022, with the outer area showing 0.10°C yr-1 and the

inner area showing 0.19°C yr-1, indicating a higher warming rate on

the inside compared to the outside of the seawall (Kim et al., 2020).

This research area warming trend may be affected by the global

warming effect in the YS, where an average temperature increase of

approximately 0.05 to 0.08°C yr-1 has been reported (Park et al.,

2015a; Han and Lee, 2020; Li et al., 2022). The study area showed a

higher warming rate than the YS, particularly in the inner area,

which increased by approximately twice as much. This suggests that

as coastal regions become shallower, the warming trend amplifies

(DeCarlo et al., 2017; Li et al., 2022). Furthermore, a decline in the

average DO trend was observed in the study area with increasing

SST. These results can be attributed to reduced oxygen solubility in
B

C D

A

FIGURE 8

Variation in the phytoplankton community’s abundance inside of the seawall in April (A), in August (C), and outside of the seawall in April (B), in
August (D) from 2019 to 2022. The orange shaded is restricted freshwater and seawater circulation period, and each color dotted line means total
phytoplankton abundance. The bar of blue, yellow, orange, pink, cyan, crimson, brown, and purple indicate phytoplankton communities, such as
Bacillariophyceae (Baci.), Dinophyceae (Dino.), Raphidomonadea (Raph.), Cryptophyceae (Cryp.), Dictyochophyceae (Dict.), Chlorophyceae (Chlo.),
Cyanophyceae (Cyan.), and Euglenophyceae (Eugl.), respectively.
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brackish water and seawater owing to warmer water temperatures

during the same period (Choi et al., 2013).

Warming trend is a major factor in increasing precipitation,

which can influence salinity changes by enhancing river discharge

through floods during the summer season (Wang et al., 2017; Park

and Sin, 2022). Therefore, we compared rainfall data obtained from

the KMA for the nearest location (Gunsan) to the study area with

discharge data calculated according to Cho et al. (2020).

Precipitation peaked in 2018 and 2020, and the river discharge

outflow from the inner (brackish water) to the outer (seawater)

areas was also significantly enhanced (Figure 9). In addition, the SSS

had the lowest values in 2018 and 2020. Conversely, Figure 4B

shows high salinity in both areas in 2017, coinciding with lower

rainfall than other periods (Figure 9). Hence, increasing

precipitation enhances river discharge, resulting in lower salinity

(Silva et al., 2008). Ultimately, these conclusions suggest that the

SST changes in the study area may be influenced not only by

artificial disturbances from coastal development but also by global

warming effects.

Third, land-based activities near the coast can cause nutrient

imbalances such as P-limited conditions. In fact, the increase in

Chl-a is related to the uptake of nutrients such as DIP and DIN.

Thus, DIP and DIN decrease with uptake, and Chl-a increases,

resulting in a negative relationship (Morais et al., 2009; Zhou et al.,

2017). The estuary receives high nutrient concentrations,

particularly nitrate, from fertilizers in the surrounding

agricultural land. However, phosphorus is supplied in lower

amounts than nitrogen, as it is preferentially removed through

wastewater treatment systems on land (Flynn, 2002). Differences in

nutrient levels were also observed in the study area (Figures 3 and 4;

Tables 2 and 3), with the inside of the seawall (brackish water)

affected by freshwater, showing higher nitrogen levels and slightly

lower phosphorus levels (Section 3). Therefore, owing to the

excessive supply of nutrients (especially nitrate) from surrounding
Frontiers in Marine Science 14
agricultural areas, the DIN : DIP ratios (Redfield, 1934) on the

inside and outside were 50:1 and 17:1, respectively. This suggests

that the inside is in an extreme P-limited condition compared with

the outside (Ptacnik et al., 2010; Sin et al., 2013; Jeong and Yang,

2015). Consequently, based on the characteristics of the

surrounding land, the study area had spatially varying nutrient

availability for phytoplankton uptake, with phosphate having a

more significant impact on phytoplankton growth than nitrate (as

described in Sections 3.1, and 3.2).

Differences in the temporal variations of potentially limiting

nutrient levels were clearly observed between 2017 and 2019

(Figures 4D, E). In 2017, the DIN levels were lower, whereas the

DIP concentrations remained similar to those in other years in both

the inner and outer areas (Figures 4D, E). Similar to DIN, Chl-a

exhibited lower values (Figure 4F). In 2019, the DIN levels were the

lowest; DIP concentrations were low in the inner part and moderate

in the outer part (Figures 4D, E). Chl-a was highest in the seawall

(Figure 4F). The findings suggest that phytoplankton in the P-

limited environment (inside) rapidly proliferated and showed a

phytoplankton bloom in 2019, after sufficient uptake of DIP

compared to 2017. Furthermore, in 2020 and 2021, DIN levels

showed variability, whereas DIP remained consistently low. During

these years, Chl-a levels were high. These findings suggest that

phytoplankton blooms in the study area are affected by the

sensitivity of phosphate to nitrate (Yang et al., 2008; Choi

et al., 2013).
4.2 Seasonal dynamics of phytoplankton
communities along with coastal
environmental changes

Nitrogen and phosphorus influence phytoplankton community

composition (Bi et al., 2021). Phytoplankton growth can be limited
B

A

FIGURE 9

Time series of precipitation (A) and discharge (B) from 2013 to 2022. The orange shade represents the period during which the sluice gates were
scheduled to open and close only once per day (from September 2014 to November 2020).
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in P-limited environments, potentially resulting in decreased

primary production and subsequent negative feedback at higher

trophic levels (Bianchi, 2007; Kang et al., 2017; Acevedo-Trejos

et al., 2018). Diatoms generally grow well when the N:P ratio is low;

in other words, their growth increases when phosphate levels are

high (Morais et al., 2009; Zhou et al., 2017; Bi et al., 2021). In

contrast, dinoflagellates grow well at high N:P ratios (Zhou et al.,

2017; Zhang et al., 2022). In Section 3.4, we found that the outside of

the Saemangeum seawall, such as seawater, has a high diatom

abundance, and the inside (brackish water), which is presumed to

be in P-limited conditions, has a greater abundance of

dinoflagellates. Particularly, Skeletonema costatum (S. costatum)

and Prorocentrum minimum (P. minimum) were the most

frequently found species in the Baci and ino communities in the

study area, respectively (Choi et al., 2013; Park et al., 2023).

Especially, P.minimum is known as a species that causes red tides

(Kim and Jeong, 2004; Jeong et al., 2013), and both species,

including S.costatum as diatom and P.minimum as dinoflagellate,

have been consistently observed since 2006 (Choi et al., 2013; Park

et al., 2023). After 2020, when mixing increased to twice daily,

environmental changes in salinity conditions increased, and

nutrient limitation decreased. Simultaneously, the dominant

phytoplankton community shifts from dinoflagellates to diatoms.

Consequently, the transition from dinoflagellates to diatoms as the

dominant species in the study area may indicate a potential change

to a more efficient coastal ecosystem food web (Lin et al., 2005; Bi

et al., 2021).

We identified the dominant environmental conditions for

diatoms and dinoflagellates using the DT model, which formed the

basis for the RF model (Figure 10). Therefore, we used a Gini

coefficient of 0 for the nodes comprising the decision tree as the

selection criterion for environmental conditions. As the Gini

coefficient approaches 0, the nodes are considered to be fully

purified and free of impurities (Tangirala, 2020). Additionally, red

tide level is determined by the dinoflagellates abundance of more than

2000 cells mL-1 according to empirical trial (Tango et al., 2005; Jeong

et al., 2013). The first result from the DT model, diatom can be

present when the salinity exceeds 30.30 psu (like ocean environment),

and the DIP concentration was below 13.51 mg m-3, while the
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temperature was above approximately 17.25°C (Figure 10A). These

conditions indicate that diatom characteristics, with a higher

contribution from S. S.costatum, prevail in environments with

higher salinity than do dinoflagellates (Tian et al., 2002). Notably,

DIP is a characteristic of diatoms thriving in phosphate-rich

environments, suggesting that lower DIP levels in estuaries

paradoxically indicate a result of enhanced uptake. On the other

hand, the second result from the DT model is that red tide can occur

when the salinity is under 27.83 psu (like estuarine environment), and

the temperature range is approximately 7.65 to 27.30°C, along with

DO levels lower than 102.44 mg m-3, as shown in Figure 10B. These

conditions, such as SSS and SST, revealed the P.minimum

proliferation states reported by Tango et al. (2005) and included

typical dinoflagellate bloom conditions, as described by Xiao et al.

(2018). Significantly, the reason why the possibility of red tide

occurrence increases as low oxygen levels means that oxygen

consumption increases as respiration due to an increase in

phytoplankton biomass, resulting in oxygen depletion.

Mainly, the most influential factor in distinguishing between

diatoms and dinoflagellates is SSS, which is supported by the

research findings in changing the foundation of the coastal

ecosystem according to changes in salinity. Comprehensively,

diatoms are known to mainly live in stable environments with

limited environmental changes compared to dinoflagellates and are

known to respond sensitively to changes in salinity and nutrients, as

well as temperature (Zhou et al., 2017). Whereas dinoflagellates are

known to adapt better to extreme environments than diatoms and

can survive well even in rapid environmental changes such as

salinity and temperature. In addition, unlike diatoms,

dinoflagellates grow well the high DIN and low DIP condition

(Zhou et al., 2017), so it is inferred that dinoflagellates showed a

high abundance even in the inside of seawall, which is classified as a

relatively P-limited environment. Therefore, through the results of

the DT model, it was possible to derive environmental

characteristics in which diatoms and dinoflagellates can thrive. In

addition, the above results revealed objective environmental data

that the phytoplankton community shifts from dinoflagellates to

diatoms in response to anthropogenic disturbances, especially

changes in salinity and nutrient levels. This phytoplankton
BA

FIGURE 10

Flowchart of classification for the phytoplankton community, including Bacillariophyceae (A) and red tide (dinophyceae) (B). The blue and red box
show differences in salinity conditions for diatom and red tide, respectively.
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succession (from dinoflagellates to diatoms) signifies an

improvement in the efficiency of coastal ecosystems (Lin et al.,

2005; Bi et al., 2021).
4.3 RF model uncertainty

In this study, we conducted research using a regression learner

provided by MATLAB R2020a was used to select the optimal

model. Four representative models commonly used to estimate

Chl-a were tested: a linear regression model (Baek et al., 2019),

exponential Gaussian process regression (EGPR) (Pasolli et al.,

2010), and RF. The linear regression model’s performance (only

test set) was R2 = 0.35 and RMSEChl-a = 5.68 mg m-3, and the SVM

model showed an R2 = 0.50 and RMSEChl-a = 4.52 mg m-3. Both

models displayed high error values when Chl-a was below 1 mg m-3

or above 30 mg m-3. The EGPR model’s performance showed an

R2 = 0.66 and RMSEChl-a = 3.79 mg m-3, and RF had an R2 = 0.64

and RMSEChl-a = 3.22 mg m-3. All models displayed a bias towards

overestimating the values when Chl-a was less than 10 mg m-3, with

the linear model showing the highest bias, followed by SVM, EGPR,

and RF. The training time (s) was the fastest for the simple linear

regression model, taking less than 3 s; SVM and RF took less than 5

s; and EGPR took over 20 s. Overall, ML techniques were shown to

be more suitable for predicting Chl-a, as they reflected the nonlinear

relationships between factors and represented higher accuracy and

lower error compared to linear statistical models. EGPR and RF

exhibited the highest accuracy, with RF displaying the lowest errors

and biases. These results support the conclusion that the pilot study

achieved the best performance.

Despite these efforts, constraints, and limitations remain in the

precise estimation of Chl-a concentration. Light is essential for

phytoplankton growth and primary productivity, as are the upper

ocean’s temperature, salinity, and nutrient conditions (Domingues

et al., 2005; Yuan et al., 2022). Light controls phytoplankton growth,

typically due to high-turbidity water or strengthened stratification

levels during the winter (Lu and Gan, 2015). Domingues et al. (2007)

suggested the possibility of light limitation in coastal areas with

transparency of approximately 1 m (Sin et al., 2013). After analyzing

the irregularly acquired Secchi depth, the transparency levels were

observed to be within 0.3 to 4 m for the inner region and 1 to 7 m for

the outer region, with shallower values during the summer season. It

was found that the average depth of the inner area was 1.30 m, and

the outer area was 2.39 m, both exceeding 1 m. Furthermore, the

Chl-a values in the study area during the summer season, when the

transparency is expected to be the lowest, were also very high.

Physical environmental factors, such as SST and SSS, also showed

similar values from the surface to the bottom layer. Therefore, the

study area is estimated to have a low probability of light limitation.

Nevertheless, the possibility of light limitations still exists because of

the absence of continuous PAR data. Hence, the possibility of light

limitations in the inner and outer regions of the seawall cannot be

completely ruled out. In addition, we verified the temperature and

salinity to consider the stratification that may occur owing to low

salinity in freshwater. Physical environmental factors exhibited
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similar values from the surface to the bottom layers (not shown).

Thus, it is assumed that the study area is a water mass in which the

surface-to-bottom layers are very well mixed; thus, the impact on

buoyancy and stratification is expected to be low. Nevertheless, the

possibility of stratification caused by the influence of buoyant

plumes, which may occur because of heavy rainfall in summer

(Figures 2 and 9), cannot be neglected (Guerreiro et al., 2013).
5 Conclusion

In this study, we investigated the impact of artificial

disturbances on the coastal ecosystem response during the

Saemangeum seawall construction. The key findings are as

follows. (i) We conducted a spatiotemporal analysis using long-

term (1999-2022) environmental data (SST, SSS, DO, DIN, DIP,

and Chl-a). This analysis emphasized the significance of salinity

variations by observing changes based on spatial distribution.

Furthermore, following the seawall construction, restricted

freshwater and seawater circulation once daily led to substantial

alterations, especially in salinity and nutrient levels; (ii) thus, We

employed the RF model to predict the quantitative impact of the five

factors influenced by the coastal ecosystem. The estimated Chl-a

showed high accuracy (R2 = 0.54) and low difference (RMSEChl-a =

3.79 mg m-3) compared to the observed Chl-a, within the Chl-a

ranges, which including inside and outside of Chl-a concentration,

of about 0.0 to 45 mg m-3. Through the VI and SHAP approaches to

assess the contributions of each factor, it was revealed that SSS was

the most influential controller (42.91%) of the coastal ecosystem

changes in the study area. The next most important contributor was

the SST, followed by the DIP. This order supports that the RF model

considers the physicochemical re lat ionships between

phytoplankton and environmental factors. (iii) The results of a

sensitivity test showed that Chl-a levels increased approximately

1.79 times when the salinity was 5 psu lower (from 7 to 27 psu) than

the normal salinity range (from 12 to 32 psu) in outside and inside

the seawall. Conversely, when salinity (from 17 to 37 psu) reduced

the Chl-a levels by half in the same areas. Moreover, multivariate

analysis identified the optimal environmental conditions for

abundant Chl-a when salinity levels were below 30 psu, regardless

of variations in other environmental factors. These findings

emphasize the dominant role of salinity in coastal ecosystems.

Furthermore, this study revealed shifts in phytoplankton species

in response to salinity changes resulting from artificial disturbances

through long-term ecological analysis. In conclusion, the results of

this study not only enhance our understanding of the coastal

ecosystem’s response to physical environmental changes resulting

from anthropogenic disturbances but also contribute to the

comprehension of ecological changes, including red tides.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1307218
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Baek et al. 10.3389/fmars.2023.1307218
Author contributions

J-YB: Conceptualization, Data curation, Formal Analysis,

Investigation, Methodology, Software, Validation, Visualization,

Writing – original draft, Writing – review & editing. CG: Writing –

review & editing, Formal Analysis. JK: Formal Analysis, Resources,

Writing – review & editing. JN: Funding acquisition, Writing –

review & editing. Y-HJ: Conceptualization, Funding acquisition,

Project administration, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research was supported by Korea Institute of Marine Science &

Technology Promotion (KIMST) funded by the Ministry of Oceans

and Fisheries, Korea (20140257). Also, This paper was supported

by KIMST funded by the Ministry of Oceans and Fisheries,

Korea (20180456). In addition, this work was supported by

2022 BK21 FOUR Program of Pusan National University (PNU-
Frontiers in Marine Science 17
Global Fellowship program). Furthermore, CG currently

benefits from a research grant funded by FCT (contract

CEECIND/00752/ 2018/CP1534/CT0011) linked to project

CHASE (/www.chase-dust.com).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Acevedo-Trejos, E., Marañón, E., and Merico, A. (2018). Phytoplankton size
diversity and ecosystem function relationships across oceanic regions. Proc. R. Soc.
B: Biol. Sci. 285 (1879), 20180621. doi: 10.1098/rspb.2018.0621

Armstrong, F. A. J., Stearns, C. R., and Strickland, J. D. H. (1967). The measurement
of upwelling and subsequent biological process by means of the Technicon
Autoanalyzer® and associated equipment. Deep Sea Res. Oceanographic Abstracts 14
(3), 381–389. doi: 10.1016/0011-7471(67)90082-4

Bae, S., and Seo, D. (2018). Analysis and modeling of algal blooms in the Nakdong
River, Korea. Ecol. Model. 372, 53–63. doi: 10.1016/j.ecolmodel.2018.01.019

Baek, J. Y., Jo, Y. H., Kim, W., Lee, J. S., Jung, D., Kim, D. W., et al. (2019). A new
algorithm to estimate chlorophyll-a concentrations in turbid yellow sea water using a
multispectral sensor in a low-altitude remote sensing system. Remote Sens. 11 (19),
2257. doi: 10.3390/rs11192257

Baek, J. Y., Park, J., Kim, D. W., Lee, J. S., Lee, J. Y., Lee, S. J., et al. (2022). Role of
aerosols in spring blooms in the central yellow sea during the COVID-19 lockdown by
China. Front. Mar. Sci. 9, 911819. doi: 10.3389/fmars.2022.911819

Bi, R., Cao, Z., Ismar-Rebitz, S. M., Sommer, U., Zhang, H., Ding, Y., et al. (2021).
Responses of marine Diatom-Dinoflagellate competition to multiple environmental
drivers: Abundance, elemental, and biochemical aspects. Front. Microbiol. 12, 731786.
doi: 10.3389/fmicb.2021.731786

Bianchi, T. S. (2007). Biogeochemistry of estuaries (United Kingdom: Oxford
University Press on Demand).
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