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CLOINet: ocean state
reconstructions through remote-
sensing, in-situ sparse
observations and deep learning
Eugenio Cutolo1,2*, Ananda Pascual1, Simon Ruiz1,
Nikolaos D. Zarokanellos2 and Ronan Fablet3

1IMEDEA (CSIC-UIB), Esporles, Spain, 2Balearic Islands Coastal Observing and Forecasting System
(SOCIB), Palma, Spain, 3IMT Atlantique, CNRS UMR Lab-STICC, INRIA team Odyssey, Brest, France
Combining remote-sensing data with in-situ observations to achieve a

comprehensive 3D reconstruction of the ocean state presents significant

challenges for traditional interpolation techniques. To address this, we

developed the CLuster Optimal Interpolation Neural Network (CLOINet), which

combines the robust mathematical framework of the Optimal Interpolation (OI)

scheme with a self-supervised clustering approach. CLOINet efficiently

segments remote sensing images into clusters to reveal non-local correlations,

thereby enhancing fine-scale oceanic reconstructions. We trained our network

using outputs from an Ocean General Circulation Model (OGCM), which also

facilitated various testing scenarios. Our Observing System Simulation

Experiments aimed to reconstruct deep salinity fields using Sea Surface

Temperature (SST) or Sea Surface Height (SSH), alongside sparse in-situ salinity

observations. The results showcased a significant reduction in reconstruction

error up to 40% and the ability to resolve scales 50% smaller compared to

baseline OI techniques. Remarkably, even though CLOINet was trained

exclusively on simulated data, it accurately reconstructed an unseen SST field

using only glider temperature observations and satellite chlorophyll

concentration data. This demonstrates how deep learning networks like

CLOINet can potentially lead the integration of modeling and observational

efforts in developing an ocean digital twin.
KEYWORDS

deep-learning, ocean, remote-sensing, SST, SSH, gliders, OSSE
1 Introduction

Nowadays, there is an increased consciousness of the role played by the ocean in many

crucial aspects of human safety, health, and well-being due to the cumulative impacts of

climate change, unsustainable exploitation of marine resources, pollution, and uncoordinated

development (Ryabinin et al., 2019; Pascual et al., 2021). In response to these challenges,
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which UNESCO has encapsulated in 10 objectives for the Ocean

Decade (2021-2030), the European Union is endeavoring to develop a

digital twin of the ocean. The concept of digital twins involves

creating a digital representation of real-world entities or processes,

based on both real-time and historical observations, to depict the past

and present and to model potential future scenarios.

In the ocean case and especially to address climate change-

related concerns, one major challenge is understanding the state

and evolution of the ocean’s interior. Its stratification significantly

influences large-scale integrated variables like ocean heat content,

acidification, and oxygenation (Durack et al., 2014; Wang et al.,

2018). Moreover, numerous studies have highlighted the

importance of resolving submesoscale dynamics to account for

the majority of vertical ocean transport, which is vital for carbon

export, fisheries, nutrient availability, and pollution displacement

(Pascual et al., 2017). These challenges underscore the need for

high-resolution, three-dimensional representations of the ocean

state. High-resolution numerical models and data assimilation

techniques, which align model outputs with actual observations,

are currently the most common solutions (Mourre et al., 2004;

Carrassi et al., 2018).

Operational simulations now assimilate near-real-time

observations, including in-situ (ship-based observations,

underwater gliders, and floats) and remote sensing data

(Hernandez-Lasheras and Mourre, 2018). Satellite observations

provide frequent global snapshots of the sea surface, for instance

Sea Surface Temperature and Chlorophyll concentration images

offer resolutions as fine as 1 km on a daily basis. In contrast, the

current capabilities of remote altimeters are limited to a 200 km

wavelength for the global ocean at mid-latitudes and about 130 km

for the Mediterranean Sea (Ballarotta et al., 2019), though

significant advancements are upcoming with the Surface Water

and Ocean Topography (SWOT) mission successfully launched in

December 2022 (Morrow et al., 2019). Notably, Sea Surface Height

(SSH) data are unaffected by cloud cover. Even with such

observations about the surface, the uncertainties regarding the

ocean interior remain significant due to the sparse distribution of

in-situ observations in time and space (Siegelman et al., 2019). As a

result, while data-assimilating models adhere to physical balances,

they still lack accuracy (Arcucci et al., 2021).

The ocean twin strategy proposes data-driven approaches as a

complementary method for revealing the ocean state. In previous

oceanographic studies, multivariate methods allowed to elaborate

three-dimensional hydrographic fields relying on their vast in-situ

measurements collected during ocean campaigns (Gomis et al.,

2001; Cutolo et al., 2022). However, these methods are not easily

scalable to a global observing system due to the big number of

parameters involved, such as correlation lengths. Machine learning

techniques offer a solution to these scalability issues, as the models

are directly learned from the data. A key challenge for these

techniques is the need for a substantial quantity of realistic

training data. General circulation and process study models could

then play a new role here, providing a cost-effective way to generate

large datasets that adhere to ocean physics in what is usally called a
Frontiers in Marine Science 02
Observing System Simulation Experiment (OSSE) (Arnold and

Dey, 1986). Even datasets that only approximate the true state of

the ocean can be valuable, as long as they cover a broad range of

scenarios. This aspect is particularly important to prevent the risk

of deep neural networks merely memorizing the input climatology

instead of learning to capture the actual dynamics of the ocean.

Training the networks on a wide range of scenarios ensures that

they can accurately interpret and adapt to situations that

substantially differ from the norm, rather than being limited to

recognizing repetitive patterns. Additionally, to effectively

generalize beyond their training data, neural networks must be

meticulously designed to maintain the integrity of relevant input

features throughout their layers. In this context, explainable AI aims

to advance beyond the black-box applications typical in ocean

remote sensing studies, promoting a deeper understanding of the

models data-flows (Zhu et al., 2017).

Despite these difficulties, recent studies have demonstrated the

potential of deep-learning methods for various dynamical system

tasks. These range from idealized situations (Fablet et al., 2021) to

realistic case studies, such as interpolating missing data in satellite-

derived observations of sea surface dynamics (Barth et al., 2020;

Fablet et al., 2020; Manucharyan et al., 2021). With regard to

reconstructing hydrographic profiles from satellite data, there’s a

spectrum of approaches: from proof-of-concept studies using self-

organizing maps (SOMs) and neural networks (Charantonis et al.

(2015); Gueye et al. (2014)) and feed-forward or long short-term

memory (LSTM) neural networks (Sammartino et al., 2020;

Contractor and Roughan, 2021; Fablet et al., 2021; Jiang et al.,

2021) as well as (Pauthenet et al., 2022) relying instead on

multilayer perceptron. Even considering these past works the

interpolation of temperature and salinity profiles given some in-

situ and sea surface information is an open challenge.

In this study, we introduce an innovative modular neural

network designed to seamlessly integrate remote-sensing images

with in-situ observations for a complete 3D reconstruction of the

ocean state. This integration is based on the Optimal Interpolation

(OI) scheme’s mathematical principles (Gandin, 1966). However,

our method differs from traditional applications of OI that usually

estimate correlations between points using Euclidean distance.

Instead, we calculate distances within a custom-designed latent

space. Specific modules within our neural network transform both

the input remote-sensing fields and the in-situ measurements

information into this latent space made of ‘clusters’. Within these

clusters, multi-variate and non-local correlations become more

easily identifiable and can be effectively applied to enhance the

correlation matrix. Like attention mechanisms in advanced neural

models (Vaswani et al., 2017), which focus on key aspects in large

datasets for tasks such as language processing or image recognition,

our neural network module similarly identifies crucial correlational

patterns through the latent space of clusters.

We privileged a network structure composed of independent

nested modules to facilitate the understanding and analysis of its

internal information flow from the input data to the covariance

structure. To the best of our knowledge, this is the first work in
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which neural networks achieve the most optimal combination of

remote-sensing and in-situ observations without previous

knowledge of the study area’s climatology. This study is

structured as follows: section 2 presents the main synthetic

dataset that we used for the training and testing and some real

observations for some preliminary use case scenario. All the details

regarding the network architecture can be found in section 3, while

the results are presented and discussed in section 4.
2 Data

Neural networks need large amounts of data to be trained

appropriately. A common choice in oceanography where such a

significant quantity of actual observations are unavailable is relying

on numerical models. In our case, we chased NATL60, a simulation

based on the Nucleus for European Modelling of the Ocean

described. We used the fields of this model to simulate both

remote-sensing and in-situ observations in a so-called Observing

System Simulation Experiment (OSSE) (Arnold and Dey, 1986).

The model output is sampled in these experiments to replicate the

different types of partial observations available. The advantage is

that we can quickly check the obtained improvements since the

model output also provides the ground truth we aim to reconstruct.

The danger of what is usually called “supervised learning” only

aiming to minimize the discrepancy with the provided ground truth

is that the network weights memorize the “right answers” so in our

context the model climatology. We faced this problem, including

two self-supervised terms in our loss function as we describe later

but also accurately selecting a highly varying training and test

dataset as presented here in subsection 2.1.

Finally, we proved the generalization capabilities of our

network, testing it with actual multi-platform observations. In

particular, we used the remote-sensing products of Sea Surface

Temperature (SST) and Chlorophyll-a concentration (CHL) from
Frontiers in Marine Science 03
CMEMS, together with temperature observations from gliders, as

described in subsection 2.2.
2.1 eNATL60 based OSSE

Our primary experiments utilized the eNATL60 configuration

of the Nucleus for the European Modelling of the Ocean (NEMO)

model (Gurvan et al., 2022), featuring a 1/60° horizontal resolution

and 300 vertical levels across the North Atlantic. This high-

resolution configuration is essential for understanding ocean

dynamics, particularly for surface oceanic motions down to 15

km, which aligns with SWOT observations (Ajayi et al. (2020)). We

direct readers to this work for a detailed understanding of

NATL60’s capabilities. Additionally, numerous studies have

employed the non-extended version of NATL60 for resolving

fine-scale dynamical processes (Amores et al., 2018; Fresnay et al.,

2018; Metref et al., 2019; Metref et al., 2020).

For our training and testing data, we utilized daily averages of Sea

Surface Temperature (SST) and Sea Surface Height (SSH), both

individually and combined, from the eNATL60 simulation spanning

an entire year. Alongside these, we gathered in-situ salinity

observations at three specific depths: 5 m, 75 m, and 150 m. Our

focus was then to reconstruct the 2D salinity fields at these depths. In

particular our analysis predominantly focused on the 5 m and 150 m

depths, selected to assess the robustness of our model both within and

beyond the mixed-layer depth. To ensure that our network’s training

and testing in-situ observations mirrored real oceanographic

conditions, we adopted two distinct sampling strategies: random

and regular. This approach allowed us to evaluate the network’s

performance in various realistic observational scenarios. The

random strategy selects N domain points based on a uniform

distribution, while the regular strategy uses a homogeneous grid

sampling with a fixed spacing of dx. By varying N and dx, we
conducted different experiments to observe metric variations.
FIGURE 1

Training area (A) and testing area (B) presented with the SWOT passages in the fast-sampling phase. The coordinates of the SWOT passages comes
from the simulated SWOT product from the MITgcm LLC4320 model (L2 LR SSH), available on the AVISO website: http://doi.org/10.24400/527896/
a01-2021.006.
frontiersin.org

http://doi.org/10.24400/527896/a01-2021.006
http://doi.org/10.24400/527896/a01-2021.006
https://doi.org/10.3389/fmars.2024.1151868
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cutolo et al. 10.3389/fmars.2024.1151868
Our focus was on two marine areas: the subpolar northwest

Atlantic for training, and the Western Mediterranean Sea for

testing. Both regions are notable for SWOT passages during its

rapid-sampling phase (see Figure 1). The Mediterranean region, in

particular, is known for its dynamic oceanographic characteristics

and has been extensively studied through in-situ and remote-

sensing methods (Ruiz et al., 2009). Using different regions for

training and testing helps prevent overfitting in the neural network.

Overfitting occurs when a model learns the specifics and noise in

the training data to an extent that interfere with the model’s

performance on new data. Since the climatology of the northwest

Atlantic differs significantly from that of the Western

Mediterranean Sea, we ensure that our network is not just

memorizing patterns from the training data but is effectively

learning to generalize across different oceanographic contexts.

Additionally, we diversified the dataset by sampling the same day

with varying N or dx values.

For simplicity, our approach assumes a synoptic scenario,

where all observations occur simultaneously. Future work will

address the non-synoptic nature of actual sampling and explore

how the network accommodates this. Furthermore, in this study, we

did not incorporate simulated noise or measurement errors into our

data, opting to explore these aspects in subsequent research. Despite

this, the practical effectiveness of our network is demonstrated

through tests using actual observational data, details of which are

provided in the following subsection.
2.2 Real observations

2.2.1 Remote-sensing observations
In our study, we have used Sea Surface Temperature (SST) and

Ocean Color (CHL) imagery from the 18th of February, 2022,

distributed by CMEMS. The CHL has 1 km spatial resolution, and it

is a level-3 product obtained by multi-Sensor processing from

OceanColor (Volpe et al., 2019). The SST also has a 1 km spatial

resolution and it is based on level-2 product based on multi-channel

sea surface temperature (SST) retrievals, which it has generated in

real-time from the Infrared Atmospheric Sounding Interferometer

(IASI) on the European Meteorological Operational-A (MetOp-

A) satellite.

2.2.2 Glider observations
Gliders are autonomous underwater vehicles that allow sustained

collection at high spatial resolution (1 km) and low costs compared to

conventional oceanographic methods. Many studies confirmed the

feasibility of using coastal and deep gliders to monitor the spatial and

low-frequency variability of the coastal ocean (Alvarez et al., 2007;

Heslop et al., 2012; Ruiz et al., 2019; Zarokanellos et al., 2022). In this

work we used the observations from two gliders in the Balearic Sea as

a part of the Calypso 2022 experiment. The two gliders carried out a

suite of sensors that measure temperature, conductivity and pressure

(CTD), dissolved oxygen (oxygen optode), Chlorophyll fluorescence

and Turbidity (FNLTU). The two gliders were programmed to profile

from the surface up to 700 m with a vertical speed of 0.18 ± 0.02 m/s
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and moved horizontally at approximately 20–24 km per/day. Data

were processed following the methodology described in Troupin et al.

(2015). In this study, we have used the temperature data at 15 m from

the 10th of February until the 18th of February.
3 Methods

When sparse observations are available, the most common

technique that has been adopted in oceanography and in different

fields of science using a gridded product is Optimal Interpolation

(OI) (Gandin, 1966). The technique relies on a solid mathematics

basis and has been the state-of-the-art approach for many

geophysical products until now. Since the proposed neural

approach and specifically our prior builds over the OI framework

we reviewed it in subsection 3.1. Then, we introduce CLOINet our

neural approach and its submodules in subsection 3.2. Lastly, we

present the metrics we used for bench-marking purposes.
3.1 Baseline: OINet

A common approach to explain the OI math start considering y

as the vector containing all the observations we have of the true state

x, which is unknown. We can relate them with the following

observation model Equation 1:

y = Hx + ϵ (1)

where H is the observation (or masking) operator, and ϵ is the

observation error. Under Gaussian hypotheses for ϵ and the prior

on x, we can obtain the best possible estimation of true state xs given

the observations y through a linear operator K (the Kalman gain see

Welch and Bishop (1995)):

xs = Ky (2)

K = BHT(HBHT + R)−1 (3)

where R is the observation error covariance matrix and B is the

error covariance specific of the analysis. In Equation 3, we are

assuming an a-priori knowledge of both R and B, which could be

theoretically obtained by repeating the same experiments many

times. Practically, a parameterized covariance matrix is often used

to substitute the complete climatology covariances Gaspari and

Cohn (1999). The most common parametrization for this matrix is

a Gaussian-shaped correlation, depending only on the points’

distances and pre-determined correlation lengths. So for two

generic position vectors ri and rj, we have:

Bi,j = cov(ri, rj)  = e
−o3

n=1

(ri,n − rj,n)
2

2c2n (4)

where the sum for dimension n considers the squared difference

of the components of the position vectors ri,n and rj,n divided by the

squared nth correlation length cn. Regarding the observation error

matrix, we assume from now on that it is diagonal Equation 5:
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Ri,j = Ii,jϵ (5)

A different case where the observation errors are correlated is

possible. However, R is often assumed diagonal to reduce

computational costs (Miyoshi and Kondo, 2013). Finally,

inserting B and R in Equation 3 and then in Equation 2 we can

compute our estimated field xs.

In our experiments, we established a baseline method with

OINet, a simple neural network, that automatically discover the

OI correlation lengths among different variables (SST, SSH, and

salinity) and dimensions. OINet is then provided with the same

input data as CLOINet, including surface fields (SST and/or SSH)

and in-situ salinity observations. It operates in a two-step

process: the first step involves transforming the multivariate

surface fields into a unified field, making it compatible for

being used with the salinity observations. The second step is to

estimate the three correlation lengths specific to the current set of

observations. While the first step involves 2 convolutional layers

the second one is a simple feed-forward neural networks able to

process a generic number of O observations (see the bottom part

of Figure 2).
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Beyond the parameter estimation this module is simply

realizing an OI using the formula in Equation 4 to calculate the

covariances. Notably this approach not only automates the tuning

of parameters but also leverages GPU power for more efficient

interpolation computations.
3.2 CLuster enhanced Optimal
Interpolation Network

Ocean dynamics often display non-local and anisotropic

patterns, which traditional Optimal Interpolation (OI) methods

struggle to account for effectively. The main challenge with OI lies

in its correlation function assumptions, which may not accurately

reflect the actual physical conditions of the ocean. For instance, as

seen in Equation 4 OI typically presumes that points in close

proximity are strongly correlated, while distant points are not.

However, oceanographic phenomena can exhibit the opposite

behavior. For example, ocean fronts, characterized by narrow

zones with strong horizontal density gradients, act as boundaries
FIGURE 2

Flow chart of CLOINet information processing: Red and green elements (boxes and arrows) represent the processing paths for the SST input surface
field and the in-situ salinity observations, respectively. Purple elements indicate the combined use of both inputs. The bold text along the arrows
specifies the network module in operation. The line style and width of each box vary to represent different processing stages, ranging from thin and
dashed for inputs to solid and thick for outputs. Inside each box, capital letters denote the corresponding tensor dimensions: W for field width, H for
field height, S for the number of input surface fields, P for the number of OINet priors, C for the number of clusters (consistent across all modules in
our tests), D for the number of depths, and O for the number of in-situ observations. Colorbars are omitted for clarity. The lower part of the image
illustrates the CNN architecture of the three modules, along with the number of parameters used.
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between water masses with distinct physical and bio-optical

properties. Conversely, in dynamic ocean features like meanders

and eddies, water masses can remain similar over vast distances.

Here, we aim to benefit from the wealth of information from

remote sensing regarding the shape of the ocean features, whether

they belong to the mesoscale or the submesoscale. The key idea is

grouping a set of objects in such a way that each object is more

similar to the objects belonging to its same group (called a cluster)

than the rest. This procedure in statistics is called clustering.

Applying this concept to reconstructing the ocean state, our

approach is to reveal non-local correlations by clustering grid

points that are part of the same oceanic features. This led us to

develop CLOINet (Cluster-enhanced Optimal Interpolation Net),

an end-to-end system designed to optimally interpolate sparse in-

situ observations using available remote-sensing images. CLOINet

is able to process any kind of surface fields (2D images) and in-situ

observations (2D masks and observation values). Its main

submodule is CLuNet, which transforms 2D fields into fuzzy

clusters. While satellite images could directly been passed to this

module in-situ observation profiles are initially processed by OINet,

which serves as a prior, converting them into images. Finally a

further submodule, RefiNet, module merges the fuzzy clusters from

both surface fields and observation priors into a final cluster set.

Within this latent cluster space an alternative distance could replace

the euclidean distance allowing a better estimation of B and

consequently obtains the reconstructed field xs.

Our network structure allows a joint training of all modules,

minimizing their specific loss function terms summed up in a global

loss function. Convolutional Neural Networks (CNN) layers. Here

following, we describe the details of the network submodules and

how we obtained the interpolation in an end-to-end scheme also

summarized in Figure 2).
3.2.1 Clusters space transformation: CluNet
The first module of our scheme, called CluNet is in charge of

transform any images into a set of clusters. Piratically speaking it

segments the input 2D images (like multivariate remote-sensing fields

or the observations priors) into C clusters of similar points. In this

context, we consider two points similar according to their positions (as

in Equation 4) but also their values in the input 2D fields. In particular,

we worked within the so-called “fuzzy logic”, where the membership

function mjk, which expresses how much the j point belongs to the k

cluster, could assume every value between 0 and 1. Considering this

continuous range means that each grid point could be part of more

than one cluster as long as the following normalization holds:

o
C

k=1

mjk = 1     ∀j (6)

For its non-binary logic, this clustering technique is called

“Fuzzy Clustering” or soft k-means. being this last the simpler

binary case in which mjk could be just 1 or 0. CluNet takes the

remote-sensing images as input and gives the tensor composed by

all the mjk through various CNN and finally a softmax layer to

guarantee Equation 6. The associated training loss, referred to as a
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Robust fuzzy C-means (Chen et al., 2021) loss, is composed of two

terms:

LRFCM(y;  q) 

= o
j∈Ω

o
C

  k=1

mq
jk(y; q) yj  −  vk

�� ��2+ b  o
j∈Ω

o
C

  k=1

mq
jk(y; q)  o

l∈Njm∈Mk

o
lm

mq
lm(y;

(7)

y is the vector containing the surface field that we want to

cluster with yj its value at point j in our domain Ω. q is a parameter

that satisfies q ≥ 1 and controls the amount of fuzzy overlap between

clusters. Minimizing the first term achieves that points with high

membership function for the k cluster should be similar to its center

vk defined as follows Equation 8:

vk =
oj∈Wm

q
jk(y; q)yj

oj∈Wm
q
jk(y; q)

(8)

The second term guarantees the membership function’s spatial

smoothness, forcing the j point to have a similar value to its

neighborhood Nj. The parameter b controls the intensity of

this constraint.

In summary, to obtain the clustering, we minimize Equation 7

with respect to the parameters of the CNN layers included in

CluNet, which stand in the q vector. Since in this loss term, we do

not directly provide any ground truth (i.e., the best way of

clustering the inputs), this part of the network could be

considered self-supervised since it learns indirectly from the rest

of the loss term. As it show in Figure 2 we used this module twice,

firstly for clustering surface input fields and secondly for

clustering the 2D fields coming from the observations priors

described hereafter. Consequently in the global loss there are

two terms like Equation 7.

3.2.2 Observations priors
We have outlined the process by which CluNet segments any

set of 2D fields into distinct clusters. To handle in-situ

observations, which are essentially vectors of observations at

different depths, we utilize OINet to convert them into a series

of images that can then be clustered. As previously mentioned,

OINet has the capability to autonomously determine the

appropriate correlation lengths for a given set of observations

and then perform a canonical Optimal Interpolation (OI). In our

approach, we generate four different versions of these

interpolations, each initiated with correlation lengths that are

submultiples of the domain sizes. These parameters, among

others, are then fine-tuned during the learning phase. This

process results in four fields that CluNet subsequently clusters

into areas exhibiting similar values, despite being derived using

different correlation lengths. The clusters formed from these

observations provide insights into the certainty we have about

specific regions and the extent to which a particular depth is

influenced by surface conditions. Essentially, this method allows

us to address potential anisotropy in the uncertainties without

having to rely on fixed length scales.
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3.2.3 Data fusion in the clusters space: RefiNet
We now have a set of clusters derived from the surface fields,

and an additional set for each depth of the in-situ observations. For

each depth, the corresponding sets of surface and observation

clusters are processed through RefiNet. The resulting clusters,

along with their membership vectors, are used to compute the

covariance matrix as follows Equation 9:

Bi,j = cov(ri, rj) = 1 −o
C

k=1

(m0
ik −m0

jk)
2 (9)

In this equation, we sum the differences in the membership

functions of points ii and jj across all clusters. This process, while

bearing similarities to Equation 4 deviates by using subtraction

instead of an exponential function since mik and mjk are already

bounded within the 0-1 range. This summation represents a non-

local distance in the cluster space, replacing the classical Euclidean

distance. Consequently, two points within the same cluster (i.e.,

with similar membership vectors) will be correlated, regardless of

their spatial distance.

Using parametrization (9), we then compute the associated

optimal interpolation as Equation 3 and then Equation 2. This

forms an end-to-end architecture that uses remote sensing images

and in-situ data to output regularly-gridded vertical profiles (see

Figure 2 for the data flow).

The training loss combines three components: two clustering-

based losses Equation 7 (one for the surface fields and one for the

observations priors) and a supervised reconstruction term. So

globally we minimize Equation 10:

L = aLsrfRFCM + bLobs RFCM + gLMSE (10)

where a, b and g are the weights of the three loss terms, and

LMSEis given by Equation 11:

LMSE = (xs − x)2 (11)

This last term is just the mean squared error with respect to the

ground truth x. Within the considered supervised training strategy,

self-supervised losses Equation 7 act as regularization terms to

improve generalization performance and explainability. We

maintain equal weights of a, b, and g at 1, as no significant

differences were observed with other values. Our network also

shows relative insensitivity to other hyperparameters, such as the

number of clusters. However, our cross-validation tests indicated

that setting this number to 20 yielded the best results.
3.3 Performance metrics

To understand how the clusters sets were changing according to

the input data we computed the associated entropy fields. In fact,

given that the membership vector is normalized and thus it can be

seen as a distribution, its entropy definition is Equation 12:

Si =   −o
C

k=1

m0
ik   log m

0
ik (12)
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To assess the performance of the proposed approach, we first

define the error between the ground truth and the estimated field

value Equation 13:

xerr =  x − xs (13)

then we easily obtain our first performance metric: the Root

Mean Squared Error (RMSE) Equation 14:

RMSE =
ffiffiffiffiffiffiffi
x2err

p
(14)

We will present this metric in percentage of the standard deviation

of the ground truth fields. Now considering the standard deviation of

the error over the whole N snapshot Equation 15:

serr =
oN

t=1 xerr(t) − xerr(t)
� �2

N
(15)

we can compute the explained variance score dividing by the

standard deviation of the ground truth Equation 16.

sS(x, y) = 1 −
serr

strue
(16)

To highlight the effective resolution of the different

reconstruction methods we use the noise-to-signal ratio NSR

(Ballarotta et al., 2019) Equation 17:

NSR(l) =
PSD(xerr , l)
PSD(x, l)

(17)

the effective resolution is in fact given by the wavelength ls
where the NSR ls is 0.5.
4 Results and discussion

This section first reports numerical experiments using NATL60

OSSEs to evaluate the proposed approach quantitatively. The

concluding subsection presents an application to real observations.
4.1 Clusters entropy

The initial part of our analysis focuses on understanding how

CLOINet, via CluNet and subsequently RefiNet, organizes clusters

based on different data inputs: SST, SSH, and various sets of

randomly located in-situ salinity observations. To illustrate this,

we plotted some example entropy fields in Figure 3 along with

statistics on how entropy changes with an increasing number of

observations N. In the four panels on the left side of Figure 3 we

display two clusters’ entropy fields (panels a and e) and their

corresponding input fields for SSH (panel b) and SST (panel f)

from a selected snapshot. In the four panels on the right side, we

present the entropy associated with the in-situ observations’ clusters

at two different depths z = 5 (panel c) and z = 150m (panel g)

together with the correspondent refined clusters entropy (panel d

and h) along with the refined clusters’ entropy (panels d and h).

This particular snapshot was chosen for its submesoscale

features. The differences between SSH and SST-based entropy are
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noticeable; the SSH clusters highlight more prominent features,

while SST forms smaller clusters that extend to deeper depths. The

correspondence between the surface fields and their cluster entropy

is relatively straightforward, but differences in other sets are more

subtle. For observation clusters’ entropy, we observe lower entropy

(blue regions) near points with similar observations. Areas of higher

entropy occur between two observation points with differing values.

This behavior varies at different depths, explaining the differences

between panels c and d. The refined clusters, influenced by both

observations and surface fields, exhibit subtler changes, but we can

still see an increase in entropy with depth, particularly noticeable in

the northeast region of panels d and h.

Beyond this specific snapshot, panel i shows the percentage

change in entropy between the two depths, averaged across the

entire test dataset as a function of the number of observations.

When only SST data is available, the changes in clusters are more

pronounced, as SST information is less directly related to the

ocean’s interior compared to SSH or combined SST and SSH

data. As expected, all deltas increase with the number of

observations, eventually reaching a saturation point where they

decrease. This occurs because the clusters’ information becomes less

critical, and the field can be reconstructed relying primarily on in-

situ observations.
4.2 RMSE and correlation

WWe present the outcomes of the random sampling OSSE in

Figure 4. The first two rows illustrate a ground truth salinity

example at two different depths, alongside the reconstructions by

the baseline OINet and CLOINet with various surface input fields.

Again, we chose the same snapshot from Figure 3 for its distinct

submesoscale features.
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OINet can effect ively use surface information for

reconstructing the surface layer, but it struggles to propagate

this information to deeper layers. We also experimented forcing

a bigger correlation length in the z axis but we ended up with a

reversed scenario: a well-reconstructed bottom layer but a poorly

reconstructed (not shown). This limitation arises because the

simple network cannot determine which surface fields to

prioritize based on the in-situ observations.

In the case of CLOINet, we observe different results based on

the input fields provided. SST leads to better surface

interpolations, while SSH is more effective for deeper fields.

This outcome aligns with our expectations, as SSH data is

depth-integrated and thus more informative than SST for

understanding the shape of water masses at depth. Notably,

when both SST and SSH are used as inputs, the network

effectively leverages their shape information to enhance both

surface and interior reconstructions, leading to a reduction in

RMSE by about 40% at both depths.

The results across the entire testing set show similar patterns.

On panel l (m) we show how for all methods, the RMSE

(correlation) decreases (increases) in proportion to the number of

observations. In these plots, solid lines represent surface salinity

fields, while dashed lines indicate interior fields at z = 150m.

Interestingly, on average, OINet’s performance is comparable to

CLOINet’s for surface reconstructions but falls short for interior

reconstructions. This fact is mostly related with presence or not of

submesoscale features as the next subsection analysis will show. The

variation in CLOINet’s surface inputs shows minimal impact on

surface results, with only slight improvements observed in the SST

+SSH case. However, the introduction of the SSH field significantly

enhances the interior field reconstructions. Once again, this

confirms that SSH provides more comprehensive information

about the entire water column compared to SST.
FIGURE 3

The entropy of the cluster sets, resulting from the input SSH and SST, is depicted in panels a and e, respectively, while the corresponding fields
themselves are shown in panels b and f. Panels c and d (and g and h) display the entropy of the observation and refined cluster sets at a depth of Z =
5 m and Z = 150 m, respectively. The dots in these panels represent salinity observations at these depths, with their colors indicating the magnitude
of salinity (scale not shown). Panel i illustrates the variation in the entropy of the refined cluster sets along the vertical axis, corresponding to different
numbers of observations. The varying colors in this panel represent different networks.
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FIGURE 4

Example of salinity field interpolation at Z = 5m (first row, panels A, C, E, G, I) and Z = 150m (second row, panels B, D, F, H, I) with ten random
observations. The first column shows the ground truth, and the subsequent columns represent various interpolation methods. The two bottom plots
display the RMSE (panel L) and correlation coefficient (panel M) as functions of the number of observations in a random sampling scenario, averaged
across the entire test dataset. In these plots, the solid line corresponds to Z = 5m, while the dashed line represents Z = 150m.
FIGURE 5

This figure shows the explained variance for various interpolation methods averaged across the entire test dataset, in a scenario with regular
sampling at 45 km intervals. Panels (A-D) display the results at Z = 5m for OI, CLOINet-SST, CLOINet-SSH, and CLOINet-SST+SSH, respectively,
panels (E-H) are instead relative to Z = 150m. Black dots mark the locations of in-situ observations while the spatial average value for each method
is indicated on the corresponding subplot. Panel (I) compares the Power Spectral Density (PSD) of the different reconstruction methods with the
ground truth, with each color representing a different method. Panel (L) shows the corresponding score, where the colors denote different sampling
resolutions. In both panels (I, L), solid lines represent surface fields, while dashed lines correspond to fields at a depth of z = 150m. The red line
across panel (L) marks the 0.5 threshold value, indicating the effective resolution of the interpolation methods.
Frontiers in Marine Science frontiersin.org09

https://doi.org/10.3389/fmars.2024.1151868
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cutolo et al. 10.3389/fmars.2024.1151868
4.3 Resolved scales

In Figure 5, we present the results of the OSSE conducted with

regular grid sampling, varying the spacing between observations to

understand how different methods resolve various spatial scales.

Specifically, we examined the impact of sampling resolution on the

explained variance and the Power Spectral Density (PSD)-based

score. The explained variance for the different reconstruction

methods at a sampling resolution of 20 km is shown in panels a,

c, e, and g (and panels b, d, f, and h for the interior field). When

provided with the same inputs as OINet (SST and SSH), CLOINet

slightly surpasses it on the surface and by about 20% in the interior.

Again, we observe superior performance from CLOINet-SSH in the

interior, while the inferior performance of the network relying

solely on SST suggests that, on average, this field does not

significantly account for salinity variability.

The PSD-based score, shown in panel l, indicates the effective

resolution of the reconstruction (the point at which the score falls

below 0.5) demonstrating how CLOINet generally resolves smaller

scales than OINet across various sampling resolutions. For higher

resolutions, such as 5 and 12 km, CLOINet resolves scales

approximately 1.5 times larger than OINet. The training set’s

averaged spectra, depicted in panel i, reveal that OINet is

typically limited to reconstructing larger scales. Indirectly, this
Frontiers in Marine Science 10
suggests that the variability explained in the test region is

predominantly due to larger scales, which even OINet can

adequately account for.
4.4 Real ocean data preliminary tests

In line with many deep learning studies, our research focuses on

applying neural networks, initially trained on synthetic data, to real-

world observations. We evaluated CLOINet’s effectiveness in

improving Sea Surface Temperature (SST) estimates using glider

surface temperature observations, enhanced with shape

information from a Chlorophyll (CHL) snapshot (refer to

Figure 6). Both OINet and CLOINet were able to reconstruct the

general SST pattern observed in reality. CLOINet demonstrated a

slightly superior performance, as evidenced by higher correlation

values. This improvement aligns with our qualitative observations,

suggesting that CLOINet more accurately preserves submesoscale

features. Notably, this achievement was realized without the

networks being specifically trained on CHL data. In these

preliminary tests, the CHL data was provided as if it were the

SST and SSH fields, demonstrating the networks’ versatility in

utilizing shape information from various types of variables.

Achieving similar levels of accuracy with traditional Optimal
FIGURE 6

The top panel displays the Chlorophyll-a (CHL-a) concentration in the Western Mediterranean Sea on February 18, 2022. The dots represent
temperature observations from two gliders over the preceding 48 hours, while the red box outlines the area where interpolation was performed. The
bottom panels, labeled a, b, and c, show the actual Sea Surface Temperature (SST) this same day and the reconstructed SST using CLOINet and
OINet, respectively. The correlation values for each reconstruction method are indicated in the corresponding plots.
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Interpolation (OI) methods would be more complex, likely

necessitating intricate, predefined multi-variate correlation

functions and extensive parameter tuning.
5 Conclusion

In this, we presented CLOINet, a comprehensive end-to-end

neural network designed to combine sparse in-situ observations

into a full 3D field leveraging shape information from kind of ocean

remote sensing images. We conducted end-to-end training of

CLOINet within a supervised framework, using Observing System

Simulation Experiments (OSSEs) based on the NEMO-derived

NATL60 simulation. Our study focuses on comparing the

reconstruction of 3D salinity capabilities of CLOINet with those

of a data-driven version of classical Optimal Interpolation, which

we have named OINet. This comparison also extends to

applications involving real observational data.

Our research covered various scenarios, including both

randomly and regularly spaced in-situ salinity observations,

paired with different remote sensing inputs such as Sea Surface

Temperature (SST), Sea Surface Height (SSH), or a combination of

both. Upon creating a 3D salinity field, we thoroughly analyzed how

our performance metrics responded to variations in the number

and density of in-situ observations.

In dense regular sampling we showed how CLOINet was able to

resolve scales 1.5 smaller scales compared to OINet while in random

sampling contexts, CLOINet showed enhanced performance in

terms of both RMSE and correlation, especially notable when

limited observations were available. This improvement was

significant in scenarios involving in-depth fields and areas rich in

submesoscale features, where RMSE improvements reached as high

as 40%.

Despite not incorporating simulated errors to mimic actual

sampling instruments, the promising results with real data highlight

the potential of our approach in operational contexts. In fact,

CLOINet adeptly handled noisy CHL fields and gliders in-situ

temperature and successfully reconstructed the general pattern of

an unseen SST field, without specific training for this task. These

outcomes also demonstrate that, apart from reconstructing salinity,

the process of transforming input data into a latent space composed

of clusters enables comprehensive multi-variate analysis.

Our training approach, which combined two self-supervised

losses with a supervised reconstruction loss, enabled the network to

generalize effectively. This was evident as it performed accurately in

the Western Mediterranean test area, distinctly different from the

North Atlantic training region. This suggests that our method is not

limited by specific regional climatology and could potentially be

scaled for global application.

Overall, the modular design of CLOINet not only enhances

our understanding of its internal processes but also positions it

for future enhancements. One promising direction for
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subsequent research is extending the model to incorporate

space-time dynamics. Another intriguing possibility is

employing this neural network approach for guiding an

adaptive sampling multi-platform ocean campaign. Given the

significant role of SSH data in assessing the reconstruction of

the deeper water layers, the upcoming high-resolution SSH

observations from SWOT present an exciting opportunity for

further refining and applying CLOINet.
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