
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Elizabeth Grace Tunka Bengil,
University of Kyrenia, Cyprus

REVIEWED BY

Jones Santander-Neto,
Federal Institute of Espı́rito Santo (IFES), Brazil
Jonathan Smart,
Queensland Government, Australia

*CORRESPONDENCE

Baylie A. Fadool

baylie.fadool@gmail.com

RECEIVED 22 July 2023

ACCEPTED 15 January 2024
PUBLISHED 02 February 2024

CITATION

Fadool BA, Bostick KG, Brewster LR,
Hansell AC, Carlson JK and Smukall MJ
(2024) Age and growth estimates for the
nurse shark (Ginglymostoma cirratum) over 17
years in Bimini, The Bahamas.
Front. Mar. Sci. 11:1265150.
doi: 10.3389/fmars.2024.1265150

COPYRIGHT

© 2024 Fadool, Bostick, Brewster, Hansell,
Carlson and Smukall. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 02 February 2024

DOI 10.3389/fmars.2024.1265150
Age and growth estimates for
the nurse shark (Ginglymostoma
cirratum) over 17 years in
Bimini, The Bahamas
Baylie A. Fadool1*, Kylie G. Bostick1, Lauran R. Brewster1,2,
Alexander C. Hansell1,3, John K. Carlson4

and Matthew J. Smukall 1,5

1Bimini Biological Field Station Foundation, South Bimini, Bahamas, 2School for Marine Science and
Technology, University of Massachusetts Dartmouth, New Bedford, MA, United States, 3Northeast
Fishery Science Center, National Oceanic and Atmospheric Administration (NOAA), Woods Hole,
MA, United States, 4Southeast Fisheries Science Center, National Oceanic and Atmospheric
Administration, Panama City, FL, United States, 5College of Fisheries and Ocean Sciences, University
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Age and growth estimates are essential for life historymodeling in elasmobranchs and

are used to informaccurate conservation andmanagement decisions. The nurse shark

(Ginglymostoma cirratum) is abundant in coastal waters of the Atlantic Ocean, yet

many aspects of their life history remain relatively understudied, aside from their

reproductive behavior. We usedmark-recapture data of 91 individualG. cirratum from

Bimini, The Bahamas, from 2003 to 2020, to calculate von Bertalanffy (vB) growth

parameters, empirical growth rate, and age derived from the resulting length-at-age

estimates. The Fabens method for estimating growth from mark-recapture methods

was applied through a Bayesian framework using Markov chain Monte Carlo (MCMC)

methods. This provided growth parameters with an asymptotic total length (L∞) of

303.28 cm and a growth coefficient (k) of 0.04 yr-1. The average growth rate for G.

cirratum was approximately 8.68 ± 6.00 cm yr-1. This study also suggests that the

previous maximum age for G. cirratum is likely underestimated, with the oldest

individual predicted to be 43 years old. Our study is the first to present vB growth

parameters and a growth curve for G. cirratum. It indicates that this species is slow-

growing and long-lived, which improves our understanding of their life history.
KEYWORDS
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1 Introduction

Elasmobranchs (sharks, rays, and skates) have classically been described as relatively

long-lived, slow-growing and late-maturing, with long gestation periods and low fecundity

(Hoenig and Gruber, 1990; Stevens et al., 2000). Due to these life history strategies,

overfishing threatens over one-third of elasmobranchs with extinction (Dulvy et al., 2014;
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Dulvy et al., 2021). Ascertaining accurate information on life history

traits, such as age and growth, can help to classify species’ potential

susceptibility to anthropogenic threats (Emmons et al., 2021).

Furthermore, accurate age and growth estimates are important

when assessing the vulnerability of a population and determining

the risk of overexploitation (Hammerschlag and Sulikowski, 2011)

because these estimates are often used directly in a variety of

assessment models (Hoenig and Gruber, 1990; Baje et al., 2018;

Flinn and Midway, 2021).

Extensive age and growth information can be difficult to obtain

for many elasmobranchs, as several of the morphometric

characteristics traditionally used for aging teleosts are lacking for

elasmobranchs (Beal et al., 2022). Methods used in age and growth

studies for teleosts rely on counting growth rings in hard parts such

as otoliths and scales, which are not present in the cartilaginous

skeleton in elasmobranchs (Das, 1994; Cailliet, 2015). Therefore,

reliable information is only available for a limited number of

species, with research focused primarily on those frequently

caught in fisheries or of conservation concern (Cailliet, 2015).

Typically, accurate aging of elasmobranchs relies upon dead

specimens in order to count growth band pairs in their vertebral

centra. However, this method is species and potentially regionally

dependent and can result in age underestimation due to uncertainty

in the frequency of band formation (Cailliet, 1990; Natanson et al.,

2018; Rudd et al., 2019). For instances in which age information is

difficult to obtain or not available, length-increment analysis can

provide an effective alternative means for determining growth

(Frazier et al., 2020). Length-increment analysis involves the

collection of length measurements from the same individual over

time (i.e., mark-recapture) where original age is often unknown but

can be estimated through length and age relationships and known

time between measurements (Harry et al., 2022). This can be a

preferred method for elasmobranch research because it is not

subject to some of the biases and limitations present in other

aging methods (Frazier et al., 2020; Dureuil et al., 2022), however

the datasets needed for this analysis are rarely available.

A limitation of length-increment analysis is that it requires a fairly

large sample size, which are typically small for elasmobranch studies

due to the limitation of recaptures. Due to the propensity of limited

data sets, methods have been developed to work with the low sample

sizes and still provide valuable insight into life history parameters of the

focal population (Barker et al., 2005; Harry et al., 2022). For example,

Bayesian methods overcome low samples sizes by considering prior

knowledge of the species of interest (Pardo et al., 2016; Caltabellotta

et al., 2021; Smart and Grammer, 2021; Dureuil et al., 2022). This

preceding knowledge is used to form prior distributions of possible

values to estimate growth parameters from a model (Gelman et al.,

2017), such as the von Bertalanffy (vB) growth function (von

Bertalanffy, 1938). Data-limited assessments are further overcome

when paired with Markov chain Monte Carlo (MCMC) methods,

which is an iterative procedure to obtain estimated parameter values

that ensures sampling across the entire parameter space (Rudd et al.,

2019). Applying these methods to growth models has become

increasingly popular for overcoming the limited datasets in

elasmobranch research (Smart and Grammer, 2021).
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Nurse sharks, Ginglymostoma cirratum, are in the order

Orectolobiformes (otherwise known as the carpet sharks) and are

one of the most abundant shark species in shallow, coastal waters

(Castro, 2000). They range from tropical West Africa and the Cape

Verde islands in the eastern Atlantic, to southern Brazil and North

Carolina in the western Atlantic Ocean (Castro, 2000) and display

strong site fidelity (Carrier, 1985; Carrier and Luer, 1990; Chapman

et al., 2005; Pratt et al., 2022; van Zinnicq Bergmann et al., 2022).

Ginglymostoma cirratum were listed as data deficient by the

International Union for Conservation of Nature (IUCN) Red List

of Threatened Species, before being assessed as vulnerable (Carlson

et al., 2021; Garzon et al., 2021). Despite their abundance and the

recent focus on their conservation status, general data for the

species is lacking aside from research on their reproductive

behavior in the Dry Tortugas, Florida, USA (Carrier et al., 1994;

Pratt and Carrier, 2001; Whitney et al., 2010; Pratt et al., 2022).

Most of the life history data (i.e., maximum size and growth rate)

available for G. cirratum come from the Florida Keys, USA and

Brazil (Carrier and Luer, 1990; Castro, 2000; Santander-Neto et al.,

2011; Ferreira et al., 2012). Castro (2000) provided some limited

information for The Bahamas; however, it is the only published life

history data to date for this area. Some research has assessed the

demographic structure and relative abundance of this species in The

Bahamas (Hansell et al., 2018; Shipley et al., 2018; Clementi et al.,

2021), but significant data gaps persist. Therefore, additional

research on life history traits such as age and growth are needed

for the species.

Ginglymostoma cirratum are documented as abundant in the

waters around Bimini, The Bahamas, with all size classes present

(Hansell et al., 2018), providing an ideal study site to investigate age

and growth. In this study, we use a 17-year mark-recapture dataset

of G. cirratum from Bimini to (1) provide the first estimates for the

vB growth parameters L∞ and k for this species, (2) determine an

empirical annual growth rate for the region, and (3) estimate age

based on the growth parameters and known information about

their length-at-birth, L0.
2 Materials and methods

2.1 Study site

Bimini, The Bahamas, (25°73′N, -79°27′W) is a set of two

islands located ~ 85 km east of Miami, Florida, USA (Figure 1). The

deep waters of the Gulf Stream to the west of the island separate

Bimini from Florida, while the shallow waters of the Great Bahama

Bank border the east of the island. A shallow (0–3 m), tidal lagoon

lies in between the North and South islands of Bimini (Trave and

Sheaves, 2014). The western side of the island consists of sandy flats,

reefs, and seagrass habitat (van Zinnicq Bergmann et al., 2022).

Bimini’s lagoon and the east side of the island consist of mangrove-

fringed and seagrass habitats that serve as nurseries for various

juvenile shark species (Feldheim et al., 2002; Jennings et al., 2012;

Trave and Sheaves, 2014).
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2.2 Capture methods

Ginglymostoma cirratum were caught within a 10 km radius of

Bimini from 2003–2020 during fishery-independent surveys

(Figure 1). Individuals were caught using a variety of fishing

methods including shallow water longline surveys (Hansell et al.,

2018; Smukall et al., 2022), hand capture, and other methods

consisting mostly of drumline (Gallagher et al., 2014), polyball

fishing (Guttridge et al., 2017), traditional rod and reel fishing, and

gillnets (Dhellemmes et al., 2021). For safe handling, larger sharks

captured using a hook were measured and tagged while secured

next to the boat. Hand captures of small G. cirratum were

conducted by snorkeling mangrove edges or rocky ledges. They

were visually identified and grasped between their gills and pectoral

fins with one or two hands and brought to the surface for sampling.

At the surface, the shark was placed in a tub (~150 cm diameter; 500

L volume) filled with seawater for data collection and tagging.

Precaudal length (PCL) and total length (TL) measurements were

recorded. The TL of the sharks was obtained by stretching a

measuring tape that followed the curvature, maintaining contact

with the animal from the tip of the head along the dorsal side of the

body to the tip of the tail. The sex of individuals was based on the
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presence of claspers. Lengths at maturity for G. cirratum were

determined 223–231 cm TL for females and 214 cm TL for males

based on Castro (2000) or were determined on the calcification of

claspers in males. Sharks were fitted with a passive integrated

transponder (PIT, 12.34 mm x 2.04 mm; Destron Fearing Inc.),

and/or a dart tag (National Oceanic and Atmospheric

Administration Cooperative Shark Tagging Program) placed into

the musculature at the base of the first dorsal fin.
2.3 Data preparation

Ginglymostoma cirratum with captures ≥ 90 days apart were

used for analysis to ensure sufficient time had passed between

captures for notable growth to be detected and limit the influence

of human measurement error (Simpfendorfer, 2000; Boggio-Pasqua

et al., 2022). Individuals were represented in the analysis only once,

despite if there were multiple recaptures, and the difference in TL

and time between capture was determined based on first and last

capture. We investigated the dataset for outliers and removed any

recaptures with unrealistic observation error (e.g., negative growth).

Separation of sexes was considered for data analysis, but given the

already low sample size, sexual separation was avoided to prevent

further reducing our dataset and due to no significant difference in

the TLs between sexes (Supplementary Material).
2.4 Data analysis

The von Bertalanffy (vB) growth function using L0 was used as

the basis for estimating age and growth from the mark-recapture

data:

Lt = L∞ − (L∞ − L0)e
−kt (1)

where Lt represents length at age t, L∞ is the asymptotic

maximum length, L0 is the length-at-birth, and k is the Brody

coefficient or growth constant determining how fast L∞ is

approached as t nears ∞ (Equation 1). When age is unknown,

length measurements from mark-recapture studies can be used in

an approach called the Fabens (1965) method to solve for the

parameters L∞ and k:

DL = (L∞ − Lt)(1 − e−kDt)

DL = Lt+Dt − Lt (2)

with DL as the expected change in length over Dt for an animal

with an initial length of Lt (Equation 2; Haddon, 2011).

Ginglymostoma cirratum length data was analyzed using a Fabens

model with Bayesian methods (“GrowthEstimation” GitHub script;

Dureuil et al., 2022 in R version v.4.3.1). The R packages ‘TMB’,’

‘tmbstan,’ and ‘rstan’ were used to build the model. TMB uses a No-

U-Turn Sampling (NUTS) algorithm to estimate the growth

parameters, which is an advanced Markov chain Monte Carlo

(MCMC) method (Hoffman and Gelman, 2014). A prior

distribution was given to L∞, k, and s2 (Table 1) to conduct the
FIGURE 1

The study site of Bimini, The Bahamas, in proximity to Florida, USA.
The colored symbols represent the capture and recapture locations
of Ginglymostoma cirratum that were recaptured ≥ 90 days apart,
from 2003-2020 from fishery-independent surveys using various
capture methods. Captures that appear on land were in mangrove-
fringed habitats.
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Bayesian inference (Gelman et al., 2014). Summary statistics were

derived from the posterior distribution of the parameters given the

data using the NUTS algorithm.

A value for L0 was required for fitting the vB growth curve.

Based on observed catch data from Bimini G. cirratum and

published length-at-birth information, we assigned L0 to be 24 cm

TL (Castro, 2000; Carrier et al., 2003). Smaller lengths at birth are

recorded in the literature for G. cirratum (Carrier et al., 2003),

however it was suggested that these pups were potentially born

prematurely. The age estimations were obtained through Equation

3 to plot the vB growth curve:

t =
loge

(L∞−L0)
(L∞−Lt )

� �

k
(3)

When analyzing small sample sizes, a lognormal prior distribution

can result in more stable MCMC iterations (Dureuil et al., 2022). This

was applied to L∞ and uniform prior distributions were assigned to k

and s2. We used a lognormal prior for L∞ because there was previous

information available for this parameter. To calculate the lognormal

mean and standard deviation for the lognormal prior distribution of

L∞, we first supplied the average maximum length (Lmax) for

individuals, which was the average of the three largest individuals in

our population (Dureuil et al., 2022). We obtained an Lmax of 247 cm

TL, represented as the lognormal median. Next, we gave our best

determination of L∞ for G. cirratum. We referenced FishBase to find

previous L∞ reported for G. cirratum but were unable to confirm the

reliability of this data. As a result, we searched the available literature to

find an upper limit for Lmax for G. cirratum, which was 316.8 cm TL

from Brazil (Santander-Neto et al., 2011). We computed L∞ from this

using the upper limit of Lmax = 316.8 cm TL and taking Lmax
0:99 , which

resulted in an L∞ of 320 cm TL (Dureuil et al., 2021). The mean was

obtained by taking log ( Lmax0:99 ) and was 248.53 cm TL. The standard

deviation was computed such that the lognormal 99th percentile was

1.2 ( Lmax0:99 ) and was 27.75 cm TL. As there was no available data for k,

we used a uniform prior distribution, which defines the lower and

upper bounds for the parameter. We improved our confidence in our

prior k distribution of 0.01 yr-1 to 1.00 yr-1 by using the lowest and

highest published information on k for Orectolobiformes and creating

a range that encompasses a realistic set of values (Chen et al., 2007;

Huveneers et al., 2013; Perry et al., 2018). The uniform prior

distribution used for s2 was narrow because we had confidence in

the TL measurements and was set as 0.00 cm to 20.00 cm TL.

Posterior distributions were determined from the prior

distribution of the parameters (L∞, k, and s2) and the data. Three
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chains were run in the Fabens model with Bayesian methods

applied, each with 10,000 iterations and a burn in period of 5,000

samples. Convergence of the chains was assessed by visualizing

trace and pairs plots, and the R-hat and effective sample size criteria

(ESS) (Supplementary Material; Vehtari et al., 2021; Dureuil et al.,

2022). Autocorrelation was assessed using diagnostic plots from the

‘Bayesplot’ R package (Gabry, 2020).
3 Results

3.1 Capture data

A total of 851 Ginglymostoma cirratum individuals (378

females, 458 males, and 15 sex not recorded) were caught

between 2003–2020 in Bimini, The Bahamas (Table 2). There

were 137 total individuals that were recaptured at least once for a

recapture rate of 16.10%. Longline surveys and hand capture were

the primary capture methods, and most individuals were caught on

the east and south sides of the island (Table 2, Figure 1).
3.2 Growth analysis

There were 91 Ginglymostoma cirratum recaptured ≥ 90 days

apart used for analysis for a recapture rate of 10.69%. We removed 24

recaptures ≥ 90 days apart due to inconclusive or negative growth

from humanmeasurement error. Individuals used for analysis ranged

from 48–252 cm TL at first capture (Supplementary Material). Time

at liberty for the individuals caught ≥ 90 days ranged from 93–3,132

days (0.25–8.58 years, Figure 2) with an average number of days

between captures of 702.30 days ± 610.18.

The MCMC chains mixed, indicating the model successfully

converged (Supplementary Material). Autocorrelation was not

present , so thinning was not appl ied to the model

(Supplementary Material). The estimated vB growth parameters

were L∞ = 303.28 cm TL (95% credibility interval [CI]: 268.34 cm

TL–348.13 cm TL) and k = 0.04 yr-1 (95% CI: 0.03 yr-1–0.05 yr-1)

(Table 1). The 95% CI for s2 was 6.12 cm–8.28 cm TL (Table 1).

The empirical annual growth rate for the 91 individuals was 8.68 ±

6.00 cm yr-1 (Figure 3). The change in length as a function of time at

liberty for all 91 Ginglymostoma cirratum is shown in Figure 4A. Six

individuals displayed growth rates between 19.21–29.07 cm yr-1 that

ranged from 65.20 cm–215 cm TL at recapture. These recaptures
TABLE 1 Prior distributions and von Bertlanffy growth parameter estimates of Ginglymostoma cirratum near Bimini, The Bahamas.

Parameter
Prior

Distribution

Mean or
Minimum
Bound

Variance or
Maximum
Bound Reference

Parameter Estimates
(95% Credibility Intervals)

L∞ Lognormal 248.53 27.75
BBFSF catch data; Santander-Neto
et al., 2011; Dureuil et al., 2022 303.28 cm (268.34 cm - 348.13 cm)

k Uniform 0.01 1.00
Chen et al., 2007; Huveneers et al.,

2013; Perry et al., 2018 0.04 yr-1 (0.03 yr-1 - 0.05 yr-1)

s2 Uniform 0.00 20.00
Santander-Neto et al., 2011; Dureuil

et al., 2022 6.12 cm - 8.28 cm
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occurred 95–375 days (0.26-1.03 years) after initial capture.

Figure 4B displays the distribution of growth rates among the

individuals. The vB growth curve estimated from the MCMC

analysis is shown in Figure 5. Estimated ages for G. cirratum

ranged from 1–43 years.
4 Discussion

This study used a relatively large sample size of recaptured

Ginglymostoma cirratum from Bimini, The Bahamas, to provide the
Frontiers in Marine Science 05
first vB estimates for this species. Previous studies looked at growth

in G. cirratum (Carrier and Luer, 1990; Ferreira et al., 2012), but

they did not obtain vB estimates and only an empirical growth rate

that is not directly informative for fisheries assessment models

(Flinn and Midway, 2021). Since their threat level has been

reassessed from data deficient to vulnerable only recently

(Carlson et al., 2021; Garzon et al., 2021), having vB estimates

will provide valuable information for assessing vulnerability.

Furthermore, these age and growth parameters for G. cirratum

can be used to directly obtain other life history parameters, such as

natural mortality (M), which are influential for stock assessments

(Dureuil and Froese, 2021; Dureuil et al., 2021).

Our results are indicative of G. cirratum in Bimini being slow-

growing and relatively long-lived like many other elasmobranch

species. These life history strategies and their large body size would

put them at a greater susceptibility to threats like overexploitation

and habitat destruction (Dulvy et al., 2021; Wong et al., 2022).

Fishing pressure may have affected G. cirratum in the earlier years

of this study, but fishing for elasmobranchs is no longer permitted

in this region with the establishment of The Bahamas Shark

Sanctuary in 2011 (Sherman et al., 2018). They are not afforded

these same protections across their range and are a target species in

some countries (Garzon et al., 2021), potentially putting their

populations at risk. More species-specific life history information

is needed for G. cirratum from different regions to ascertain their

regional susceptibility to overexploitation. Although overfishing no

longer impacts G. cirratum in Bimini, habitat alteration could still

affect their life history. Destruction of habitat known to be used by

G. cirratum has been occurring in Bimini since 1997 (Pratt and

Carrier, 2007; Carlson et al., 2021; Bettcher et al., 2023), which

includes the construction of an extensive tourist complex (Gruber

and Parks, 2002; Jennings et al., 2008; Trave and Sheaves, 2014).

This could have detrimental impacts on G. cirratum in Bimini if it

removes habitats that are essential to their survival since their life

history strategies indicate that they may not have quick recovery

potential (Cortés, 2000; Gallagher et al., 2012). The Florida Keys,
TABLE 2 Captures and recaptures of Ginglymostoma cirratum near
Bimini, The Bahamas from 2003-2020.

Total Overall Captures by Gear Type

Gear
Type

Number of Individual
G. cirratum

Median Total
Length (cm)

Longline 468 215.00 ± 42.89

Male 264 218.00 ± 41.52

Female 194 211.00 ± 44.56

Unknown 10 220.00 ± 63.15

Hand
Capture 151 57.75 ± 17.60

Male 76 55.10 ± 17.11

Female 73 62.30 ± 17.87

Unknown 2 82.20 ± N/A

Other 232 139.00 ± 56.99

Male 118 172.00 ± 60.00

Female 111 129.50 ± 49.97

Unknown 3 120.00 ± 57.74

Total 851

Total Recaptures by Gear Type

Gear
Type

Number of Individual
G. cirratum

Median Total
Length (cm)

Longline 44 171.70 ± 41.54

Male 27 170.00 ± 44.25

Female 17 173.40 ± 38.11

Hand
Capture 54 66.85 ± 14.90

Male 27 65.50 ± 13.68

Female 27 68.50 ± 15.96

Other 39 126.50 ± 55.78

Male 20 107.90 ± 53.21

Female 18 130.20 ± 53.67

Unknown 1 242.00

Total 137
Information on gear type and the number of individuals caught per sex.
FIGURE 2

Distribution of days between first and last capture for
Ginglymostoma cirratum recaptured ≥ 90 days apart near Bimini,
The Bahamas.
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Florida, USA, where G. cirratum are also abundant, have a similar

habitat structure and pressures to Bimini (Castro, 2000; Heithaus

et al., 2007). This is notable because the Florida Keys and Bimini are

close in proximity. Therefore, research on life history information

from G. cirratum in this region could help better inform regional

management and their response to anthropogenic disturbances.

The largest G. cirratum recaught in this study for analysis was

252 cm TL, however, a female of 280 cm TL was caught a single

time. Ginglymostoma cirratum have been reported at larger TLs in

the Florida Keys, USA, at 312 cm and in Brazil at 316.8 cm (Castro,

2000; Santander-Neto et al., 2011). The estimate of L∞ = 303.28 cm

TL obtained for the Bimini G. cirratum population indicates that

they may reach a smaller theoretical maximum length compared to

other areas. Maximum size typically correlates with local habitat

structure and latitude (Thorson et al., 2017), potentially

contributing to the regional differences seen between the

maximum sizes reported, especially since this species has the

propensity for strong site fidelity (Carrier, 1985; Carrier and Luer,
Frontiers in Marine Science 06
1990; Chapman et al., 2005). However, individuals could reach

larger lengths in Bimini due to the wide 95% credibility interval for

L∞ of 268.34 cm –348.13 cm TL and could have been

underrepresented in our dataset.

The previously published maximum lifespan for G. cirratum

was 25 years (Clark, 1963), however, a recent study from the Dry

Tortugas in the Florida Keys, USA, reported observations of the

oldest individual in their population being ~ 43 years and still

reproductively active (Pratt et al., 2022). Our vB estimates predict

that the oldest individual in our study was 43 years old, thus

supporting the age observation from Pratt et al. (2022). Age data

can be inconsistent and unreliable for many elasmobranchs, so

although the ages are estimates from this study, it will help

contribute to a better overall understanding of G. cirratum life

history (Rudd et al., 2019). Accurate maximum age estimation is a

key component of population modeling and important for effective

management of species (Loefer and Sedberry, 2003; Brooks et al.,

2016). Castro (2000)’s reported lengths-at-maturity for G. cirratum

suggest they could be 20-30 years old at maturity based on our vB

growth curve. Further research on age and age at maturity in this

species is needed to support this claim.

Comparisons with other species are difficult to make for G.

cirratum. They are the only orectolobiform that is a shallow,

resident, coastal species in The Bahamas and across the Atlantic

Ocean. Furthermore, species in the Orectolobiformes vary

drastically in their morphology, with limited life history

information available (Goto, 2001) and a great deal of variability

for what data is available (Chen et al., 2007; Huveneers et al., 2013;

Perry et al., 2018). General species information in their family,

Ginglymostomatidae, is also severely lacking. However, based on

numerous other age and growth studies, it is well-known that

growth estimates can vary widely within orders and families.

Because of this, future research must focus on obtaining species-

specific life history information for G. cirratum from other regions

to gain a more comprehensive understanding of their growth and to

make biologically appropriate comparisons (Wong et al., 2022).

Since our study is the first to provide age and growth estimates for

G. cirratum or for the Ginglymostomatidae family, no comparisons

of growth parameters are possible yet. Consequently, the empirical
A B

FIGURE 4

(A) Change in total length (TL) for Ginglymostoma cirratum caught near Bimini, The Bahamas as a function of the number of days between captures.
(B) The distribution of Ginglymostoma cirratum growth rates.
FIGURE 3

Annual total length (TL) growth rate of Ginglymostoma cirratum
caught near Bimini, The Bahamas. The minimum value is 0 cm yr-1

while the maximum value is 18.91 cm yr-1. The first quartile is 4.65
cm yr-1 and the third quartile is 10.46 cm yr-1. The dark vertical line
represents the median value at 7.88 cm yr-1.
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growth rate from our study will be examined below to demonstrate

why this measure is not as informative as vB estimates and can

be problematic.

The average growth rate of 8.68 ± 6.00 cm yr-1 for G. cirratum in

Bimini represents a diverse range of length classes, providing a

comprehensive growth representation of the population (Haddon,

2011). Previous growth rate determination for G. cirratum only

included sexually immature individuals (Carrier and Luer, 1990;

Ferreira et al. , 2012). The exclusion of adults creates

disproportionate growth rates in favor of faster growth associated

with early life stages (Francis and Francis, 1992). This could have

been due to the different gear types used that can present bias

towards certain capture lengths and impact estimates of growth rate

(Gwinn et al., 2010; Emmons et al., 2021; Smart and Grammer,

2021; Smukall et al., 2021). Adults were included in our sample size,

according to reported lengths-at-maturity from Castro (2000) and

observations of calcified claspers from Bimini catch data. Growth

rate can also fluctuate and vary regionally depending on changes in

food availability, predation, and temperature (Hutchings, 2002;

Thorson et al., 2017; Grimmel et al., 2020; Liu et al., 2021), even

at very small scales (Dibattista et al., 2007), further complicating the

validity of empirical growth rates from localized datasets being

expanded for describing the overall growth in a population.

Our study included G. cirratum from a variety of length classes

and used many gear types and tackles, likely presenting the most

representative growth rate for this species to date. However, we

advocate for future research to focus on determining vB growth

estimates for G. cirratum because of the difficulties present in

comparing empirical growth rates within species that was

outlined in the previous paragraph. Although also influenced by

size ranges and habitat influences (Cailliet and Goldman, 2004), the

growth coefficient is a more informative measure than an empirical

growth rate because it may be linked to longevity, fecundity, and
Frontiers in Marine Science 07
size at maturity (Mejıá-Falla et al., 2014). Obtaining vB growth

estimates using Bayesian methods additionally helps reduce biases,

such as missing length classes and gear selectivity, because of the use

of prior information (Pardo et al., 2016; Smart and Grammer,

2021). We were able to account for neonates in the vB estimates

because of the L0 parameter. This was missing for obtaining our

empirical growth rate due to no recaptured individuals from this

length class. Overall, future research should focus on obtaining vB

growth estimates for G. cirratum to allow for more biologically

appropriate comparisons.

Without previous life history information available for G.

cirratum, their conservation and management were poorly

informed before this study, demonstrated by their recent

vulnerability status despite being an abundant species. Although

afforded protections in The Bahamas, G. cirratum are subject to

different anthropogenic threats across their range and accurate age

and growth estimates from other regions do not yet exist. We urge

future research to obtain species-specific age and growth estimates

that can be used to make comparisons between populations from

different regions and inform future stock assessments. This

information is important since our results demonstrate that this

species is slow-growing, large-bodied, and long-lived,

characteristics that can make elasmobranch species more

susceptible to anthropogenic threats.
4.1 Conclusions

This study presented the first vB estimates for Ginglymostoma

cirratum, around Bimini, The Bahamas. It also determined the

average growth rate for G. cirratum in this region and estimated

ages based on length-increment data. The growth information

resulting from this study indicated that G. cirratum are slow-

growing, capable of reaching large sizes, and longer lived than

previously thought. These results addressed a significant data gap

for G. cirratum, contributing to a better understanding of their life

history which can be incorporated into conservation and

management decisions.
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