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Multi-scale dense spatially-
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network for lightweight
underwater image
super-resolution
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1School of Astronautics, Northwestern Polytechnical University, Xi’an, China, 2School of
Aeronautics and Astronautics, Sun Yat-Sen University, Shenzhen, China
Underwater images are typically of poor quality, lacking texture and edge

information, and are blurry and full of artifacts, which restricts the

performance of subsequent tasks such as underwater object detection,

and path planning for underwater unmanned submersible vehicles (UUVs).

Additionally, the limitation of underwater equipment, most existing image

enhancement and super-resolution methods cannot be implemented

directly. Hence, developing a weightless technique for improving the

resolution of submerged images while balancing performance and

parameters is vital. In this paper, a multi-scale dense spatially-adaptive

residual distillation network (MDSRDN) is proposed aiming at obtaining

high-quality (HR) underwater images with odd parameters and fast running

time. In particular, a multi-scale dense spatially-adaptive residual distillation

module (MDSRD) is developed to facilitate the multi-scale global-to-local

feature extraction like a multi-head transformer and enriching spatial

attention maps. By introducing a spatial feature transformer layer (SFT

layer) and residual spatial-adaptive feature attention (RSFA), an enhancing

attention map for spatially-adaptive feature modulation is generated.

Furthermore, to maintain the network lightweight enough, blue separable

convolution (BS-Conv) and distillation module are applied. Extensive

experimental results illustrate the superiority of MDSDRN in underwater

image super-resolution reconstruction, which can achieve a great balance

between parameters (only 0.32M), multi-adds (only 13G), and performance

(26.38 dB on PSNR in USR-248) with the scale of � 4.
KEYWORDS

lightweight super-resolution reconstruction, multi-scale dense spatially adaptive
residual distillation network, underwater image, deep learning, residual spatial
adaptive feature attention
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1 Introduction

It is widely recognized that 70% of the Earth is covered by water,

indicating that it is a crucial development space for global ecology,

resources, society, economy, and security Wang et al., 2017. In order

to better utilize and develop marine resources, equipment such as

unmanned underwater vehicles (UUVs), underwater probes, etc.,

have been widely used. The UUVs can perform diverse types of

underwater detection tasks such as underwater resource detection

Wang et al., 2023, coral reef inspection Mooney and Johnson, 2014,

debris inspection Islam et al., 2019, and marine fisheries Barbedo,

2022, etc. During such processes, image synthesis and scene

understanding based on high-resolution (HR) images are

necessary. However, poor underwater visibility and the absorption

and scattering effects of water contribute to the quality of

underwater images are low, lack of details and edge information.

Specifically, various factors lead to such problems. The low

contrast and darkness are caused by the decay of light rays with the

increase of underwater depth Cheng et al., 2018. Additionally, the

attenuation of red wavelengths of light when traveling through

water causes underwater images to display bluish-greenish hues Ei

et al., 2023. Furthermore, suspended particles can lead detailed

textures to appear blurred Alenezi et al., 2022. On the other hand,

limitations of hardware equipment and cost make it more difficult

to acquire HR images directly. Therefore, many scholars have

focused on researching underwater image processing with the aim

of achieving HR images.

Nowadays, techniques for improving underwater images have

become prominent. These techniques utilize prior knowledge via

dark pass methodology Hu et al., 2018 as well as the Retinex

algorithm Golts et al . , 2020. Differential attenuation

compensation (DAC) proposed by Lai et al., 2022 and Hybrid

enhanced generative adversarial Network (HEGAN) designed by Li

Y et al., 2022 are the typical examples. Nowadays, complex ocean

exploration missions have high requirements for color distortion,

image detail, contrast, and brightness Czub et al., 2018 but it is

difficult to obtain enough prior knowledge for image preprocessing,

especially in unfamiliar oceans. Consequently, end-to-end super-

resolution (SR) based on convolutional neural networks (CNN) has

gained significant interest from scholars in recent years. Chen et al.

(Chen et al., 2019) applied modified dense blocks to CNN for SR of

underwater images. Paper Helwig et al., 2023 integrated the residual

dense block with the adaptive mechanism and proposed a residual-

based underwater image SR method. Enlightened by IMDN, Yuan

et al., 2023 incorporated the information distillation mechanism

and spatial attention module into an ordinary residual network.

Subsequently, in paper Li Z et al., 2022, blueprint separable

convolution (BSC) was introduced to SR for underwater images.

Aiming at improving the representational ability of high-frequency

features, for underwater images, Restoration and Super-Resolution

GAN (SRSRGAN) was introduced (Wang H. et al., 2023). However,

few of these methods can strike a balance between performance and

number of parameters and there is little research on deployable

lightweight end-to-end method for underwater SR tasks. Therefore,
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it is essential to suggest a lightweight and high-quality SR method to

achieve a balance between performance and computational cost.

To tackle these issues, a multi-scale dense spatially-adaptive

residual distillation network (MDSRDN) is proposed. In the

specification, a spatial feature Transformer layer and a multi-scale

dense spatially-adaptive residual distillation module construct the

main structure of MDSRDN, which can build long-range

dependence like SwinIR. In addition, a residual spatial-adaptive

feature attention (RSFA) is proposed aiming at realizing global

feature extraction and obtaining enhanced multi-scale attention

maps. Extensive experimental results exhibit that MDSRDN

outperforms most of the state-of-the-art (SOTA) methods in low

computational consumption for underwater image enhancement

and super-resolution reconstruction. The main contributions of this

paper are as follows:
• A multi-scale dense spatially-adaptive residual distillation

network (MDSRDN) is proposed which can achieve a great

ba lance between parameters , mul t i -adds , and

performances. Furthermore, this network is an end-to-end

mapping and do not need prior knowledge, which means

the ability to deal with complex underwater scenarios.

• We design a multi-scale dense spatially-adaptive residual

distillation module (MDSRD) to achieve multi-scale global-

to-local feature extraction like a multi-head transformer,

realize the generation of an attention map for spatially-

adaptive feature modulation, and realize feature reuse

in maximum.

• With the purpose of adaptive enhancing spatial features and

acquiring long-range dependence, a lightweight and

effective residual spatial-adaptive feature attention (RSFA)

is constructed and a spatial feature transformer layer

is introduced.

• Blue separable convolution (BS-Conv) which has been

proven to be superior to deep separable convolution

(DSC) and distillation module are applied to this network,

which can reduce the number of parameters and

multi-adds.

• Compared to current mainstream SR algorithms and

enhancement techniques designed for underwater images,

the MDSRDN presents clear advantages in terms of

parameters, computational complexity, processing speed,

and accuracy. The very fast running time and very low

number of parameters determine that MDSRDN can be

employed on edge underwater devices. Additionally,

MDSRDN is generalized and achieves commendable

results in benchmark datasets.
2 Related works

The scope of this paper concerns the super-resolution

reconstruction of lightweight underwater images, as well as the

enrichment of spatial attention maps and the extraction of spatial
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features. Therefore, it is imperative to conduct a thorough review of

pertinent literature within these categories.
2.1 Single image super-resolution

SR based on CNN is a method of restoring low-resolution (LR)

images to HR images on the foundation of deep learning. The first

model was introduced by Dong Dong et al., 2016, who used a three-

layer CNN to learn the non-linear mapping relationship between

LR to HR. Subsequently, an efficient sub-pixel convolutional

network (ESPCN) was devised by Shi et al. Talab et al., 2019.

They integrated sub-pixel convolution into the upsampling process

which can expand the receptive field. These methods belong to the

shallow feature extraction, which means high-frequency

information such as detail texture could not be utilized. To

address such issues, Kim et al. Kim et al., 2016a designed a very

deep convolutional network (VDSR). Subsequently, the enhanced

deep residual network (EDSR) Lim et al., 2017 added the number of

layers to 160. Inspired by the EDSR, A vast number of in-depth

networks like DRRN Tai et al., 2017 and DRCN Kim et al., 2016b

emerged. Although these models achieved superior reconstruction

results, the significant number of parameters and flops resulted in a

substantial computational overhead, making it challenging to

deploy these algorithms to UUVs.

In order to maintain the network lightweight enough, a very

deep residual channel attention network (RCAN) Zhang et al., 2018

was proposed. This approach has the capacity to decrease parameter

numbers by 40%, allowing for lighter network performance. Then

channel attention (CA) was introduced to residual in the residual

network (RIR), which meant that this network had the ability to

bypass low-frequency information and focused on more important

features with a smaller number of parameters. Afterward, an

information distillation network (IDN) Hui et al., 2018

constructed the prototype of the distillation network. Inspired by

IDN, Hui et al., 2019 modified the distillation block (DB) to an

information multi-distillation block (IMDB), which can aggregate

feature information by importance. Finally, a more concise feature

extraction block realized by distillation connection was proposed in

the residual feature distillation network (RFDN).
2.2 The progress of the spatial
attention module

A spatial attention module is an adaptive mechanism for

selecting spatial regions, enabling attention to be focused

appropriately. Spatial attention modules can be categorized into

four types Guo et al., 2022: RNN-based methods, prediction of the

relevant region explicitly, prediction of the relevant region

implicitly, and self-attention-based methods. In 2014, Mnih et al.,

2014 developed the recurrent attention model (RAM), which first

gave the network the ability to determine where to focus its

attention. Since then, many RNN-based methods have been

designed such as Gregor et al., 2015 and Xu et al., 2015.

Subsequently, spatial transformer networks (STN) were designed
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by Jaderberg et al., 2015 to make the network pay more attention to

the most relevant regions. According to STN, subsequent works

such as Dai et al., 2017 have achieved greater success. Furthermore,

to capture long-range dependence, a recalibration function in the

spatial domain was proposed Hu et al., 2018. Afterward, inspired by

Hu et al., 2018, a point-wise spatial attention network (PSANet) was

implemented to effectively capture long-range dependence.

With a substantial boost in hardware capabilities, transformers

were introduced into the field of computer vision by Dosovitskiy

et al., 2021. This new architecture was named vision transformer

(ViT) and obtained favorable results on numerous benchmark

datasets, particularly with large datasets. The point cloud

transformer (Pct) proposed by Guo et al., 2021 is an excellent

illustration. The initial transformer for super-resolution

reconstruction (SR) was SwinIR Liang et al., 2021, which yielded

superior outcomes compared to the majority of CNN-based

methods. Later on, numerous advanced SR techniques were

developed. Nevertheless, transformer-based approaches disregard

the image’s structural information by replacing two-dimensional

matrices with a one-dimensional vector. Furthermore, the large

number of references and computational costs make these methods

infeasible to deploy on edge devices such as UUVs. Therefore, an

alternative method MDSRDN which can acquire and enhance

spatial features adaptively is proposed. The employment of multi-

scale residual feature representation in this network facilitates the

extraction of global features and fosters the realization of long-

range dependence.
3 The proposed method

In this section, the proposed multi-scale dense spatially-

adaptive residual distillation network (MDSRDN) is introduced in

detail, followed by an elaborate presentation of the multi-scale

dense spatially-adaptive residual distillation module and spatial

feature transformer layer (SFT layer). Then, we introduce residual

spatial-adaptive feature attention (RSFA) which is considered the

most significant element of the MDSRDN.
3.1 The overall design of MDSRDN

Shallow feature extraction module, deep feature extraction

module, and Upsampling module compose the whole structure of

MDSRDN, which is exhibited in Figure 1.

The objective of MDSRDN, as depicted in Figure 1, is to gain

multi-scale global and local features by utilizing MDSRD, which can

operate similarly to multi-head transformers and SwinIR. Then,

aiming at enriching spatial attention maps and enhancing the

expression and representation of spatial features, SFTlayer and

RSFA are introduced. The blue separable convolution which can

decrease the number of parameters and multi-adds with the kernel

i� i is denoted by BSConv − i in Figure 1. Supposing that, Isfe, Idfe,

and ISRrefer to the output of shallow feature extraction module,

deep feature extraction module, and the final result of MDSRDN

respectively, the entire process of MDSRDN can be considered in
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Equation 1:

Isfe = Fsfe(ILR)

ISR = Fup(Isfe + Idfe),
(1)

where Fsfe and Fup denote the processing of shallow feature

extraction and upsampling respectively. In detail, the upsampling

module consists of a 3� 3 BSC and a non-parametric sub-pixel

operation. In addition, ILR represents the input images belonging to

RH�W�Cin ( H, W, and Cin are on behalf of the height, width, and

input channel number of the input images, respectively).
3.2 Shallow feature extraction module

With the idea of Szegedy et al., 2015 and aiming at achieving

more spatial features, a multi-scale shallow feature extraction

module is proposed. Four different parallel BSCs with the kernel

are applied to extract shallow features. 1� 1, 3� 3 BSC can obtain

more local features for low-resolution (LR) images, and the BSC

with kernel size equaling 5 and 7 determinate feature maps with a

large receptive field. Figure 1 and Equation 2 illustrate the width-

expanding part of shallow feature extraction.

Li = Fi
BSC(ILR)   (i = ½1, 3, 5, 7�), (2)

where i represents the kernel size and Li denotes the output after

different BSC operations. Subsequently, a concatenation operation

along with a BSC decreases the number of channels to n, which

stands for the output channel of the whole method. In this paper, we

choose n = 64. The following equation (Equation 3) stands for the

description of the output of the shallow feature extraction module:
Frontiers in Marine Science 04
Isfe = F3
BSC(Concat(L1, L3, L5, L7)) (3)
3.3 Deep feature extraction module

The pivotal component of MDSRDN is the deep feature

extraction module, encompassing multiple SFT layers and

MDSRDs. More texture and edge features can be captured by

this module.
3.3.1 Spatial feature transformer layer (SFT layer)
To improve spatial feature capture and acquisition of deeper

spatial features, a SFT layer is incorporated (Wang et al., 2018) at

the front of the MDSRD. By using this layer, the spatial attention

maps constructed by MDSRD become more ample and more high-

frequency features can be obtained. As is shown in Figure 1, the

input of the SFT layer is the output of shallow feature extraction Isfe
and the result of the last MDSRD denoted as Ij−1MDSRDN , where jstands

for the j − th SFT layer. Several 1� 1BSC composes the mapping

function denoted as Y and a modulation parameter pair can be

acquired, which can be represented by (g , b). Subsequently, the
transformation of each intermediate feature map is carried out by

scaling and shifting feature maps. This entire process is described in

Equation 4.

(g , b) = Y (Isfe)

IjSFT = g � Ij−1MDSRDN + b ,
(4)

where IjSFT refers to the final result of j − th SFT layer.
FIGURE 1

The main structure of MDSRDN.
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3.3.2 Multi-scale dense spatially-adaptive residual
distillation module

The MDSRD module is a pivotal component of the MDSRDN,

which comprises three dense cross-multi-scale spatially-adaptive

residual attention (MSARA). Due to the reuse of features and

distillation mechanism, spatial features can be obtained and

utilized in maximum and the whole module can remain

lightweight. Enriching spatial attention maps, building long-range

dependence, and achieving global-to-local feature extraction are the

primary functions of MSARA, which will be discussed in detail in

the upcoming section. The blue box in Figure 1 showcases the

processing of MDSRD. We employ I1MSARA, I
2
MSARA, I

3
MSARA to

express the consequences of the first, second, and the last

MSARA. So, the result of MDSRD can be interpreted in Equation 5:

Iidis−m, I
i
rem−m = split(Fi

BSC(I
j
SFT ))  ði = 3, 5Þ

ImMSARA = FMSARA(I
i
rem−m) +o

1
Im−1
MSARAþ IjSFT  ðm ∈ ½1, 3�Þ

Idis = F1
BSC(I

i
dis−1, I

i
dis−2, I

i
dis−3)

IMDSRD = Idis + F3
BSC(I

m
MSARA),

(5)

where split represents the distillation mechanism, and Iidis−m, I
i
dis−m

denotes the distillation part and the remained part of features,

which m refers to the serial number of MSARA and i stands for the

kernelsize of BSC. In this paper, the distillation rate is set as 0.25.

Subsequently, we introduce Fi
BSC as the function of BSC, and IMDSRD

is used as the output of MDSRD.
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3.3.3 Multi-scale spatially-adaptive
residual attention

As is shown in Figure 2, MSARA enhances the capture of spatial

features and enriches attention maps through multi-scale and

residual mechanisms. Then, a residual spatially adaptive feature

attention module is used to establish long-range dependencies and

extract more local features. Subsequently, local features are

extracted by using an enhanced spatial attention module (ESA)

Liu J. et al., 2020 and several BSCs. Therefore, MSARA determines

that we can obtain multi-scale global-to-local features like multi-

head transformers and promote the performance of our model.

MSARA is divided into two parts, the global feature extraction part,

and the local feature extraction part, with the output of the global feature

extraction part being assumed as Igl−MSARA. So, the entire process of the

global feature extraction part can be expressed through Equation 6.

Igl−MSARA = FRSFA(I
5
rem) + FRSFA(I

3
rem) + I5rem + I3rem, (6)

where FRSFA stands for the operation of RSFA.

For the local feature extraction part, we introduce an enhanced

spatial attention module (ESA) to realize spatial-dimension

response and BSC is used to obtain local features. Equation 7

expresses the consequence of MSARA denoted as IMSARA.

IESA = FESA(F
3
BSC(Igl−MSARA))

IMSARA = F3
BSC(IESA � (FRSFA(I

3
rem) + I3rem)) + F5

BSC

(IESA � (FRSFA(I
5
rem) + I5rem))

(7)
FIGURE 2

The overall design of MSARA.
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where FESA refers to the mapping function of ESA, which is similar

to the ESA in (Liu J. et al., 2020). In this paper, BSC is used to

replace convolution in ESA. Noteworthily, � represents the matrix

multiplication. Table 1 exhibited a pytorch-like process of MSARA,

which can express the method intuitively. When x is the input of

MSARA, self :RSFA denotes the proceeding of RSFA and self : GEL

U is introduced as the activation function.

3.3.4 Residual spatially-adaptive feature attention
Taking inspiration from Sun et al.’s (Sun et al., 2023) proposal

of spatially adaptive feature modulation (SAFM), we propose RSFA,

which enables the construction of long-range dependence from

multi-scale feature representations and the enhancement of spatial

feature capturing via a residual block (RSB). Therefore, more

texture features and edge profiles can be obtained. The key

structure of RSFA is comprised of an RSB and a SAFM, which is

visually displayed in Figure 3. Furthermore, as is shown in Haase

and Amthor, 2020, BSC is superior to SDC in most vision tasks.

Therefore, we selected BSC to replace SDC which is chosen by

Haase and Amthor, 2020.

For RSB, two 5� 5 BSCs and an active function configure the

main structure of RSB. So, the result of MDSRD can be interpreted

in Equation 8:

IRSB = F5
BSC(s(F

5
BSC(Irem))), (8)

where s represents the Grelu function and IRSB denotes to the

output of RSB. The following equation (Equation 9) can express the

procedure of revised SAFM.

½X0,X1,X2,X3� = split(IRSB)

cX0 = F3
BSC(X0)

cXk =↑p (F
3
BSC( ↓p=2k (Xk))),    (i ∈ ½1, 3�)

(9)
Frontiers in Marine Science 06
where split denotes the channel-wise distillation mechanism, Xk is

the result after distillation and X̂k represents the consequence of

every branch. Furthermore, ↑p and ↓p=2k refer to the upsampling

features at a specific level to the original resolution p and

downsampling features to the size of p=2k , respectively.

Subsequently, a concatenation operation, a BSC along with a

matrix multiplication aggregate these features together, which is

shown in Equation 10.

bX = F1
BSC(Concat(½cX0,cX1,cX2,cX3�))
IRSFA = s (bX )� Irem,

(10)

where IRSFA stands for the output of RSFA.
3.4 Loss function

On the basis of the state-of-the-art methods, l1 the loss function

is utilized as the loss function of DSRDN. The expression of l1 loss

function is defined in Equation 11:

L(Q) =
1
No

N

I=1
‖ ISRi − IHRi ‖1 (11)

where Q denotes the learnable parameters and :k k1 refers to l1
norm and N stands for the number of training samples. What’s

more, ISRi and IHRi represent the reconstructed images applying

DPLKA and the corresponding ground-truth images, respectively.
4 Experiments

4.1 Preparation of experiments and dataset

In this study, MDSRDN is trained by the publicly available

underwater image datasets USR-248 and UFO-120. With the

purpose of demonstrating the generalization of MDSRDN, Set5,

Set14, and urban100 are also used for testing. The USR-248 dataset

comprises 1060 pairs of samples for training and 248 pairs of

samples for testing. Additionally, bicubic interpolation with 20%

Gaussian noise is utilized as the down-sampling method � 2, � 4,

and � 8scale factors can be obtained in USR-248. Whereas the

UFO-120 dataset contains 1500 paired images for training and 120

images for testing. Aiming at maintaining consistency with other

approaches, the peak signal-to-noise ratio (PSNR), structure

similarity index (SSIM), and underwater image quality measure

(UIQM) are designated as evaluation criteria. Particularly, the value

of UIQM can be acquired by Equation 12.

IUIQM = c1 � IUICM + c2 � IUISM + c3 � IUIConM , (12)

where IUICM denotes coloration, IUISM represents sharpness and

IUIConM indicates contrast. Furthermore, c1, c2, and c3are fixed

constants which are configured as 0.0282, 0.2953, and 3.5753.

As is shown in Table 2, NVIDIA GeForce RTX-4090 and Intel

i9-13900k are used as the hardware platform of our experiments.

Subsequently, pytorch-3.8.0 is the underlying framework for the

whole network. Adam optimizer is applied in MDSRDN to
TABLE 1 The whole proceeding of MSARA by using a pytorch-
like pseudocode.

A pytorch-like multi-scale spatially-adaptive resid-
ual attention

def  forward (self , x) :

x _ conv1 = self :GELU(self :BSConv3(x))

x _ conv2 = self :GELU(self :BSConv5(x))

xc1 _ rem,  xc1 _ dis = split(x _ conv1)

xc2 _ rem,  xc2 _ dis = split(x _ conv2)

x1 _ gl = self :RSFA(xc1 _ rem) + xc1 _ rem

x2 _ gl = self :RSFA(xc2 _ rem) + xc2 _ rem

g _ gl = x1 _ gl + x2 _ gl

g _ lo = self : ESA(self :GELU(self :BSConv3(g _ gl)))

x _ out1 = self :GELU(self :BSConv3(g _ lo� x1 _ gl))

x _ out2 = self :GELU(self :BSConv5(g _ lo� x2 _ gl))

return x _ out1 + x _ out2
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minimize the object function. b1 = 0:9, b2 = 0:999 and e = 1� 10−8

are the value of the active parameter in the optimizer. The training

epoch is served as the 800, the batch size of the training dataset is 16

and the input patch size is 192� 192. What’s more, the initial rate is

installed 2� e−3 and attenuates to half of its original every

200 epochs.
4.2 SR results of underwater images

4.2.1 Comparison of the USR-248 dataset
on quality

Various methods, including SRCNN, VDSR, DSRCANN Dong

et al., 2018, SRGAN Ledig et al., 2017, ESRGAN, SRDRM-GAN

Islam et al., 2020, HNCT Fang et al., 2022, RDLN Chen et al., 2023,

HAN Niu et al., 2020, SAN Liu R. et al., 2020, PAL Chen et al., 2020,

AMPCNet Zhang Y. et al., 2022, PFIN Wang et al., 2022, IPT Chen

et al., 2021, ELAN Zhang X. et al., 2022 are utilized for SR task

comparison with MDSRDN. Table 3 demonstrates the outcomes of

these methods. The results with the best performance are
Frontiers in Marine Science 07
highlighted in bold, while those with second-best performance are

italicized and displayed in blue.

As demonstrated in Table 3, MDSRDN exhibits significant

advantages across all scales. When compared to other methods

with the same scale, MDSRDN surpasses them all in terms of PSNR,

SSIM, and UIQM. MDSRDN improves the PSNR, SSIM, and

UIQM by about 8.9%, 7.7%, and 2.5% respectively compared with

SRGAN. Subsequently, though MDSRDN achieves the second-best

result � 4, 0.7% lower than AMPCNet on UIQM, a 5.1%

enhancement on PSNR and a 7.5% elevation on SSIM can justify

the excellence of MDSRDN. What’s more, compared with some

large deep networks (LDN) such as PAL and HAN, MDSRDN does

not achieve the best results on SSIM and UIQM with the scale of

� 8. Nevertheless, MDSRDN still obtains the best performance on

PSNR. What’s more, the parameters and flops of PAL and HAN

determined that they could not be deployed on underwater

edge devices.

4.2.2 Comparison of computational cost on the
USR-248 dataset

As shown in Table 3, the flops and parameters of our module

exhibit competitiveness across all methods. We calculate the output

resolution as 720p (i.e., 1080� 720). As is widely known, all

methods are competitive state-of-the-art lightweight methods.

Figure 4 visualizes the relationship between PSNR, flops, and

parameters. From Figure 4 and Table 3, our MDSRDN can

achieve a great balance between computational cost and

performance. MDSRDN decreases parameters by 65%, 24%, and

54% with the scale ×2 compared with RDLN, HNCT, and PAL. In

addition, it demonstrates exceptional performance on

manifestations, resulting in improvements of 0.61, 1.25, and 2.16

dB on PSNR ×2. With the scale ×4, our MRSRDN also achieves

good grades. The PSNR is improved by 0.26 dB and 0.24 dB, and the

number of parameters was reduced by 61% and 62% at the same

time compared with EALN and RDLN, which were proposed in
TABLE 2 The initial parameters and hardware-software designment.

Mame Numerical value

Hardware-platform-GPU NVIDIA GeForce RTX-4090

Hardware-platform-CPU Intel i9-13900k

Software-platform Pytorch-3.8.0

Batch-size 16

Train-epoch 800

Patch-size 192� 192

Initial learning-rate 2� e−3

Optimizer Adam
FIGURE 3

The main structure of RSFA.
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TABLE 3 Some norms on the USR-248 dataset with the scale of ×2, ×4, and ×8.

Scale Method FLOPS(G) Params(M) PSNR (dB) SSIM UIQM

×2

SRCNN (2014) 21.30 0.06 26.81 0.76 2.74

VDSR (2016) 205.28 0.67 28.98 0.79 2.57

SRGAN (2017) 377.76 5.95 28.05 0.78 2.74

ESRGAN (2017) 4274.68 16.70 26.66 0.75 2.70

DSRCNN (2018) 54.22 1.11 27.14 0.77 2.71

SRDRM-GAN (2020) 289.38 11.31 28.55 0.81 2.77

SAN (2020) 1204.48 15.71 29.48 0.80 2.65

PAL (2020) 203.82 0.83 28.41 0.80 –

HAN (2020) 1216.57 15.92 28.67 0.79 2.53

IPT (2021) – 11.3 29.33 0.80 –

HNCT (2022) – 0.38 29.32 0.82 2.66

PFIN (2022) 76.83 1.32 29.94 0.83 2.80

AMPCNet (2022) – 1.15 29.54 0.80 2.77

ELAN (2022) 153 0.818 30.14 0.83 –

RDLN (2023) – 0.84 29.96 0.83 2.68

MDSRDN (ours) 103.4 0.29 30.57 0.83 2.81

×4

SRCNN (2014) 21.30 0.06 23.38 0.67 2.38

VDSR (2016) 205.28 0.67 25.70 0.68 2.44

SRGAN (2017) 529.86 5.95 24.76 0.69 2.42

ESRGAN (2017) 1504.09 16.70 23.79 0.66 2.38

DSRCNN (2018) 15.77 1.11 23.61 0.67 2.36

SRDRM-GAN (2020) 377.20 12.38 24.62 0.69 2.48

SAN (2020) 312.86 15.86 26.00 0.65 2.40

PAL (2020) 303.42 1.92 24.89 0.69 –

HAN (2020) 315.88 16.07 25.26 0.59 2.56

IPT (2021) – 11.4 25.82 0.69 -

HNCT (2022) – 0.78 26.06 0.66 2.41

PFIN (2022) 19.65 1.34 26.25 0.70 2.53

AMPCNet (2022) – 1.17 25.90 0.66 2.58

ELAN (2022) 150 0.82 26.12 0.70 -

RDLN (2023) – 0.84 26.16 0.69 2.48

MDSRDN (ours) 25.95 0.32 26.38 0.71 2.56

×8

SRCNN (2014) 21.30 0.06 19.97 0.57 2.01

VDSR (2016) 205.28 0.67 23.58 0.63 2.17

SRGAN (2017) 567.88 5.95 20.14 0.60 2.10

ESRGAN (2017) 811.44 16.70 19.75 0.58 2.05

DSRCNN (2018) 6.15 1.11 20.14 0.56 2.04

SRDRM-GAN (2020) 399.15 13.45 20.25 0.61 2.17

SAN (2020) 89.96 16.01 23.78 0.53 2.19

(Continued)
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2022 and 2023. On ×8, an excellent performance is achieved by

MDSRDN. However, on UIQM and SSIM, the MDSRDN achieved

the second-best result. However, the parameter and flops quantities

of SAN and PAL make them unsuitable for lightweight purposes.

When compared to the lightweight networks AMPCNet and RDLN,

which were introduced in 2022 and 2023, MDSRDN shows an

increase of 0.33 dB and 0.25 dB in PSNR and a reduction of 73%

and 59.5% in the number of parameters. Consequently, this is a

noteworthy accomplishment. To better validate the deployment

ability of our method, running-time tests are performed on the test

dataset of USR-248. Experimental results exhibit that the running
Frontiers in Marine Science 09
time on the experimental platform is only 120ms, 89ms, and 45ms.

The parameters, flops, and running time indicate that our method is

lightweight enough to deploy on underwater edge devices for

underwater observation tasks.

4.2.3 Comparison of the USR-248 dataset
on quantity

The visualized SR image is presented in Figure 5. Figure 5A

represents SR images with the scale of x2. SR images with the scale

of x4are expressed in Figures 5B, C is used to exhibit the SR images

with the scale of x8. Figure 5 demonstrates some of the SR results of
TABLE 3 Continued

Scale Method FLOPS(G) Params(M) PSNR (dB) SSIM UIQM

PAL (2020) 325.51 2.99 22.51 0.63 –

HAN (2020) 90.71 16.22 23.17 0.48 2.47

IPT (2021) – – 22.87 0.58 -

HNCT (2022) – 0.86 23.88 0.54 2.21

PFIN (2022) 5.36 1.44 23.96 0.55 2.27

AMPCNet (2022) – 1.25 23.83 0.62 2.25

ELAN (2022) – – 23.76 0.62 –

RDLN (2023) – 0.84 23.91 0.54 2.18

MDSRDN (ours) 7.95 0.34 24.16 0.62 2.31
The results with the best performance are highlighted in bold, while those with second-best performance are italicized and displayed in blue.
FIGURE 4

Comparison with state-of-the-art models on PSNR, parameters, and flops.
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underwater images, with the scale factor of x2, x4, x8. It is obvious

that our MDSRDN achieves more detailed features and high-

frequency information. For example, in the second image of

Figure 5B, the color of the head of the shark is more similar to

the HR image and the image recovery results are also clearer. In the

first image of Figure 5B, more clearly detailed textures are

represented, and the performance of contrast and other aspects of

colors are superior. Then, it is obvious that the first image in

Figure 5A and the first image in Figure 5C, the section we have
Frontiers in Marine Science 10
boxed contains a multitude of detailed texture information.

Compared with other methods, our MDSRDN outperforms in

expressing detailed texture features. It is of note that the SR

images reconstructed by VDSR, SRGAN, and DRLN et al. have

significant edge artifacts, which lead to the SR images having

blurred edges and poor reconstruction. Furthermore, with the

increase of the scale, the artifacts become more pronounced such

as the second image of Figure 5C, in which, the SR images of the

yellow region have severe edge and border artifacts restored by
B

C

A

FIGURE 5

(A) Visual comparison between different methods on USR-248, with a scale factor of ×2. (B) Visual comparison between different methods on USR-
248, with a scale factor of ×4. (C) Visual comparison between different methods on USR-248, with a scale factor of ×8.
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VDSR, DRLN, and SRDRAM-GAN. While clearer boundary

information and fewer artifacts are demonstrated on MDSRDN.

What’s more, MDSRDN’s recovery of sharpness and contrast is

clearly superior compared to other methods. The second image of

Figure 5C indicates that for the yellow region with uneven

sharpness and relatively low contrast, our method achieves the

best effect. Therefore, MDSRDN has advantages on edge texture

features, detailed textures and colors, artifacts, and SR quality.

4.2.4 Comparison with the UFO120 dataset
More experiments are conducted on the UFO120 dataset.

Table 4 expresses the consequences of different methods. SRCNN,

SRGAN, SRDRM-GAN, AMPCNet, Deep WaveNet Sharma et al.,

2023, SRERM Islam et al., 2020, SRResNet Lin et al., 2017, RDLN,

URSCT (Ren et al., 2022), and IPT are applied to compare with

MDSRDN. Similar to Table 3, the best results are bolded in the box,

and the second-best results are expressed in blue italics.

As is shown in Table 4, the proposed MDSRDN achieves the

best or the second-best results in various indicators. For the scale

factor � 2, there is a slight underperformance against URSCT on

SSIM. However, the PSNR improves by 0.08 dB and the UIQM is

salable at the same time. In particular, the performance of DRLN is

the most comparable method to MDSRDN especially on PSNR.

While the MDSRDN and RDLN share similarities in metrics such

as PSNR and SSIM, the former has only 40% of the parameters of

the latter. Furthermore, MDSRDN performs better in terms of

PSNR and SSIM metrics with the scale of ×2 and ×4. Additionally,

Deep WaveNet is also a favorable competitor. However, it has a

better performance on SSIM and a proximate degree on UIQM,

1.2%, 4.6%, and 1.3% decrease on PSNR with the scale of ×2, ×3 and

×4 signifies the loss of competition.

Figures 6 and 7 demonstrate the visualized SR image with the

scale of ×2 and ×4. Figure 6 further exhibits that our method has

advantages in the recovery of texture features, especially for the

detailed textures of fish heads. In comparison to other techniques,
Frontiers in Marine Science 11
our method produces a much clearer reconstruction of the white

texture of the head, without any edge artifacts. In Figure 7, it is

obvious that the MDSRDN performs well on color deviation and

clarity of SR images. In addition, the unpleasant artifacts are

removed in MDSRDN, while it is nasty on Deep WaveNet. In

contrast, the stronger color correction ability and the superior

capacity of reconstructing texture features allow the MDSRDN

more competent for the SR task of underwater images.

Running-time is an important norm to express the lightweight

of our method. By using the test dataset of UFO120, the running

time of our method is 79ms, 50ms, and 16ms with the scale of ×2,

×4, and ×8.
4.3 Ablation study

In this section, several ablation experiments have been

conducted. To demonstrate the impact of different blocks, several

ablation experiments such as the effect without the SFT layer and

the effect of RSFA.

4.3.1 The effect of the SFT layer
The SFT layer is applied to enhance the ability to capture spatial

features and obtain deep spatial features. To showcase its

importance, we removed the SFT layer from the deep feature

extraction module. Therefore, the final construction of the

ablation model is depicted in Figure 8 and the results of ablation

experiments are showcased in Table 5. It is worth mentioning that,

to maintain the parameters and flops, we added an MDSRD

module. Even though, from Table 5, with the scale of ×2 and ×4,

the SFT layer still achieves the best performance. It is obvious that in

PSNR, a 0.33 dB and a 0.3 dB improvement can be obtained on the

USR-248 dataset and a promotion of 0.18 dB and 0.12 dB can be

achieved, respectively. With the application of the SFT layer, more

spatial features can be achieved which is beneficial for the
TABLE 4 Some norms on the UFO120 dataset with the scale of ×2, ×3, and ×4.

Method
PSNR (dB) SSIM UIQM

� 2 � 3 � 4 � 2 � 3 � 4 � 2 � 3 � 4

SRCNN (2014) 24.75 22.22 19.05 0.72 0.65 0.56 2.39 2.24 2.02

SRGAN (2017) 26.11 23.87 21.08 0.75 0.70 0.58 2.44 2.39 2.56

SRResNet (2017) 25.23 23.85 19.13 0.74 0.68 0.56 2.42 2.18 2.09

SRDRM (2020) 24.62 – 23.15 0.72 – 0.67 2.59 – 2.57

SRDRM-GAN (2020) 24.61 – 23.26 0.72 – 0.67 2.59 – 2.55

IPT (2021) 25.68 25.16 23.00 0.74 0.71 0.71 2.68 2.64 2.67

AMPCNet (2022) 25.24 25.73 24.70 0.71 0.70 0.70 2.98 2.96 2.85

URSCT (2022) 25.96 – 23.59 0.80 – 0.66 – – –

Deep WaveNet (2023) 25.71 25.23 25.08 0.77 0.76 0.74 2.99 2.96 2.97

RDLN (2023) 25.96 26.55 25.37 0.76 0.74 0.73 2.98 2.98 2.94

MDSRDN (ours) 26.04 26.41 25.53 0.78 0.75 0.73 2.99 2.98 2.96
fr
The results with the best performance are highlighted in bold, while those with second-best performance are italicized and displayed in blue.
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FIGURE 6

Visual comparison between different methods on UFO120, with a scale factor of ×2.
FIGURE 7

Visual comparison between different methods on UFO120, with a scale factor of x4.
FIGURE 8

The structure of the ablation model without the SFT layer.
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acquisition of spatial attention mechanism maps and adaptive

spatial response.

4.3.2 The effect of RSFA
We design RSFA to generate an enhancement attention map for

spatially adaptive feature extraction, obtain long-range dependence,

and realize global feature extraction. To evaluate the effectiveness of

RSFA, various attention modules including ESA, channel attention

(CA), and SAFM are employed. As is exhibited in Table 6, RSFA

performs excellent than all of them. It is observed that RSFA

promotes the PSNR in the range of 0.43, 0.6, and 0.56 dB in

USR-248. Furthermore, the parameters and flops in comparison to

ESA and CA are relatively minor. Subsequently, on UFO120, with

the promotion of 0.28, 0.35, and 0.33 dB, our RSFA gets excellent

results. Consequently, with the ability to capture global features and

achieve long-range dependence, spatial attention maps can

optimize and acquire richer features adaptively.
5 Conclusion

This paper presents the MDSRDN, a multi-scale dense

spatially-adaptive residual distillation network (MDSRDN) for

SR tasks of underwater images. The idea of MDSRDN is realizing

end-to-end feature mapping without prior knowledge which is

suitable for different scenarios. By constructing MDSRD, multi-

scale global-to-local feature extraction like multi-head

transformer can be realized, an attention map for a spatially-

adaptive feature can be generated, and the feature can be reused

maximally. RSFA is a crucial aspect of MDSRD as it successfully

enhances spatial features and acquires long-range dependence in

an adaptive manner. Furthermore, with the application of multi-
Frontiers in Marine Science 13
scale shallow feature extraction and the introduction of the SFT

layer, the attention maps on spatial-dimension compose more

texture and edge features, which can be selected adaptively by

RSFA. The model also maintains controlled flops and parameters

to enable efficient deployment on underwater edge devices.

Comprehensive experimental results on USR-248 and UFO120

indicate that the proposed method can achieve realistic colors,

abundant detail features, and clear texture features. Thus,

MDSRDN attains a remarkable balance between performance

and computational costs while having excellent generalizing

prowess. Consequently, MDSRDN has application value for

underwater image super-resolution reconstruction and ocean

observation, which can be deployed on underwater edge devices

and sensors.

In forthcoming endeavors, our aim is to introduce deformable

convolution to RSFA with the objective of enhancing the capacity to

present spatial features.
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