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Maritime greenhouse gas
emission estimation and
forecasting through AIS data
analytics: a case study of
Tianjin port in the context of
sustainable development

Wenxin Xie1, Yong Li1*, Yang Yang2, Peng Wang3,
Zhishan Wang1, Zhaoxuan Li1, Qiang Mei4* and Yaqi Sun1

1Faculty of Information Technology, Beijing University of Technology, Beijing, China, 2School of
Geographic Science, East China Normal University, Shanghai, China, 3Institute of Computing
Technology, Chinese Academy of Sciences, Beijing, China, 4Navigation Institute, Jimei University,
Xiamen, China
The escalating greenhouse gas (GHG) emissions from maritime trade present a

serious environmental and biological threat. With increasing emission reduction

initiatives, such as the European Union’s incorporation of the maritime sector

into the emissions trading system, both challenges and opportunities emerge for

maritime transport and associated industries. To address these concerns, this

study presents a model specifically designed for estimating and projecting the

spatiotemporal GHG emission inventory of ships, particularly when dealing with

incomplete automatic identification system datasets. In the computational

aspect of the model, various data processing techniques are employed to

rectify inaccuracies arising from incomplete or erroneous AIS data, including

big data cleaning, ship trajectory aggregation, multi-source spatiotemporal data

fusion and missing data complementation. Utilizing a bottom-up ship dynamic

approach, the model generates a high-resolution GHG emission inventory. This

inventory contains key attributes such as the types of ships emitting GHGs, the

locations of these emissions, the time periods during which emissions occur, and

emissions. For predictive analytics, the model utilizes temporal fusion

transformers equipped with the attention mechanism to accurately forecast

the critical emission parameters, including emission locations, time frames, and

quantities. Focusing on the sea area around Tianjin port—a region characterized

by high shipping activity—this study achieves fine-grained emission source

tracking via detailed emission inventory calculations. Moreover, the prediction

model achieves a promising loss function of approximately 0.15 under the

optimal parameter configuration, obtaining a better result than recurrent

neural network (RNN) and long short-term memory network (LSTM) in the

comparative experiments. The proposed method allows for a comprehensive

understanding of emission patterns across diverse vessel types under various
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operational conditions. Coupled with the prediction results, the study offers

valuable theoretical and data-driven support for formulating emission reduction

strategies and optimizing resource allocation, thereby contributing to sustainable

maritime transformation.
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1 Introduction

Over recent decades, the increasing seaborne trade has mirrored a

corresponding increase in greenhouse gas (GHG) emissions from

maritime vessels. According to the fourth GHG report released by the

International Maritime Organization (IMO) in 2021, The GHG

emissions—including carbon dioxide (CO2), methane (CH4) and

nitrous oxide (N2O), expressed in CO2e—of total shipping

(international, domestic, and fishing) have increased from 977

million tonnes in 2012 to 1,076 million tonnes in 2018 (9.6%

increase). This increase amplified the shipping sector’s contribution

to global anthropogenic emissions from 2.76% in 2012 to 2.89% in

2018. Alarmingly, these emissions are set to escalate further, with

forecasts suggesting an increase from 1,000 Mt CO2 in 2018 to 1,500

Mt CO2 by 2050 (IMO, 2021).

The upward trajectory of GHG emissions has caused substantial

disruptions in the global climate, exemplified by exacerbated global

warming. Such warming diminishes terrestrial and aquatic carbon

sinks, resulting in a larger fraction of anthropogenic emissions

remaining in the atmosphere. This mechanism amplifies the

atmospheric CO2 concentration, leading to more significant

climatic alterations. The consequences of climatic alterations are

broad and irreversible. For instance, if global temperatures surpass

the 1.5 to 2.5°C threshold above the 1980–1999 baseline, an

endangerment of 20% to 30% of evaluated species is probable

(IPCC, 2007). Moreover, climate-induced transformations

permeate atmospheric, aquatic, glacial, and biological spheres,

inflicting profound damage. For example, the global sea level has

risen by 0.2 meters from 1901 to 2018. As these levels elevate,

heightened climatic extremes, threaten both natural ecosystems and

human settlements (IPCC, 2023). The pressure for air pollution

control is also increasing due to its detrimental effects on marine

environments and human health (Zhou and Leng, 2021).

Addressing the environmental concerns posed by the maritime

sector, there has been an increase in emission reduction policies.

The IMO established the International Convention for the

Prevention of Pollution from Ships (MARPOL Convention)

aimed at mitigating pollution from ships. More recently, On

February 8-9, 2023, the Committee of Permanent Delegations to

the Council of the European Union (EU Council) and the

Committee on the Environment of the European Parliament (EP)

respectively endorsed the emissions trading system (ETS). The

revised final compromise text regarding the inclusion of the
02
maritime sector in the EU ETS details the timetable, navigational

emission coverage, applicable ship tonnage, emission coverage, and

fund utilization. The drive for maritime emission reductions

resonates globally, not just within the EU. However, the endeavor

to integrate the maritime domain within the ETS, aimed at energy

conservation and emission reductions, is complex. Addressing the

diverse challenges and leveraging emerging opportunities requires

timely and rigorous explorations.

Recent academic efforts have shed light on shipborne carbon

mitigation strategies. Among the well-explored interventions are

ship speed adjustments, coastal electrification, and the transition

towards cleaner fuel alternatives (Zhou and Leng, 2021). Studies

have shown that slowing down vessel speeds can effectively reduce

immediate CO2 emissions (Cariou, 2011). Various alternative

energy solutions—encompassing fuel cells, waste heat recovery,

solar and wind energy utilization, shore electrification, and

cleaner fuels—demonstrate theoretical promise (Wan et al., 2018).

However, there are many factors playing a role in influencing

pollutant emissions, such as shipper preferences, societal

responsibility, and government policies. It is acknowledged that

no single technology provides comprehensive mitigation across all

sectors. Although various studies have addressed the issue of carbon

emission reduction from ships from different perspectives, the

comprehensive carbon emission reduction pathway in the

shipping industry often lack clear scientific guidelines. The

development of scientifically based and targeted emission

reduction measures is a key issue. This calls for a comprehensive

understanding, not only of cumulative emissions but also their

origins, including areas of carbon emission hotspot and vessel-

specific attributes. Such insights will enable stakeholders and

policymakers to craft informed policies (Zhou et al., 2023).

Comprehensive emission inventories encompass both emission

sources and pollutant categories. Reliable inventories are fundamental

to policy formation and subsequent efficacy evaluations in air

pollution management (He et al., 2021). In maritime pollution

studies, emission inventory methodologies often stand out as the

most practical source analysis technique (Xie, 2020). Present maritime

emission characterizations heavily rely on these inventories, with

predominant methods comprising top-down calculations based on

ship fuel consumption (Hulskotte and Denier van der Gon, 2009) and

bottom-up methodologies utilizing the automatic identification

system (AIS) (Johansson et al., 2017; Chen et al., 2018; Mao et al.,

2020; Gan et al., 2022).
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The accuracy of the fuel consumption method in estimating

emissions is yet to be proved due to factors such as deviations in fuel

consumption and emission factors. The dynamic method based on

AIS, categorizes emissions based on the ship’s different sailing states

and type, offering superior spatiotemporal granularity. Due to the

widespread adoption of modern navigation information systems,

AIS has evolved into an indispensable tool, providing real-time,

global insights into ship operations (Mou et al., 2019). The

frequency of transmission of AIS data enables ships to obtain

multiple AIS data records from other ships in a short period of

time (Weng et al., 2019). Such accuracy ensures emissions can be

pinpointed with remarkable precision using AIS datasets.

Ship emission inventories inherently display temporal

sequencing, categorizing them as time-series data. This type of

data, rich in temporal details, facilitates the mining of patterns and

trends across time. By leveraging historical data, one can forecast

the future trajectory of a time-series variable. Such forecasts are

essential across various real-world applications with temporal

details, including meteorology, energy consumption, financial

forecasting, medical surveillance, anomaly detection, industrial

production, sales, and traffic predictions. As the volume and

dimensionality of time-series data have expanded, the

methodologies for time series forecasting (TSF) have seen

continuous refinement (Mao et al., 2023). The evolution has

transitioned from initial mathematical-statistical methods to

machine learning techniques, eventually embracing deep

learning strategies.

Before data mining gained prominence, traditional TSF

predominantly employed statistical models. Pioneering models

included the autoregressive (AR) model (Yule, 1927), the moving

average (MA) model (Slutzky, 1937), the autoregressive moving

average (ARMA) model (Kendall and Wold, 1954), and the

autoregressive integrated moving average model (ARIMA)

(Zhang, 2003). Additional methodologies like Holt’s linear trend

and Holt-Winters (Chatfield, 1978) also emerged. Rooted in linear

functions derived from recent observations, these models have seen

extensive application across various forecasting challenges.

However, their efficacy diminishes when dealing with non-

smooth, intricate real-world time series, as they often overlook

the demands of smoothness and ergodicity (Lara-Benıtı ́ez
et al., 2021).

With the advent of machine learning, predictive models such as

support vector machine (SVM) (Cortes and Vapnik, 1995), support

vector regression (SVR) (Chen et al., 2013), Bayesian network (Das

and Ghosh, 2015), Gaussian process (GP) (Rasmussen, 2004), and

random forest (RF) (Breiman, 2001) began to outperform

traditional statistical counterparts (Chen, 2021). Machine

learning’s innate ability in nonlinear modeling and generalization

has substantially strengthened prediction accuracy. However, one

notable limitation is their feature-centric modeling approach, which

often neglects the intrinsic temporal dependencies inherent in time-

series data (Tan, 2020).

Neural networks, illustrating a potent nonlinear model, are

celebrated for their robust capability. Among the neural networks

tailored for time-series data prediction, the back-propagation (BP)

neural network stands out as a widely adopted model (Wang et al.,
Frontiers in Marine Science 03
2011). Multilayer perceptron (MLP) has also demonstrated efficacy

in time-series prediction tasks (Zhang et al., 1998; Zhang, 2003).

Though these feedforward neural networks have been successfully

deployed across various scenarios, their architecture inherently

processes each input in isolation. This renders them inept at

capturing the sequential complexities embedded within time-

series datasets. This limitation can compromise their efficacy in

TSF, especially when grappling with dynamic datasets of varying

lengths (Lara-Benıtıéz et al., 2021).

The ubiquity of Internet of Things (IoT) sensors has introduced

an era where large amounts of time-series data are constantly

generated across diverse scientific fields. This relentless data

generation has posed challenges for traditional parametric models

and machine learning algorithms in efficiently processing this time-

series data. Consequently, leveraging deep learning algorithms to

extract valuable insights from time-series data has captured the

interest of numerous researchers (Liang et al., 2023). Deep learning

excels in extracting both linear and nonlinear features, identifying

patterns often elusive to shallower neural networks. Convolutional

neural network (CNNs) (Li et al., 2017), recurrent neural network

(RNNs) (Schuster and Paliwal, 1997; Goodfellow et al., 2016), and

transformer-based models (Vaswani et al., 2017; Wen et al., 2022)

have made notable advancements in time-series prediction,

consistently delivering commendable results. The bidirectional

encoder representation from transformers (BERT) model (Devlin

et al., 2018) in time-series prediction tasks also overcomes the

problem of scenario application limitations (Jin et al., 2021). The

adversarial sparse transformer (AST) proposed in 2020 addresses

the prediction model’s inability to deal with real stochasticity in

time-series problems (Wu et al., 2020). Informer (Zhou et al., 2020),

TFT (Lim et al., 2021), SSDNet (Lin et al., 2021), Autoformer (Wu

et al., 2021), Aliformer (Qi et al., 2021), FEDformer (Zhou et al.,

2022), and other models based on the attention mechanism have all

achieved superior results on temporal prediction tasks.

Given the existing challenges in the shipping industry and the

current state of relevant research, this paper developes a robust

spatiotemporal GHG emission inventory estimation and prediction

model capable of handling incomplete AIS datasets through the

dynamic method and the Temporal Fusion Transformers (Lim

et al., 2021) with attention mechanism.We integrate AIS data,

Lloyd’s ship data, and geographic information. The potential

inaccuracies resulting from missing or erroneous AIS data have

been mitigated using data preprocessing techniques. These include

big data cleaning, ship trajectory aggregation, multi-source

spatiotemporal data fusion and missing data complementation.

Using the shipping activities in the sea area of Tianjin Port in

2018 as a case study, this paper achieves high-resolution estimation

and forecasting of the spatiotemporal emission inventory of GHGs

from vessels. Emphasizing the emission characteristics of various

ship types under different operational conditions, and the multitude

of factors that might influence ships’ GHG emissions, this study

offers an intricate breakdown of emissions. This granularity extends

to each individual ship and port equipment, enhancing data-driven

strategies for carbon trading and optimizing port resource

allocation. For clarity, ship categories include dry bulk carriers,

container ships, oil tankers, fishing vessels, general cargo ships, ro-
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ro ships, cruise ships, tugboats, car carriers, among others. Ship

operational states are classified as cruising, low speed sailing, harbor

maneuvering, anchoring, and berthing. Additionally, emissions are

quantified by the main engine (ME), auxiliary engine (AE), and

boiler.By predicting GHG emissions, emission timelines, and

pinpointing emission sources, this research provides data and

theoretical insights that empower relevant stakeholders to

formulate specific emission reduction strategies and controls.

The subsequent section of this article delves into the research

subject, elucidates the computation and prediction models, followed

by an analysis of the model results and policy recommendations

from various perspectives. The final section ends with the study’s

conclusions and discussions.
2 Materials and methods

2.1 Study area and data

Utilizing the sea area of Tianjin Port as a case study, this paper

leverages the 2018 AIS data, ship Lloyd’s file data, and geographic

information of Tianjin Port to formulate a high-resolution ship

GHG emission inventory and predicts the characteristics of ship

GHG emissions.

2.1.1 Scope and object of the study
Research indicates that approximately 70% of ship emissions

occur within 400 kilometers of land (Endresen and Sorgard, 2003).

In China, emissions from domestic emission control areas (DECAs)

within 12 nautical miles contribute to around 40% of total ship

emissions along its coasts, a figure that doubles when the DECA

boundary extends to 100 nautical miles. Ports are significant

emission sources, accounting for about a quarter of total

emissions within 200 nautical miles, with nearly 80% of these

emissions concentrated in China’s ten busiest ports (Li et al.,

2018). The surge in international trade and corresponding

shipping activities has exacerbated the environmental impact of

ship emissions. Studies reveal that sea winds can carry ship

emissions from sea to land, contributing to environmental

pollution in coastal cities (Liu et al., 2017). Moreover, heavy ship

traffic is linked to deteriorated air quality in port areas (Ng et al.,

2013; Li et al., 2016; Weng and Li, 2019), posing adverse effects on

both global climate and human health (IPCC, 2007; Corbett

et al., 2007).

Tianjin Port, situated in the Binhai New Area of Tianjin City, is

a crucial hub for China’s foreign trade and the entry of foreign

materials and equipment into the country. With a container

throughput surpassing 20 million TEUs in 2021, it ranks eighth

worldwide (Wang, 2022), serving as the most important

comprehensive hub port in northern China and the world’s

largest man-made deep-water port (Niu, 2022). Tianjin Port, a

hub of bustling international trade, witnesses a significant influx

and outflux of international vessels. While this trade dynamic

propels economic growth, it simultaneously imposes significant

environmental responsibilities on local authorities to mitigate
Frontiers in Marine Science 04
pollution. The drive for green transformation, although

promising, presents a multitude of challenges.

Among the global shift towards sustainable development, the

implementation of emission reduction policies is on the rise. An

exemplary policy is the integration of maritime activities into the

EU ETS. Such policies, while presenting opportunities for various

sectors, also pose significant challenges to the global shipping

industry. Navigating these evolving international policies and

regulations will be crucial for the survival and growth of the

shipping sector. For instance, the EU ETS mandates entities

associated with ships—be it shipowners, management entities, or

charterers—to bear the costs for the GHGs their vessels emit during

voyages to, within, and from EU ports. Furthermore, from 2026, the

regulatory scope will expand to encompass emissions like CO2,

N2O, and CH4. Given this backdrop, it is necessary for the global

shipping industry to proactively strategize. This entails anticipating

potential policy shifts, rigorously monitoring a broader spectrum of

pollutant emissions, evaluating the climate impacts of diverse

GHGs emitted by maritime activities, and identifying novel

avenues of opportunity in emerging green pathways.

This research delves into a comprehensive analysis of GHG

emissions from ships operating in Tianjin Port. The scope of the

study spans across seven channels, eight anchorages, and 205

berths, meticulously evaluating the emissions of CO2, N2O, and

CH4. The goal is to provide data-backed insights for authorities to

implement effective, targeted policies for emission reduction,

aligning with green transition initiatives.

2.1.2 Data source
The research employs data from the AIS and specifically selects

the AIS data pertaining to Tianjin Port from the year 2018,

alongside the ship archive from Lloyd’s data, and geographic

information about Tianjin Port.

AIS, being a navigational aid, furnishes extensive information

about ships and is revered as a dependable data source, significantly

diminishing uncertainties surrounding ship activities and their

geographic dispersion (Wang et al., 2008; Dalsøren et al., 2009;

Bandemehr et al., 2015). The AIS system transmits signals at

intervals ranging from every three seconds to a few minutes,

showcasing detailed insights into a ship’s speed and location. The

brief transmission time of AIS data facilitates the acquisition of

multiple AIS records for a ship within a compact time frame (Weng

et al., 2019). Even at a distance not exceeding one kilometer,

ship emissions can be calculated at least once, even if the ship is

moving at a high velocity (Chen et al., 2017), ensuring the precise

computation of ship emissions. Figure 1 illustrates the distribution

of ship trajectories within Tianjin Port waters for the study area

in 2018.

Ship identification leverages the maritime mobile service

identity (MMSI) code provided in AIS data, with each ship

possessing a unique MMSI code. The AIS data include a diverse

array of information, segmented into static information, dynamic

information, voyage-related information, and safety-related short

messages. Static information encompasses the vessel’s MMSI

number, vessel name, vessel type, dimensions (length and
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breadth), tonnage, and the country of registration. Conversely,

dynamic information includes the ship’s positional coordinates

(longitude and latitude), heading, velocity, and timestamp (UTC

seconds, indicating the time of report generation).

The Lloyd’s vessel file houses fundamental information about

the vessel, such as MMSI, vessel type, country and region of

registration, tonnage, design speed, main engine’s maximum

continuous power, auxiliary engines’ power, main engine’s

rotational speed (RPM), construction year, fuel oil type, vessel

maneuvering unit, vessel registration ownership unit, vessel

management unit, and a detailed description of the vessel’s capacity.

For the purposes of this study, ships are classified into categories

such as dry bulk carriers, container ships, oil and chemical tankers,

ro-ro ships, fishing vessels, cruise ships, general cargo ships, tugs,

and others to facilitate a thorough analysis of pollutants.
2.2 Data preprocessing

AIS data contain extensive maritime information, which can be

extracted to illuminate insights on a vessel’s navigational status.

This data is indispensable across a wide range of marine

applications including collision avoidance, marine surveillance,

trajectory clustering (Xiao et al., 2015), maritime traffic

forecasting, and accident investigations. Nevertheless, the AIS

data acquisition lifecycle—spanning generation, encapsulation,

transmission to reception, and decoding—is prone to data gaps,

inaccuracies, duplications, and other issues due to factors such as

AIS signal propagation anomalies and equipment malfunctions

(Zhao et al., 2014; Zhao et al., 2015; Wei and Yang, 2016; Wu

et al., 2017). The challenge intensifies when attempting to integrate

AIS data with the Lloyd’s ship database, where discrepancies like

unmatched vessel entries between the AIS dataset and the Lloyd’s
Frontiers in Marine Science 05
database or incomplete entries within the Lloyd’s database

are frequent.

Given the pivotal role of the ship emission inventory in

mitigating pollution and promoting maritime environmental

stewardship, rigorous preprocessing of the raw AIS data is

imperative. This entails a series of operations including data

cleansing, trajectory consolidation, data fusion, and data

supplementation, each crucial for ensuring the data’s integrity,

accuracy, and reliability, thus setting a solid groundwork for

accurate subsequent analyses. The step-by-step procedure of AIS

data preprocessing is visually depicted in Figure 2.

2.2.1 Data cleaning
Given its frequent broadcasting intervals for navigating ships

coupled with a dense ship presence in harbor waters, the amount of

AIS data is substantial. For instance, in the waters around Xiamen

harbor, daily AIS data influx exceeds 400,000 records (Pan, 2015).

Marine traffic studies often demand data spanning over extensive

periods, such as quarters or entire years. Efficiently extracting useful

insights from this deluge of AIS data has consequently emerged as a

focal research area in maritime transportation science (Shao

et al., 2007).

The range of very high frequency (VHF) radio signals

transmitted by AIS-equipped vessels on the Earth’s surface is

finite. Detailed tracking of vessels around coastal areas

necessitates an adequate density of ground stations. For remote

areas beyond these ground stations, satellite AIS collection is pivotal

but can be compromised by signal collisions (Goldsworthy, 2017).

Given potential inconsistencies during AIS equipment usage,

data transmission, collection, and data management phases, raw

AIS data often teem with missing entries, errors, duplicates, and

other anomalies. These discrepancies can muddle subsequent

analyses, thus necessitating rigorous data cleaning tailored to this
FIGURE 1

Tianjin Port Waters and Distribution Map of Ship Trajectories in 2018.
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study’s specific needs-calculating and predicting ship-related GHG

emissions (Pan et al., 2010; Zhu et al., 2012).

We undertook the following data cleaning and validation steps

based on the raw AIS data (Xiao et al., 2015):
Fron
• Speed validation: AIS records indicating real-time ship

speeds surpassing their design speeds were flagged as

anomalies, resulting in the deletion of such data points.

• Position verification: Data points showing vessel positions

outside the Tianjin Port waters or landmasses were deemed

erroneous and purged.

• Heading angle filter: Vessel heading angles typically range

between 0 to 360 degrees. Any deviations from this range

prompted data point removal.

• Time validation: Data entries with anomalous timestamps

or those falling outside the research time frame were

categorized as time-based anomalies and discarded.

• MMSI verification: MMSI, consisting of 9 digits, along with

other data fields such as IMO, latitude, and longitude, was

assessed against threshold values. Data points exceeding

these thresholds were excluded.

• De-duplication: Based on unique identifiers such as the

vessel’s IMO number, MMSI number, vessel name, and data

transmission timestamp, duplicate entries were identified

and removed.
Post-cleaning, relevant data fields—covering aspects like

location, MMSI, timestamp, speed, vessel type, nationality,

tonnage, and other vessel attributes—were filtered out and

imported into a database for subsequent processing and analysis.
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2.2.2 Ship trajectory aggregation
The frequency with which ships transmit AIS signals while sailing

varies between every 3 seconds to several minutes. Given the high

volume of vessels in port waters, Tianjin Port’s 2018 AIS data

accumulation is substantial, making direct usage for subsequent

analyses resource-intensive. Moreover, the AIS data transmission

intervals are significantly more frequent than the time frames

required for ship emission calculations (Goldsworthy, 2017).

Therefore, it is imperative to integrate this vast expanse of AIS data,

pinpointing key nodes that best describe the original trajectory from

densely sampled points. These nodes, when chronologically linked,

yield the ship’s complete navigational route within Tianjin Port. Given

the high density of these point data, the extracted trajectories undergo

compression to simplify subsequent computations and better capture

primary navigational features (Wang and Li, 2021).

In our methodology, we filtered out AIS data track points based

on a ship’s MMSI where the latitude and longitude intersect with

the vectors of port facilities (e.g., channels, anchorages, berths).

After chronologically organizing these track points by their

sampling timestamps, the vessel’s navigational trajectories were

generated. Concurrently, we computed the time difference

between route entries and exits, averaging the travel speed of each

trajectory point, culminating in an average velocity for the entire

navigational route. This approach ensures efficient data extraction

from the vast primary AIS datasets for ensuing computations.

Our statistical analysis on maritime operations within Tianjin

Port indicates standard dwell times: a vessel usually spends no more

than 4 days at a berth, 20 days in anchorage, and 2 hours navigating

the channel. Any ship exceeding these time frames is flagged for

trajectory anomalies and consequently omitted from the dataset.
FIGURE 2

Workflow of AIS Data Preprocessing.
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2.2.3 Fusion of multi-source spatiotemporal data
The computation of ships’ GHG emission inventories and the

subsequent emission characteristic analyses require more than

merely the static and dynamic AIS data. They call for the

incorporation of vessel attribute information from the Lloyd’s

Register of Ships and relevant geographical data regarding port

facilities. This study achieves the integration of this multi-source

spatiotemporal data—encompassing AIS data, Lloyd’s Register

data, and geographic details—by utilizing spatial computation and

database technology.
2.2.4 Data supplementation
Developing a comprehensive ship emission estimation

methodology capable of handling incomplete AIS datasets is

crucial to maximizing AIS data utility (Li et al., 2018).

For certain data voids, this manuscript employs relational

computational or statistical fitting methods to fill these gaps,

ensuring the establishment of a thorough maritime pollutant

emission database.
Fron
(1) For ship construction years and the types of fuel oil used,

missing values are supplemented by referencing the

predominant values within Tianjin Port’s Lloyd’s Register

database, based on ship classification.

(2) Regarding the design speed and primary engine velocity of

vessels, the mean values from the Lloyd’s Register of Ships

within Tianjin Port, contingent on ship type, are used to

supplement missing data.

(3) In terms of the ship ME’s maximal continuous rated power,

the approach for data completion is tailored to the

specificity of missing information. For ships that

lack main engine power data but have gross tonnage

information, a nonlinear regression method is employed

to predict the main engine power. For ships missing both

main engine power and gross tonnage data, the engine

power of similar-sized vessels is used as a substitute. For

vessels identified only by their MMSI and vessel type, the

average power of all vessels of the same type in Tianjin Port

is used to complete the missing values. For vessels identified
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only by their MMSI, the average power of all vessels in

Tianjin Port is used for completion (Trozzi, 2010; Ng et al.,

2013; Weng et al., 2019).

(4) For ship AE power ratings, estimates are derived from the

AE to ME ratio, termed AMR, specific to a vessel type. To

ensure the accuracy of the GHG emission inventory and

subsequent forecasts, this research utilizes the AMR specific

to various ship types, as documented in the China Ship Air

Pollutant Emission Inventory 2016 (Vehicle, 2016).
2.3 Emission inventory calculations

For assessing GHG emissions originating from ships, our study

employs a “bottom-up” approach utilizing the dynamic method of

ships. This approach facilitates the computation of CO2, CH4, and

N2O emissions from all maritime activities within Tianjin Port. The

first step entails determining GHG emissions originating from an

individual ship on a distinct route within the port. Subsequently,

emissions from all vessels across various time frames are aggregated

to derive real-time emission metrics from different port facilities.

The flow of the ship emission inventory computation is visualized

in Figure 3.

The ship power method requires determining the engine power

of ship engines—including MEs, AEs, and boilers—under different

sailing conditions. Emission calculations are then performed based

on different pollutant emission factors, correction coefficients for

these factors, and the operating time under corresponding

conditions. Air pollutant emissions from non-road ships

primarily arise from ship engines, comprising the ME, AE, and

boiler. These engines have distinct functions: the main engine

provides propulsive power for the ship and operates during

cruising, low speed sailing, and maneuvering stages; the auxiliary

engine supplies electrical power for lighting, air conditioning, and

refrigeration; the boiler, typically active during low main engine

load states, provides hot water or steam propulsion (Vehicle, 2016).

In this study, emissions from these three engine types are

considered, while emissions from other sources, being minimal,

are ignored (Chen et al., 2017).
FIGURE 3

Flowchart of Ship Emission Inventory Calculation.
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The navigational states of ships are classified into five categories:

cruising, low speed sailing, harbor maneuvering, anchoring, and

berthing. The determination of these states is based on the ship’s

speed and ME loading as follows:
Fron
1) Cruising: Ship’s navigation from the port’s boundary to

breakwater or deceleration zone. Speed and ME loading

greater than or equal to 65%.

2) Low speed sailing: Navigation within the deceleration zone.

Speed and ME loading between 20% and 65%.

3) Harbor maneuvering: Navigation from the breakwater to the

pier within a port (Vehicle, 2016). Speed greater than or

equal to 3 knots and main engine loading less than 20%.

4) Anchoring: Ship’s states when anchored. Speed between 1

and 3 knots.

5) Berthing: Ship’s states when docked. Speed less than 1 knot.
The formula for calculating ship engine emissions is provided

by Starcrest Consulting Group and LLC (2009) as follows:

E = W � EF � FCF � CF � 10−6 (1)

where E represents the pollutant emissions from the ship (in

tons); W is the work done by the ship’s engine (in kW-h); EF is the

pollutant emission factor (in g/(kW-h)); FCF is the fuel correction

factor (dimensionless); and CF is the emission correction

factor (dimensionless).

The formula for the work done by the ship’s engine is:

W = MCR� LF � Act (2)

where MCR is the rated engine power (in kW), LF is the ship’s

engine load factor (dimensionless), and Act is the working time

(in h).
2.4 Pollutant emission forecasts

This research employs the TFT model, as delineated by Lim et al.

(2021), to forecast future GHG emissions from ships. Utilizing the

previously derived GHG emission inventory of Tianjin Port, essential

characteristics such as time, location, and emission attributes are

extracted and organized into time-series data, which then serves as

input for the time-series prediction model. Notably, the prediction

model adopts the TFT based on the attention mechanism, as

proposed by Lim et al. (2021). For benchmarking, both RNN and

long short-termmemory network (LSTM) models are employed, and

the TFTmodel’s performance is assessed usingmetrics like root mean

square error (RMSE) and mean absolute error (MAE).

2.4.1 TFT model based on the
attention mechanism

The architecture of the TFT model encompasses several

modules, including a variable selection network, static covariate

encoder, gating mechanism, seq2seq layer, time-based attention

mechanism processing, and prediction intervals.
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Grounded on the high-resolution GHG emission inventory of

Tianjin Port, both static and time-variable factors related to the

forecast objective are extracted for model training. Generally,

multiple variables correlate with the forecast goal, yet their inter-

relationships and respective weights often remain elusive. The TFT

model, through its variable selection network, discerns these

relationships, enabling the selection of variable weights and

effectively filtering out redundant noise inputs. Simultaneously,

the static covariate encoder employs a gated residual network

(GRN) to embed the static feature set within the architecture.

Given the complex interactions between inputs and the target,

alongside the varying degrees of nonlinear transformations

required, the TFT model leverages a GRN to ensure adaptability

across a broad spectrum of datasets and scenarios. On the temporal

processing front, the model utilizes a seq2seq layer for local

adjustments, and multi-head attention blocks to capture long-

term dependencies. A distinct feature of the TFT model is its

capability to generate prediction intervals based on point

estimates, achieved by forecasting distinct percentiles at every

temporal step, outlining a probable range of target values for each

prediction interval.

This comprehensive approach to forecasting, embedded within

the TFT model, aids in projecting future GHG emissions from

ships, providing a robust framework for understanding and

mitigating the environmental ramifications of maritime activities

within Tianjin Port.
2.4.1.1 Multi-head attention

Within the TFT, the seq2seq mechanism is used to discern local

dependencies present in time series, while the self-attention

mechanism is employed to grasp long-term dependencies:

Attention(Q,K ,V) = A(Q,K)V (3)

where V ∈ RN�dV , K ∈ RN�dattn , Q ∈ RN�dattn , A() i s a

normalization function, commonly utilized in scaled dot-

production attention:

A(Q,K) = softmax(
QKTffiffiffiffiffiffiffiffiffi
dattn

p ) (4)

The structure of multi-head attention is visually represented in

Figure 4. Multi-head attention seeks to enhance the learning

capacity inherent in the standard attention mechanism. This is

accomplished by designating different heads to operate in different

representation subspaces:

InterpretableMultiHead(Q,K ,V) = ~HWH (5)

~H = ~A(Q,K)VWV = 1
HomH

h=1
A QW(h)

  Q ,KW
(h)
  Kð Þ

� �
VWV         

= 1=HomH
h=1Attention(QW

(h)
  Q,KW

(h)
  K ,VWV )

n o (6)

where WV ∈ Rdmodel×dV represents a weight matrix for values

shared across all headers, whileWH ∈Rdattn×dattn facilitates the final

linear mapping.
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Each “head” within this multi-head architecture has the

capacity to learn distinct temporal patterns. Moreover, they can

concurrently concentrate on the attributes of a shared set of input

features. Conceptually, this can be perceived as Equation (14) where

attention weights form the foundational combination matrix Ã

(Q, K).

2.4.1.2 Loss function

For the training and optimization of the TFT model, it was

evaluated by simultaneously minimizing the quantile losses

summed across all quantile outputs:

L(W,W) =oyt∈Woq∈Qotmax
t=1

QL(yt , ŷ (q, t − t , t), q)
Mtmax

(7)

QL(y, ŷ , q) = q(y − ŷ )+ + (1 − q)(ŷ − y)+ (8)

where W denotes the domain containing the training data

consisting of M samples, W represents the TFT model’s weights,

Q is the set of output quantiles (with Q = {0.1, 0.5, 0.9} utilized in

our experiment, and (.)+ = max (0,.).

2.4.2 Comparative experiment
This study benchmarks the TFT model against RNN and LSTM

for predicting GHG emissions from vessels in Tianjin Port.

2.4.2.1 RNN

A RNN is a type of neural network that does not impose

constraints on the lengths of its inputs and outputs, and comprises a

hidden state ht and an optional output ot at each time step t. Here, ht
represents the hidden state at time t, encapsulating the information

produced from all preceding time steps, while ot corresponds to the

output at time t.

ht = f (ht−1, xt) (9)
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The function f () can range from being a basic element-wise

sigmoid function to more intricate units such as LSTM. The RNN’s

structure is visually represented in Figure 5.

The RNN maintains consistent parameters U, V, and W across

all time steps, implying that it executes the identical task at each

step, albeit with varying inputs. This consistency in parameters

reduces the total number of parameters to be learned, thereby

enhancing computational efficiency. While outputs are generated at

every time step, they may not always be requisite, depending on the

specific nature of certain tasks.

2.4.2.2 LSTM

The LSTM network, an extension of the conventional RNN,

incorporates three distinct gates to alleviate the short-term memory

issue inherent in RNNs, thereby enabling the effective utilization of

long-term temporal information. By building upon the RNN

structure, the LSTM introduces a forget gate layer, an input gate

layer, and an output gate layer. These gates serve as logic control

units that meticulously manage the flow of information and the

state of memory cells in the network. Through this refined

architecture, the LSTM facilitates precise control over the

information flow and memory cell state, significantly enhancing

the network’s capacity to capture and utilize long-term

dependencies in the data. The LSTM’s structure is visually

represented in Figure 6.

In contrast to the RNN which possesses a singular hidden state,

the LSTM network operates with two distinct states: a cell state

denoted as ct and a hidden state denoted as ht. The LSTMmodulates

the state transmissions through the gate mechanism, selectively

retaining or discarding information, which solves the long-term

dependency problem well.

2.4.3 Evaluation metrics
In this study, the accuracy of the forecasting model is assessed

using RMSE and MAE as evaluation metrics. RMSE quantifies the

magnitude of prediction error, representing the deviation between

actual values and predicted values. It captures the spread of the

actual values around the predicted regression line, with its value

ranging from [0, +∞]. A larger RMSE value denotes a

largerprediction error. The formula for RMSE is given as:
FIGURE 5

Schematic of the RNN Structure.
FIGURE 4

Schematic of the Multi-head Attention Mechanism.
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(byi − yi)

2

r
(10)

MAE, on the other hand, provides a linear error assessment, its

value also ranging from [0, +∞]. A larger MAE value indicates a

higher error. The formula for MAE is given as:

MAE =
1
no

n
i=1 byi − yij j (11)

Both RMSE and MAE are commonly utilized metrics in

evaluating the accuracy of models in regression problems. Lower

values of these metrics signify better model performance, indicating

a closer alignment of predicted values to the actual values.
3 Results

3.1 Emission characterization projections

In this investigation, we utilized the TFT model equipped with

attention mechanisms as delineated by Lim et al. (2021) to forecast

the multi-temporal and multi-spatial attributes of GHG emissions

from ships in Tianjin Port. Utilizing the past 30 days’ emission data,

we projected the spatiotemporal characteristics of GHG emissions

for a subsequent day.

The GHG emission inventory of Tianjin Port, encompassing

channels, anchorages, and berths, serves as the input data. This

dataset encapsulates GHG emission information from 7 channels, 8

anchorages, and 205 berths within Tianjin harbor throughout 2018,

recorded on a daily timestep. It encompasses both time-varying and

static data pertinent to the prediction target. A total of 240,901

time-series data points were assembled and partitioned into

training, validation, and testing sets at a ratio of 6:2:2. The

training set facilitates feature learning, network parameter

adjustments, and model fitting. The validation set aids in model

hyper-parameter tuning and preliminary performance evaluation,

while the test set evaluates the model’s generalization capability. A

total of 240 iterations were conducted to ascertain optimal

hyperparameters , each with an epoch count of 100.
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Hyperparameter optimization was carried out via random search,

with the exhaustive search range of hyperparameters as follows:

• Hidden layer size: 10, 20, 40, 80, 160, 240, and 320

• Dropout rate: 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and 0.9

• Minibatch size: 64, 128, and 256

• Learning rate: 0.0001, 0.001, and 0.01

• Max gradient norm: 0.01, 1.0, and 100.0

• Num heads: 1, 4

The joint minimization of the quantile loss as described in Eqs.

(7) and (8) is employed for model training and hyperparameter

optimization. Experimental findings reveal that a hyperparameter

configuration of hidden layer size = 20, dropout rate = 0.2,

minibatch size = 256, learning rate = 0.0001, max gradient norm

= 1, and num heads = 4 yields optimal predictions with a loss value

approximating 0.15.

Figure 7 illustrates the fold change comparison between

predicted and actual emission values in the emission inventory

under Q = 0.5 and Q = 0.9 quartiles, exemplified using

N2O emissions.

Table 1 presents the RMSE and MAE values of the predicted

emissions for the TFT, RNN, and LSTM models, using CO2

emissions as an instance. The table illustrates that the TFT model,

whether under Q = 0.5 or Q = 0.9, outperforms the traditional RNN

and LSTM models.

The initiative to incorporate the maritime industry into the EU

ETS unveils numerous prospects and hurdles. It is necessary to

accurately grasp the GHG emission patterns of ships, and foster the

emission reduction and green transformation of the maritime sector

from varying perspectives, including government and regulatory

bodies, port authorities, and shipping companies. The model

employed in this study forecasts the multi-emission characteristics

of GHGs, encompassing CO2, CH4, and N2O, thereby offering insights

into the future emission scenarios of ships within a reasonable margin

of error. The government can utilize the predicted data, comprising

time, location, pollutant types, and emissions, as a reference to enact

preemptive measures. Such measures may include regulatory

adjustments, staff mobilization, pollutant treatment, and port

operation planning and scheduling, aiming to mitigate unnecessary

emissions stemming from queuing, waiting, inefficient operations, and

irrational planning of port facilities.
3.2 Emission pattern analysis

This study characterizes the GHG emissions, comprising CO2,

CH4, and N2O, generated by the MEs, AEs, and boilers of ships

arriving at Tianjin Port in 2018 under varied operational

conditions. By combining the geographic details of Tianjin Port, a

high-resolution ship GHG emission inventory is established.

Various dimensions such as the emission characteristic

comparison, distinct engine emission analysis, varying sailing

conditions, and different ship attributes are explored to analyze

the GHG emission patterns. Additionally, measures and emission

reduction proposals are discussed to ensure the maritime industry’s

sustainable development amid potential future challenges and

opportunities, like the EU ETS.
FIGURE 6

Structure of the LSTM Network.
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3.2.1 Emission characteristics of ships under
different scenarios

Exhaust emissions from ships are a significant source of air

pollutants. In particular, emissions of GHGs such as CO2, CH4, and

N2O pose severe threats to global climate, human health, and other

species’ survival. In 2018, ships entering Tianjin Port emitted

approximately 674,409.27 tons of CO2, 6.93 tons of CH4, and

40.43 tons of N2O. Figures 8 and 9 illustrate the emission share

ratios of each GHG and each engine type respectively in 2018.

It can be observed that approximately 54.9% of CO2 emissions

originate from the AEs of vessels, 38.7% from ship boilers, with a

minor portion from the MEs. As for CH4 emissions, AEs stand as

the predominant source, generating around 78.2% of the total, with

MEs and boilers contributing approximately 14% and 7.8%,

respectively. In the case of N2O emissions, about 53.3% are

attributed to ship boilers, approximately 41.6% to AEs, and a

minor fraction to the MEs. It reveals that AEs and boilers on

ships are major contributors to the GHG emissions in Tianjin Port.

Ship engines, categorized as MEs, AEs, and boilers, serve

distinct functions. MEs primarily provide propulsion power; AEs

cater to lighting, air-conditioning, refrigeration, and other electrical

needs; boilers are primarily for hot water or steam pumping drive

(Vehicle, 2016).

Under cruising conditions, ships travel at normal speeds with

boilers mostly turned off (Vehicle, 2016). As ships decelerate from
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normal navigation to docking, AE power increases, ME power

decreases, and boilers are activated. During docking at the wharf

for cargo loading and unloading using the ship’s own power system,

the ME is turned off, the AE operates at a higher load, and the boiler

is active. Conversely, during berthing, only the AE and boiler

operate, providing the necessary electrical and thermal energy for

the ship’s normal functions (Fu et al., 2012). Figure 10 illustrates the

GHG emissions emitted by ships entering Tianjin Port under

different operational states.
FIGURE 7

Prediction performance.
TABLE 1 Comparative performance of prediction models.

TFT (Q = 0.5) TFT (Q = 0.9) RNN LSTM

RMSE 0.0126 0.031 13.096 13.579

MAE 0.010 0.026 13.873 14.256
FIGURE 8

GHG Emission Share Ratios in Tianjin Port.
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FIGURE 9

GHG Emission Proportions from Various Ship Engines: (A) CO2; (B) CH4; (C) N2O.
A B

C

FIGURE 10

GHG Emissions from Ships under Different Operational States: (A) CO2; (B) N2O; (C) CH4.
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The data indicate that the emissions of all three GHGs—CO2,

CH4, and N2O—are significantly higher during the anchoring and

berthing states, emphasizing the link between the operational states

of ships within harbor waters and the resultant GHG emissions.

Primarily, GHG emissions in Tianjin Port waters are generated

during the phases of ship docking and cargo loading and unloading.

Studies have demonstrated that in congested waters, adopting

measures such as reducing the speed of ships can effectively diminish

the transit time. Additionally, utilizing dynamic planning techniques

based on the planned routes and sailing information transmitted by

the AIS can further optimize the transit time, enhance port

operational efficiency, and elevate navigation safety (Hung et al.,

2005). A notable study by Yan et al. (2018) employed a distributed

parallel k-means clustering algorithm for fine path delineation to

create a ship energy efficiency optimization model, considering

various environmental factors. The study confirmed the efficacy of

this method in reducing ship energy consumption and CO2 emissions

significantly. By rational design of the port area structure and the

loading/unloading processes, in alignment with the types and

characteristics of ships and cargoes, and by utilizing relevant

technologies for planning the entry/exit paths and cargo loading/

unloading locations, ports can ensure safe and efficient operations

while minimizing unnecessary pollutant emissions.

Export credit agencies (ECAs) have emerged as a key policy

initiative to mitigate air pollution in ports, leveraging their technical

feasibility and regulatory ease. ECAs contribute to emission

reductions by enforcing strict controls on the maximum sulfur

content of ship fuels. However, the stringent emission standards

stipulated in export credit agreements escalate transportation costs

for shipping firms. This may prompt firms to alter their routes

without disrupting trade, albeit at the expense of reducing the

competitiveness and attractiveness of ports (Meng et al., 2022). To

balance competitiveness with emission reductions, ports are

necessitated to retrofit berths and infrastructure, for instance, by

installing shore power, and bear the corresponding operational and

maintenance costs. Nonetheless, the high investment and operational

costs associated with such retrofitting are burdensome for ports to

shoulder independently (Innes and Monios, 2018). Hence, fostering

collaboration among governments, ports, and shipping companies is

pivotal to address these challenges effectively and promote sustainable

practices in maritime operations.

3.2.2 Emission characteristics for different
ship attributes

Based on the data from Lloyd’s Register of Ships, it was found

that ships built before the year 2000 (excluding 2000) constitute

approximately 17.23% of the total number of vessels entering Tianjin

Port. Notably, a higher number of aged dry bulk carriers are present

among this cohort. It is recommended that the government melds

subsidies with stringent regulations, where subsidies would motivate

the replacement of outdated ships with newer models, and strict

regulations on older ships would help prevent emissions from

surpassing the stipulated standards. Additionally, the GHG

emission characteristics vary among different types of ships.
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Figure 11 illustrates the emissions and emission share ratio of each

type of ship in Tianjin Port for each month of 2018.

As depicted in the figure, irrespective of the type of GHG

emissions, dry bulk carriers, oil and chemical tankers, and container

ships contribute a substantial share, with dry bulk carriers emitting the

most. Dry bulk carriers account for 46.19%, 42.46%, and 47.88% of the

total emissions of CO2, CH4, and N2O, respectively. Despite

comprising only 9.01% of the total number of ships entering Tianjin

Port, container ships account for 25.67%, 27.85%, and 25.06% of the

total emissions of CO2, CH4, and N2O, respectively. The higher

speeds, larger load capacities, and significantly greater engine power

of container ships result in higher emissions per ship compared to

other ship types, a characteristic mirrored by ro-ro ships. Though the

emissions from dry bulk carriers are comparable to other ships, their

sheer number, making up about 41.5% of the total ships entering

Tianjin Port, leads to the highest amount of GHG emissions.

Shipping companies are primary pollution sources in inland

navigation, emitting copious amounts of oily wastewater and

harmful gases during voyages and port operations, thereby

adversely affecting the surrounding atmosphere and waters.

However, they also play a crucial role in protecting the inland

river environment. By adopting clean energy technologies like shore

power and liquefied natural gas, pollutant emissions can be

significantly reduced (Xu et al., 2021). Recent years have

witnessed the emergence of several green port transformation

technologies including electric ships, clean energy, shore power,

and ship exhaust treatment technologies. Yet, there is sufficient

scope for advancements in technology, policy, market, and

management to further mitigate environmental impacts (Wang

et al., 2022). The additional costs associated with clean energy

technologies can dampen the enthusiasm of shipping enterprises to

engage in inland waterway environmental management. From a
FIGURE 11

Emission Rates and Emission Shares of Different Types of Ships: (A)
CO2; (B) N2O; (C) CH4.
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cost-benefit perspective, the direct costs and potential

environmental benefits for local governments to monitor and

control ship pollution influence their motivation, while the

decision of shipping companies to adopt clean energy is closely

tied to government penalties and subsidies. Eliminating the

environmental impacts of ship pollution often entails higher

governance costs compared to proactive regulation (Xu et al.,

2021). It is imperative for local governments to increase

regulatory guidance, engage other stakeholders in the governance

system to actively participate in pollution control, and deploy

incentives and disincentives such as carbon pricing, fuel taxes,

and subsidies for clean energy projects to monitor relevant

polluters (Frederiksen et al., 2021).

In this discourse, shore side electricity (SSE) pertains to the

stoppage of a ship’s AE operations and its connection to onshore

electricity. Ships utilizing SSE can effectively eliminate emissions

from their auxiliary engines while at port berths (Karslen et al.,

2019). The US Environmental Protection Agency asserts that SSE

can reduce up to 98% of CO2 and other pollutants emitted by ships

at berth (EPA, 2017). SSE is deemed a critical technology

warranting extensive promotion (Kumar et al., 2019; Poulsen and

Sampson, 2020). A qualitative study on the key stakeholders in the

adoption of SSE technology recommended the introduction of this

technology in ports (Meng et al., 2022).

Nevertheless, the diffusion of this technology is hindered by

high construction costs and the lack of positive financial outcomes

for port operators and ship owners (Dai et al., 2019; Chen et al.,

2022; Ye et al., 2022). The substantial initial investments required

for retrofitting port infrastructure and ship equipment pose a

barrier to SSE adoption (Winkel et al., 2016). To address this

issue, government regulations and port incentives are crucial.

Initially, the government could subsidize a portion of the SSE

equipment installation costs in ports and ships (Dai et al., 2020),

as robust policies and subsidies can significantly boost the

installation rate of SSE at berths. However, the high maintenance

costs of SSE equipment, coupled with minimal government

subsidies for SSE operations and high installation costs for ship

owners, render the equipment subsidy less appealing, leading to a

lack of motivation among ports and ships to adopt SSE (Yin et al.,

2020). As dynamic stakeholders, ports and ships will respond

according to the subsidy structure. It is a government priority to

motivate ports and ships to utilize SSE.

Given the subsidy limit, the government should optimize the

SSE subsidy structure for ports and ships (Wu and Wang, 2020;

Wang et al., 2021; Xu and Di, 2021), elevate the subsidy on the sales

price of electricity in ports, ascertain the subsidy ratio between

equipment installation and operation (Wang et al., 2022), fully

leverage national financial support, and enhance the relevant

penalty mechanism and regulatory framework. With a guarantee

of revenue, in order to obtain government subsidies rather than

fines, ports may be inclined to offer certain subsidies for the

emission reduction costs of shipping enterprises to encourage SSE

usage (Meng et al., 2022). Concurrently, the government could take

cues from the EU and devise policies to hike the tax on bunker fuels
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and include berthing fuel emissions in the EU ETS (Stolz et al.,

2021) to foster the adoption of green transition technologies

like SSE.
4 Discussion and conclusions

In the current age of environmental awareness and green

transition, there is an evident increase in the release of pollution

conventions and emission reduction policies. A notable example is

the EU’s decision to integrate the shipping industry into the ETS.

Commencing in 2026, this policy will mandate entities such as

shipowners, management entities, and charterers to be financially

accountable for the GHGs their vessels emit during voyages to,

within, and departing from EU ports. While introducing growth

prospects for new sectors like clean energy, these policies

undoubtedly challenge the global shipping industry. It becomes

incumbent on shipping firms worldwide to collaborate with local

governments, port officials, exporters, and other key stakeholders to

diligently monitor emissions and devise strategies to navigate this

evolving landscape before the onslaught of more stringent

international regulations.

Recognizing these changing dynamics, our research combines

big data processing techniques, the dynamic method of ships, and

the TFT time-series prediction model equipped with the attention

mechanism. The objective is to craft a high-resolution

spatiotemporal emission inventory estimation and prediction

model for ship-based GHGs, tailored to manage incomplete AIS

datasets. The computation part of this research offers an intricate

breakdown of GHG emission trends, examining aspects such as

ship type, emission-causing engine type, operational state of the

ship, its construction year, and the specifics of emission time and

location. Impressively, our prediction part showcases superior

outcomes when compared with conventional RNN and

LSTM models.

Tianjin Port, a prominent international maritime hub, stands at

the crossroads of significant opportunities and challenges in its

journey towards sustainable transformation. Utilizing the sea region

of Tianjin Port as our primary case study, this research leverages

2018 AIS data, ship Lloyd’s records, and geographical data to

initiate its emission predictions and calculations. Notably, under

optimal parameter configurations, the loss is recorded at an

impressive 0.15. It is worth highlighting that our emission

prediction model is versatile, allowing application across diverse

marine regions and temporal frames, contingent on the availability

of requisite ship AIS data, Lloyd’s records, and geographic details.

This work elucidates the emission laws of GHGs from ships in

the port through computation and projection of GHG emissions,

thereby foreseeing the emission characteristics of ships’ GHG

emissions over future time spans. This contributes to

understanding the maritime transport sector ’s emission

characteristics, providing data and theoretical support for various

stakeholders to navigate the challenges posed by the maritime

industry’s inclusion in the EU ETS.
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Beyond the EU ETS incorporation, the low-carbon

development and green transformation of the shipping industry

echo a broader global trend. As more emission reduction policies

emerge, understanding how to navigate the development

opportunities within the sustainable development paradigm, and

addressing the imminent challenges become imperative.

For government bodies, maintaining rigorous oversight of port

and shipping emissions is crucial. It necessitates the formulation of

a robust policy framework to enhance carbon emissions

monitoring, reporting, and verification systems, thereby building

a reliable carbon emissions database. This approach seeks to address

the prevailing enforcement challenges and policy imperfections

in China, as highlighted by Woo et al. (2018). Additionally, the

implementation of relevant subsidies alongside a reward

and penalty system could foster the inception and research of

cutting-edge technologies, thus boosting China’s ship energy

utilization efficiency.

Port operators, on their part, can refine port structures and

cargo handling processes by leveraging insights from the GHG

emissions patterns of ships in ports and other environmental

factors. This ensures efficient operations for ships docking

at ports. Furthermore, fostering active collaborations with

government authorities and shipping companies to bolster green

infrastructure within ports can significantly uplift their

competitive standing.

Shipping companies, amid these transitions, should

meticulously evaluate their profitability strategies to strike a

harmonious balance between profits and carbon emissions as

outlined by Lin et al. (2017). Given the inevitable green

transformation of the maritime sector and the potential surge in

GHG emission costs due to tighter regulatory frameworks,

maritime companies are encouraged to proactively and

progressively explore avenues for low-carbon transformation

and green development.

For export enterprises, the integration of the shipping industry

into the EU carbon emissions framework heralds a blend of

opportunities and challenges. These enterprises could opt to

align with green and low-carbon shipping entities, driving the

green transformation of the shipping industry from the supply

chain’s end, and leveraging their influence to steer the supply

chain towards sustainable development. Concurrently, staying

informed with carbon emission regulation policies, assessing the

potential impacts of fluctuating shipping costs on exports,

optimizing global production layouts, and ensuring a semblance

of profitability during the transitional phase are prudent

measures, as suggested by the International Institute of Green

Finance (IIGF, 2022).
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