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Kenya is committed to the global efforts on climate change mitigation and

adaptation as seen through investments in various sustainable green and blue

economy projects. In this review paper, we present the current status of what has

been done, particularly on the blue carbon offset initiatives undertaken in the

mangrove and seaweed ecosystems as well as the decarbonization activities at

the port of Mombasa and which should form reference information for local,

regional, bilateral/multilateral partners, scientists and other climate change

stakeholders. The blue carbon offset projects involve mangrove conservation,

reforestation and carbon credit sale as well as seaweed farming. The initiatives

have several unique features amongst which are the community-led income

generation systems that simultaneously act as an inducement for ecosystem

preservation, co-management and benefits sharing which are recipes for

economic, socio-cultural, and environmental sustainability. A notable project

impact is the conferment of economic power to the locals, particularly the

women and the youth The model used embraces a collaborative approach

involving multisectoral engagements of both the government, multilateral

organizations, NGOs, and local communities. This integrated top-down

(government) and bottom-up (local community) method deliberately targets

the strengthening of economic development while ensuring sustainability.
KEYWORDS

sustainability, mangroves, seaweeds, decarbonization, carbon credit
1 Introduction

Global warming and the attendant climate change are worldwide challenges that are

mainly driven by emission of greenhouse gases (GHG) particularly the carbon dioxide

(CO2) (IPCC, 2022). GHG emissions keep on increasing due to unsustainable use of

resources particularly energy, land use and land-use changes (IPCC, 2022). Other causes

include lifestyles, consumption patterns, and methods of production within regions,
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countries and amongst individuals (IPCC, 2022). The incessant

increase in CO2 emissions is a major threat to a sustainable

environment as it is raising the temperatures and increasing

weather anomalies in every region across the globe with

heatwaves, floods, droughts and tropical cyclones a common

occurrence (Clarke et al., 2022). Since the environment is a finite

resource central to the survival of our planet and humanity,

achieving environmental sustainability has become another

international challenge in addition to climate change and its

effects. As has been observed that carbon dioxide emissions are

produced chiefly by the burning of fossil fuels, energy consumption

is therefore considered a principal driver of climate change (Xue

et al., 2021). Consequently, environmental sustainability therefore

requires making a gradual transition from use of non-renewable

energy sources (in the form of fossil fuel) to sustainable and low-

carbon energy sources such as wind, geothermal, solar, and hydro

energy (IRENA, 2020).

Although Africa is one of the lowest contributors (less than 10

percent) to global GHG emissions, its limited adaptation ability

renders it one of the most susceptible continents to the effects of

climate change (Wang and Dong, 2019; Bouchene et al., 2021;

Trisos et al., 2022; Yang et al., 2022). It is worth mentioning that

climate change and associated threats have a massive impact on the

continent largely due to environmental and public health related

challenges such as poverty, poor planning, disease burdens,

illiteracy and corruption. Both Yameogo et al. (2021) and Aleman

et al. (2017) further suggest that the weak policy environment

around sustainable use of resources in the continent is another

contributor to the continual increase in global warming and climate

change. Indeed, global warming and the changing climate is already

severely affecting key development sectors and infrastructure and

impacting the social fabrics and livelihoods of millions of African

families (Adekunle, 2021).

As is the case in most African countries, Kenya’s economy relies

heavily on natural resource-related sectors which are extremely

susceptible to climate change and variability (Government of Kenya

(GoK), 2016). To address these vulnerabilities, the government,

through various mitigation, adaptation, and resilience-building

measures is promoting investment in sustainable resource efficient

green development initiatives that use renewable energy while

reducing GHG emissions (Government of Kenya (GoK), 2016).

One such project is the Lake Turkana Wind Power Project, a wind

farm which generates 310 MW of clean energy. Another project is

the Olkaria Geothermal Development Company project generating

over 500MW of clean energy from geothermal sources and which

makes Kenya a pioneer in geothermal energy exploitation. As a

consequence, in terms of climate change mitigation, up to 90% of

Kenya’s energy generation is now from renewable sources (40%

geothermal, 35% hydro-generated, 13% wind power and 2% solar).

Furthermore, the country has embraced the M-Kopa Solar project

which is providing affordable solar power to households all over

Kenya thus helping reduce reliance on use of kerosene.

Like most countries participating in the REDD+ program,

Kenya has developed a National REDD+ Strategy as required by

the Cancun Agreement to UNFCCC (Government of Kenya (GoK),

2021; UN-REDD+, 2018) and implemented the “Greening Kenya
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Initiative” geared towards expanding the country’s forest cover to

total 10% of its land areas. This project has seen the planting of

millions of trees, which help to mitigate the effect of climate change

by absorbing atmospheric carbon dioxide as well as promoting

biodiversity. More recently, the country commenced the Kenya

Climate-Smart Agriculture program which promotes sustainable

farming practices that increase productivity, ensures food security

and sustainable livelihoods while reducing GHG emissions and

building resilience to climate change risks.

Kenya’s commitment to the pursuit of sustainable natural

resource exploitation is further evidenced by signing and ratifying

key multilateral environmental conventions, treaties, and

agreements including United Nations Framework Convention on

Climate Change (UNFCCC), the Kyoto Protocol, and Paris

Agreement. Furthermore, to demonstrate leadership in climate

action, the country has enacted several climate-specific policies

including; National Climate Change Strategy (2010), Climate

Change Act (2016), Climate Finance Policy (2018), National

Climate Change Action Plan 2018-2022 (which is a 5-year rolling

plan), and National Adaptation Plan (2015-2030) which guides the

climate actions of the National and County governments and other

stakeholders. Others include; Energy Act 2012, Environmental

Management and Coordination (Amendment) Act 2015, Green

Economy Strategy Implementation Plan (GESIP) (2016-2030), and

Vision 2030.

Kenya firmly believes that Blue Economy (BE) is an integration

of green growth and sustainable development and essentially to

promote social,economic, and community development

(Government of Kenya (GoK), 2023) Taking cognizance of the

BE potential for employment creation, alleviation of poverty,

nutrition and food security, and its role as an economic driver

(OECD, 2016; World Bank and United Nations, 2017; UN Habitat,

2018; United Nations Development Program (UNDP), 2018;

Taillardat et al., 2018; AU-IBAR, 2019; Childs and Hicks, 2019;

Intergovernmental Authority on Development (IGAD), 2020), the

Government of Kenya (GoK) has made BE one of the key sectors to

be prioritized in order to achieve the country’s long-term

development blue print; the Kenya Vision 2030 (AU-IBAR, 2019;

Rasowo et al., 2020). Recognizing the multiple ecosystem services

provided by mangroves and associated blue carbon ecosystems,

Kenya included blue economy (BE) climate commitments to the

earlier land-focused (green economy) interventions in her updated

Nationally Determined Contributions (NDCs) and subsequently

increased the target of abating its carbon emissions from 30 percent

to 32 percent by 2030 (Government of Kenya (GoK), 2017a; GoK,

2020). In 2023, the country’s National Blue Economy Strategy 2023-

2027 was formulated and aligned to the BE Strategies of the African

Union (AU) and Intergovernmental Authority on Development

(IGAD), (AU-IBAR, 2019; Government of Kenya (GoK), 2023).

In the past five years, Kenya has taken a global leadership role

by spearheading various high-profile BE engagements. The country,

in 2018, co-hosted with Canada and Japan, the first “Sustainable

Blue Economy Conference”. Again, in collaboration with Portugal,

Kenya co-hosted the 2022 UN Ocean Conference (UNOC) in

Lisbon, Portugal. UNOC came up with the “Lisbon Declaration”

which reaffirmed the support to the achievement of Sustainable
frontiersin.org
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Development Goal 14 (referred to as Life below water), the Paris

Agreement, and the implementation of UN Decade for Ocean

Science (2020-2030). Furthermore, Kenya is currently the

champion for the sustainable blue economy sector in the

Commonwealth Blue Charter (Commonwealth Blue Charter,

2021). Meanwhile, Kenya is a key partner in the 14-member

states of the High-Level Panel for a Sustainable Ocean Economy

(referred to as The Ocean Panel), a panel which functions as a global

pillar for sustainable BE undertakings. In December 2020, Kenya

together with other members of the High-Level Panel, pledged to

sustainably control 100% of the ocean area under their national

jurisdiction by 2025. Furthermore, the GoK has pledged to create a

network of Marine Protected Areas (MPAs) encompassing 30% of

its Exclusive Economic Zone by 2030.

In this review, we discuss the blue carbon projects being

undertaken in the mangrove and seaweed ecosystems and the

decarbonization initiatives at the port of Mombasa. We report on

carbon offset projects that are integrating mangrove conservation

and reforestation while incorporating the sale of carbon credit in the

form of payment for ecosystem services. Notably, the seaweed

farming is mainly for production of seaweed for food and for sale

as a source of income. These two nature-based initiatives balance

community livelihood improvement with conservation and are

proof that environmental conservation and economic

development can be achieved concurrently if well planned.
2 Carbon offset projects in the
mangrove ecosystem

2.1 Overview of mangrove functions
and uses

Mangroves are amongst the utmost productive ecosystems on

planet earth and provide a myriad of valuable goods and ecosystem

services to humanity and nature. These include; regulating (e.g.

controlling floods, storms and erosion; stopping intrusion of salt

water); habitat (e.g. habitat for spawning, breeding and nursery for

various marine organisms, refuge for mammals, birds);

provisioning (e.g. fruits, charcoal, timber, and fish); cultural

services (e.g. sport, aesthetic), and global climate regulation

through sequestering carbon dioxide (Lee et al., 2014; Alongi,

2020; Das, 2020; Menéndez et al., 2020; zu Ermgassen et al., 2020;

Adame et al., 2021; Afonso et al., 2021; Macreadie et al., 2021;

Quirost et al., 2021).

Together with saltmarsh, coral reefs, seaweed, and seagrass

ecosystems, mangrove forests have been termed “blue carbon”

ecosystems since they can store organic carbon (C) for a long

period making them major contributors to marine C burial

(Nellemann et al., 2009; Mcleod et al., 2011; Duarte et al., 2013;

Macreadie et al., 2019; Jennerjah, 2020; Wang et al., 2020).

Mangroves are of special interest since they amass and sequester

relatively higher quantities of C than the other ecosystem types

(Ezcurra et al., 2016; Atwood et al., 2017; Kauffman and Bhomia,

2017; Adame et al., 2018; Zeng et al., 2021; Chatting et al., 2022).
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According to evidences adduced from several studies, the high

productivity combined with slow rates of decomposition in the soil

significantly improves mangroves’ capacity to capture and

eventually store organic carbon, especially in the soils (Bouillon

et al., 2008; Alongi, 2012; Suello et al., 2022). Estimates by Atwood

et al. (2017) indicate that organic carbon stowed in mangrove

sediments up to a depth of 1 m, globally equates to 2.6 billion Mg

of C. Furthermore, above-ground net primary productivity reported

for mangroves (8.1 t DW ha−1 yr−1) match the records from highly

productive tropical forests on land (11.1 t DW ha−1 yr−1) (Alongi,

2012; Cooray et al., 2021). Research on carbon stocks in the Kenya

mangroves report an estimated range of 500-1000 t C ha-1 which is

ten times higher than the average carbon content of terrestrial

forests in the country (Huxham et al., 2015). Indeed, it is

noteworthy that whilst covering only ca. 2 per cent of the world

ocean, mangroves effectively account for over 10 per cent of the

global carbon sequestration by the world’s oceans (Alongi, 2014).

World-wide, mangroves are faced with a myriad of threats

particularly from organic and inorganic pollution, wanton

deforestation, and sea-level rise with the leading drivers causing

these threats being the rapid population growth, climate change,

and infrastructural developments in coastal areas (Barbier et al.,

2011; Giri et al., 2011). Mangrove conservation and restoration

efforts including innovating financing instruments should be

speeded up to save these natural blue carbon ecosystems and to

ensure that the critical function of provision of goods and services

are not destroyed (Laffoley and Grimsditch, 2009; UN Environment

(UNEP), 2018).
2.2 Projects in the Kenya
mangrove ecosystem

Mangroves occur throughout the coastal Kenya region starting

from the north in Kiunga in the Kenya-Somalia border and up to

Vanga at the Kenya-Tanzania boundary to the south (Figure 1). The

forest inventory show that the mangrove forest area cover about

61,271 ha, 62% of which is found in Lamu County (Figure 2) (GoK,

2017b), and that all the nine species of mangrove recorded to occur

in the region of the Western Indian Ocean are also found in Kenya

namely: grey mangrove (Avicennia marina), oriental mangrove

(Bruguiera gymnorhiza), tagal mangrove (Ceriops tagal), black

mangrove (Lumnitzera racemosa), red mangrove (Rhizophora

mucronata), apple mangrove (Sonneratia alba), cannonball

mangrove (Xylocarpus granatum and Xylocarpus molucensus) and

Heritiera littoralis. Unfortunately, the mangroves have experienced

loss and degradation with the National Mangrove Ecosystem

Management Plan estimating a loss of 40% of the mangroves

occurring between 1990 and 2010 (FAO, 2016; GoK, 2017b; Kairo

et al., 2021). However, Kirui et al. (2013) reported an annual net

mangrove cover loss of 0.7% between 1985 and 2000 with the loss

rate dropping to 0.28% between 2000 and 2010. Hamza et al. (2022)

estimated a mangrove cover loss of 0.15% per year between 2010

and 2016 indicating a trend of gradual reduction in loss of forest

cover (Gitau et al., 2023).
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To further counter the mangrove forest loss and degradation,

Kenya has launched several projects in the mangroves aimed at

protecting and restoring mangrove forests through avoided

deforestation and establishment of new mangrove plantations.

Some of the projects have added the aspect of payment for

ecosystem services (PES) aimed at providing long-term incentives

for restoration and protection of the mangroves through selling blue

carbon credits (Locatelli et al., 2014; Huxham et al., 2015).

Additionally, the projects encompass establishing community-

managed conservation zones and promoting alternative

livelihoods such as ecotourism and crab farming. Appreciating

the high demand for poles for building and fuelwood and in

order to mitigate carbon leakage, the projects support the

planting of fast-growing trees, mainly Casuarina spp (Casuarina

equisetifolia), to create a maintainable supply of timber for

construction, wood for fuel and income from their sale; thus,
Frontiers in Marine Science 04
removing pressure from the mangroves. Here we report on three

of such initiatives namely; the Mikoko Pamoja Project, the Vanga

Blue Forest Project, and the Lamu Marine Conservation Trust

Mangrove Project.

Mikoko Pamoja Project (MKP) is a community-based initiative

located in Gazi Bay (Figure 1), some 50 km south of Mombasa in

Kwale County. Gazi Bay has a total cover of 615 ha of natural

mangrove forest. The forest has suffered major degradation in most

areas while in some places total destruction has been recorded due

primarily to its proximity to Mombasa city, which offers a quick

market to sell mangrove timber (Dahdouh-Guebas et al., 2004;

Kirui et al., 2013; Rideout et al., 2013; Musyoka, 2015; GoK, 2017a,

b; Omondi, 2017; Plan Vivo Project Design Document (PDD),

2020). The project aims to reduce GHG emissions through

protecting and restoring the mangrove forests in the Gazi Bay

area. Since its inception in 2012, the project has conserved as well as
FIGURE 1

Mangrove restoration and conservation and Seaweed farming project sites in Gazi, Vanga, and Lamu (Adapted from Morara et al., 2015).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1239862
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Rasowo et al. 10.3389/fmars.2024.1239862
planted over 117 hectares of mangroves with about 10 hectares out

of the 117 ha being newly planted mangrove trees. The MKP is

accredited, as per regulatory requirements, by the Plan Vivo System

and Standard to trade up to 3000t CO2 for an initial 20-year period.

The carbon credits generated by MKP are marketed and sold on the

international voluntary carbon market through the Association for

Coastal Ecosystem Services (ACES), a charity registered in Scotland

(https://aces-org.co.uk/our-projects/). Benefits from the sale are

ploughed back into the community to support various

community projects including various small and medium

enterprise that meet the needs of the Gazi community (Huff and

Tonui, 2017; Murungi, 2017; Kairo et al., 2019; Vanga Blue Forest

Project Design Document (PDD), 2019).

The Vanga Blue Project (VBF) launched in 2019 as a result of

the huge success of MKP, is also located in the south coast of Kenya

(Figure 1), approximately 110 km from Mombasa city. The project

coverage encompasses the mangroves of Vanga, Jimbo, Kiwegu and

Majoreni totaling about 4,428 ha (https://aces-org.co.uk/our-

projects/). According to Omondi (2017), a major decline in forest

cover in this locality occurred between 1991and 2016, changing the

forest cover from 3685 ha to 3234 ha with the drivers of losses and

degradation identified as population pressure, poverty and

inequality, and poor governance. The VBF project has planted

more than 1,000 native mangrove trees since its inception, with

future plans to work with neighboring communities in Tanzania to

restore mangrove forests along 140 kilometers of the East African

coastline. VBF targets avoided emissions of over 100,379 t CO2-eq

over the 20 years’ crediting period, which approximates to 5,019 t

CO2 yr-1 from both the soil carbon and above and below-ground

biomass carbon pools (Kairo et al., 2009; Cohen et al., 2013;

Huxham et al., 2015; Gress et al., 2017; Vanga Blue Forest Project
Frontiers in Marine Science 05
Design Document (PDD), 2019; Aigrette et al., 2021). Money

produced from trading carbon credits is utilized in supporting

community-initiated development projects in the area (Kairo

et al., 2019).

In Lamu County, the Lamu Marine Conservation Trust

(LaMCoT) and The Nature Conservancy, two non-profit

organizations work to encourage sustainable and efficient

management of marine and coastal resources in the county. The

organization has implemented several projects aimed at conserving

and restoring mangrove forests in Lamu County, including the

establishment of community-based management systems and the

promotion of alternative livelihoods such as eco-tourism and

sustainable fishing.
3 Carbon offset projects in
seaweed ecosystem

3.1 Overview of seaweed functions
and uses

Seaweeds, also known as macroalgae, provide diverse ecosystem

services such as; supporting (biogeochemical cycles, primary

producer, biodiversity conservation, habitat for various

organisms), provisioning (source of food, source of energy),

cultural (recreation, aesthetics, heritage) and regulating (climate,

eutrophication, biological) (He et al., 2008; Chung et al., 2011;

Chung et al., 2013; Kraemer et al., 2014; Ferreira et al., 2021; Yong

et al., 2022).

Previous exhaustive studies have shown that seaweeds provide

bioremediation services as the dissolved nutrients such as nitrogen,
FIGURE 2

Lamu County is home to nearly 62% of Kenya’s mangrove forests (SOURCE: Lamu Marine Conservancy).
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phosphorus and carbon are abstracted by seaweed during growth

then removed when the seaweed is harvested (Kim et al., 2017; Wu

et al., 2017; Hasselstrom et al., 2018). Further studies have reported

that seaweed reduces the hydrodynamic wave energy thus abating

erosion of coastal areas from wave forces in addition to protecting

tidal zones from erosion (Christianen et al., 2013). Furthermore,

growing seaweed, directly on the seafloor in shallow areas or on

ropes suspended off the bottom normally in deep areas, adds

complexity to growth environment, normally creating a three-

dimensional habitat which offers refuge plus more surface for

settlement for other organisms as well as more feeding and more

nursery areas for a greater diversity of associated marine and

terrestrial organisms (Smale et al., 2013).

Seaweed can be used as direct food for human consumption or

can be processed into other food additives, animal feeds, medicines,

pharmaceuticals, fertilizers and cosmetics among other products

(McHugh, 2003; Bixler and Porse, 2011; Wells et al., 2016; Anis

et al., 2017). Related research has reported that seaweed species are

rich in bio compounds majorly proteins, dietary fibers, proteins,

and lipids and contain bioactive elements with a broad range of

applications (Fleurence, 2004; Sánchez-MaChado et al., 2004;

Macartain et al., 2007; Misǔrcová et al., 2011; Pereira et al., 2011).

Furthermore, they contain vitamins A (beta carotene), K, B12, and

C in addition to being rich in potassium, iron, calcium, iodine and

magnesium. From a practical perspective, the very high iodine

content of the macroalga makes them ideal for tackling

malnutrition in children and pregnant women. Meanwhile,

according to the research conducted by Demarco et al. (2022)

and Barbier et al. (2019), seaweed contains polyphenols and

essential fatty acids since the principal components of their cell

membranes are polyunsaturated fatty acids, principally omega 3 (w-
3) and omega (w-6) although their bioavailability is not clear and is

still an area of research. In addition, many studies have enumerated

several other properties of seaweed to include anti-cancer, anti-

fungal, anti-viral, antidiabetic, antihypertensive, immune-

modulatory, anticoagulant, anti-inflammatory, anti-parasitic, and

antioxidant among others (Smit, 2004; Mayer et al., 2013; Barbosa

et al., 2014; Besednova et al., 2015; Ruan, 2018) consequently

making seaweeds beneficial to human health. Seaweeds are

routinely used by the cosmetic industry as coloring agents,

stabilizers, emulsifiers and are also a source of different

compounds used in the skincare sector (Yuan and Athukorala,

2011; Pimentel et al., 2017). Recently, Guillerme et al. (2017)

reported that seaweed produce compounds that absorb UV rays,

such as mycosporin-like amino acids, phenolics, carotenoids and

terpenes, that are normally useful photo-protective elements for the

formulation of sunscreen products.

Seaweeds are able to sequester atmospheric CO2 and the

surrounding seawater through the process of photosynthesis

(Krause-Jensen and Duarte, 2016). During photosynthesis, they

absorb CO2 and convert it into organic matter and in the process

release oxygen into the surrounding environment. The organic

matter produced by the seaweed is used for growth, or can be

buried in the sediment at the bottom of the ocean, effectively

removing atmospheric carbon and storing it for a long-time

duration. In addition to sequestering carbon, seaweed farming has
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many other environmental benefits, including improving water

quality, providing habitat for marine life, and reducing the impact

of ocean acidification (Krause-Jensen et al., 2015; Mongin et al.,

2016). Ocean acidification is an increasing threat to all the marine

ecosystems as decreasing pH levels interferes with the life processes

of most marine species.
3.2 Seaweed farming projects in Kenya

After an extensive study of the seaweed resources of Kenya, over

380 species have been documented (Moorjani, 1977; Yarish and

Wamukoya, 1990; Oyieke, 1998; Coppejans et al., 2000) with several

of the species found to be potential candidates for farming namely:

the carrageenophytes Eucheuma spp., Kappaphycus spp. and

Hypnea spp.; the agarophytes, Gracilaria spp. and Gelidium spp.;

and the alginophytes Sargassum sp Turbinaria spp. and Cystoseira

spp. (Wakibia et al., 2006; Wakibia et al., 2011; Nyundo, 2017;

Ollando et al., 2019). The first seaweed farms of Eucheuma

denticulatum and Kappaphycus alvarezii were started in 2010.

Currently, seaweed farming is established in Kwale County with

farms concentrated in 10 villages situated in Gazi, Nyumba Sita,

Tumbe, Funzi Island, Mwambao, Mkwiro, Jimbo, and Kibuyuni.

(Figure 1) The most common technique of seaweed cultivation is

the peg and line (off-bottom) monoline method, which involves

tying seaweed seedlings to monofilament polypropylene ropes

(lines) with the main lines tightly stretched amid two wooden

pegs (stakes) drilled securely to the seafloor. Other farming

practices including the raft, the net, broadcasting, and floating

long-line methods are still being piloted (Kimathi et al., 2018;

Nyamora et al., 2018; Brugere et al., 2020; Garcia-Poza et al.,

2020; Msuya et al., 2022).

Farming cycles are aligned to the tidal cycles with the farmers

working in the farms during the low tides. Low tides occur

fortnightly each month and each low tide takes seven days;

hence farmers work on their farms for about 10-14 days each

month. The planted crop is harvested after 6 weeks of growth

(Overbeeke et al., 2020; Msuya et al., 2022). This relatively short

cycle of production lasting 6 weeks allows for a fairly quick return

on investment and subsequently in a regular income to the

farmers. Farming is carried out year-round although the yields

are highest when conditions are good during the inter-monsoon

season from March through to early May and are low from June

to mid-August, during the South-East Monsoon when conditions

are not so favorable due to extreme wind and rough sea

conditions. Normally, the water temperatures are relatively high

from December to February, so farmers halt production until the

rainy season (Msuya and Porter, 2014; Largo et al., 2020;

Overbeeke et al., 2020). On average, farmers produce 300 -

500kg per each production cycle and are paid between US$ 0.2

and US$ 0.25/kg for dry seaweed product, yielding on average

total revenues ranging between US$ 70 – 115 every six weeks

during production seasons (Odhiambo et al., 2020; Msuya et al.,

2022). This price is averagely high for the farmers considering the

opportunity costs and the fact that the farming is not a full-

time engagement.
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4 Decarbonization through greening
Kenya’s ports

Maritime transport is the lifeblood of the global trade and the

manufacturing supply chain , carrying over 90% of global

commercial goods (World Bank, 2023). Shipping is particularly

important for Kenya with the ports of Mombasa and Lamu playing

a strategic role in the national and international trade as well as

serving an extensive hinterland comprising Democratic Republic of

Congo, Rwanda, Burundi, Uganda, Southern Sudan and southern

Ethiopia. The ports lie in a very busy shipping route with a majority

of international ships spending time in Kenyan waters or docked at

the ports. However, maritime transport is highly polluting as ships

use carbon heavy fuels to power their engines (International

Maritime Organization (IMO), 2018).

Kenya has shown its commitment as a member of International

Maritime Organization (IMO) by signing the International

Maritime Organizations Initial Strategy on Reduction of GHG

Emissions from Ships. This strategy targets to reduce GHG

emitted from the shipping sector by 50% by 2050 as compared to

the levels of 2008 and also includes the goal of reducing carbon

intensity in ships by 40% by 2030 (International Maritime

Organization (IMO), 2018). Furthermore, after acknowledging

that the port of Mombasa (Figure 1) produces high concentration

of GHG emissions from ships that are docked at the port as well as

from trucks and vehicles hauling cargo, Kenya has taken steps to

green the port by undertaking several decarbonization projects. In

2020, the GoK launched the “Greening of Ports” project in

Mombasa aimed at reducing GHG emissions related to its port’s

operations. Kenya Ports Authority (KPA), the government

parastatal charged with managing the ports, has developed and is

implementing an elaborate Green Port Policy (GPP) aimed at

transforming the Kenyan ports into ports of clean fuels and

which purposes to allow only new technologies and equipment

that use clean fuel to operate at the port. Consequently, KPA is

implementing cold ironing at the port after installing a 10MW solar

photo-voltaic plant for the generation of renewable energy shore

power to provide electrical power at the berths for ships calling at

the harbor. As per the GPP, all ships calling at the port of Mombasa

are to be compelled to switch off their auxiliary diesel engines and

power their vessels using shore electric power while docked.

Normally, ships emit enormous amounts of carbon dioxide from

their diesel engines while discharging cargo and the switching to

shore solar electricity- power to supply clean energy is

recommended as best practice for green ports. By embracing

green technology particularly the switch to electric cranes, and by

aggressively investing in equipment modernization and upgrade,

efficiency at the port of Mombasa has greatly improved with the

turn-around time for ships calling at the port of Mombasa currently

standing at an impressive 2 days only (World Bank, 2023; Kenya

Ports Authority Magazine (KPA), 2023).

The shipbuilding sector holds great promise as a future growth

area for Kenya's economy. To cater for the increasing demand of
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shipbuilding and repair services within the country and the region,

while helping decarbonise this industry, the government, through

public and private partnerships (e.g., Kenya Shipyards Limited), is

supporting initiatives that embrace green shipping technology in its

production. One example is the use of wind-assisted propulsion

technologies (European Maritime Safety Agency (EMSA), 2023)

inspired in the ancient technology of wind sails.
5 Discussion and conclusion

As part of the strategies aimed at limiting the rising global

temperatures and the reduction of man-induced CO2 emissions,

most countries have committed to the aspirations of the Paris

Climate Agreement which provides for a climate neutral world by

2050 (IPCC, 2022). Achieving climate neutrality entails reducing

GHG emissions as much as possible and then offsetting any residual

emissions by investing in projects that actively remove atmospheric

carbon dioxide including afforestation, reforestation, and carbon

capture and storage technologies until net-zero point is reached.

Through its mangrove conservation and restoration and PES

projects, Kenya has been able to trade the carbon in the

international market as certified carbon credits. Indeed, with over

ten carbon credit projects in the country, most of which involve

forest cover restoration or protection, Kenya has been hailed as a

continent leader in carbon credit markets (Rasowo et al., 2020).

However of late, using carbon credit markets to finance adaptation

and mitigation activities is facing criticism on a global scale and

their future as a sustainable source of climate finance particularly

for Africa and other developing countries is not bright. Arguably,

carbon markets appear to legitimize the pollution by the big

polluters while seemingly appeasing the low-polluting and

unindustrialized nations. It is also debatable whether the revenues

that the carbon credit markets earn the developing nations are

enough to compensate for the losses and damage caused by climate

change which they have contributed least to.

Kenya is in an ecological deficit thus the mangrove conservation

and restoration mitigates by reducing Kenya’s production

footprints while increasing its biocapacity (Marti and Puertas,

2020). Additionally, non-deforestation and forest conservation

provides a range of benefits to an ecological deficit country like

Kenya by protecting biodiversity, mitigating climate change,

regulating water cycles, conserving soil resources, and providing

social and economic benefits.

The incomes realized from sale of carbon credit and the sale of

seaweed has resulted in financial resilience in the local coastal

community, increased the community’s capacity towards climate

adaptation, and decreased their dependence on the limited local

resources. Indeed, research by Rimmer et al. (2021) show that

financial betterments precipitate wider economic benefits which

eventually build the community’s capacity to adapt to climate

change. In general, the projects have diversified livelihood

opportunities for the communities whose main source of income,
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primarily, was fishing. Furthermore, diversification has been shown

to be a critical factor for building household economic resilience

(Rimmer et al., 2021). In addition to climate mitigation and

adaptation, the above projects generate multiple benefits to the

community including supporting education services, improving

sanitation, provision of clean water, shoreline protection, and

various mangrove-based livelihood enterprises (e.g. in bee-

keeping, crab farming, small-scale farming, mangrove

ecotourism, agroforestry).

Seaweed farming, in particular, has proven attractive to the

rural coastal communities due to the low barriers to farmer entry,

relatively low cost of input, short cycles of production thus

providing regular income, low-technology, and relatively easy to

master best farming practices. Since seaweed is produced

throughout the year and does not need full-time care (relatively

low labor requirement), the farming not only ensures constant cash

flow, but also creates supplemental rather than replacement income,

hence an appropriate alternative livelihood option to the coastal

households (Msuya, 2013; Hurtado and Msuya, 2017). Because of

the unique characteristics enumerated above, seaweed farming is a

more female-oriented activity with over 90% of the current farmers

being women (ODINAFRICA, 2020; Msuya et al., 2022).

In order to expand production space and volumes, the

government is mapping the whole Kenya coastline to identify

more zones that are ideal for seaweed farming with the aim of

expanding production space and volumes produced. In addition,

the government is funding infrastructural development in the form

of good road networks, electricity, water, education, housing,

healthcare facilities (Mirera et al., 2020) and training the farmers

on entrepreneurial skills including making business plans, market

intelligence as well as on value addition processes and technologies

as a strategy to enhance economic returns and sustainability.

Further government support is through development of coherent

policies on conservation, and setting up frameworks and programs

that strengthen governance while promoting equality and inclusion.

These Blue Economy projects are unique in that they have

embraced a collaborative approach involving a multisectoral

engagement of both the GoK, NGOs, international and the local

communities. The integrated top-down (GoK) and bottom-up

(local community) management model adopted has deliberately

targeted the strengthening of economic development while taking

cognizance of sustainability (Baker and Mehmood, 2013; Okafor-

Yarwood et al., 2020). Studies have documented that a collaborative

approach that emancipates the locals by ensuring their involvement

in the processes of decision making and management, results in

social equity, better economic outcomes, and ecological

sustainability (Simane and Zaitchik, 2014; Butler et al., 2015;

Mackenzie et al., 2019; Chen et al., 2020). In a related study, El

Asmar et al. (2012) further show that when stakeholders are all

involved equally in the project’s implementation, it makes them

take ownership of the project message eventually ensuring

sustainability. Furthermore, the component of education and

capacity building particularly of the local partners in a project

ensures that the community gain adequate skills to run the project

on their own at the end of the project contract period. Government
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engagements at county, national and international levels jointly

with the civil society and private sector can play a critical role in

aiding and accelerating development pathways geared towards

climate resilience and sustainable development in local

communities. This is even more effective when activities,

financing, and decision-making processes are integrated across all

the various governance levels, the sectors, and the timeframes

(IPCC, 2022).

From the experiences gained from the activities undertaken at

the port of Mombasa, greening a port requires not only investment

in modern equipment that does not consume fossil fuel but also the

dedicated participation of all value-chain actors including the

government, port managers, terminal operators, ship owners and

operators, cargo owners, logistics companies, and the communities

around the port. In addition, it requires increased efficiency in the

form of short turn-around time for ships in the docks since the

longer the ships spend floating in the docks, the more GHC gases

they emit in the surrounding environment. In general,

decarbonizing the shipping sector needs a combination of

technological, regulatory and economic approaches including:

utilizing renewable energy sources to generate electricity for on

board systems, shifting from fossil fuels to low-carbon green fuels,

improving the energy efficiency of vessels, and using more efficient

propulsion systems to reduce fuel consumption (International

Maritime Organization (IMO), 2018). IMO has already

established global targets to reduce emissions from the shipping

sector but the individual governments do have the leeway to adopt

stricter regulations for ships operating in their waters (International

Maritime Organization (IMO), 2018).

In conclusion, the observed outcomes of the projects reveal that

they are significantly impactful while contributing to the

improvement of the livelihoods of the local communities and in

particular, conferring economic empowerment to the women whose

livelihoods would otherwise depend solely on their husbands. BE

needs compliance with the United Nations Sustainable

Development Goal (SDG) 14 (Life below water). It is noteworthy

that both the mangrove conservation and seaweed farming ventures

address problems associated with the realization of several of the

UN SDGs in addition to SDG 14 namely; SDG 1(No poverty), SDG

2 (End hunger), SDG 4(Quality education), SDG 5 (Gender

equality), SDG 6(Clean water and sanitation), SDG 8 (Sustainable

economic growth), SDG 13 (Action to combat climate change), and

SDG 15 (Life on land). Kenya’s “Green Growth Economy Strategy”

and the “Blue Economy Strategy” policy documents are part of the

country’s effort to realize the bigger circular economy principle

which is part of the SDG 12 (Sustainable consumption

and production).
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