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aerial surveys
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Abundance estimation of wildlife populations is frequently derived from

systematic survey data. Accuracy and precision of estimates, however,

depend on the number of replicate surveys, and on adjustments made

for animals unavailable to (availability bias), or available but undetected

(perception bias) by observers. This study offers a comprehensive analysis of

the relative influence of methodological, environmental and behavioral factors

on availability bias estimates from photographic and visual aerial surveys of a

small cetacean with a highly clumped distribution, the beluga (Delphinapterus

leucas). It also estimates the effect of the number of surveys on accuracy and

precision of abundance estimates, using 28 replicate visual surveys flown within

a 16—29 day window depending on survey year. Availability bias was estimated

using detailed dive data from 27 beluga from the St. Lawrence Estuary, Canada,

and applied to systematic visual and photographic aerial surveys of this

population, flown using various survey platforms. Dive and surface interval

durations varied among individuals, and averaged (weighted) 176.6 s (weighted

s.e. = 12.6 s) and 51.6 s (weighted s.e. = 4.5 s), respectively. Dive time and

instantaneous availability, but not surface time, were affected by local turbidity,

seafloor depth, whale behavior (i.e., whether beluga were likely in transit or not),

and latent processes that were habitat-specific. Overall, adjustments

of availability for these effects remained minor compared to effects

from survey design (photographic or visual) and type of platform,

and observer search patterns. For instance, mean availability varied from 0.33

—0.38 among photographic surveys depending on sightings distribution across

the study area, but exceeded 0.40 for all visual surveys. Availability also

varied considerably depending on whether observers searched within 0-90°

(0.42—0.60) or 170° (0.70—0.80). Simulation-based power analysis indicates

a large benefit associated with conducting more than 1 or 2 survey reps,

but a declining benefit of conducting > 5—10 survey reps. An increase in
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sample size from 2, to 5, and 10 reps decreased the CV from 30, to 19 and 13%,

respectively, and increased the probability of the abundance estimate

being within 15% of true abundance from 0.42, to 0.59 and 0.69 in species

like beluga.
KEYWORDS
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Introduction

Abundance is central to the management of wildlife populations

(Williams et al., 2002; Cardinale et al., 2019) and is often derived

from survey data (Seber, 1982; Buckland et al., 2001). While

abundance estimates must be accurate to assess population

conservation status, they also need precision in order to reliably

detect significant population trends (Gerrodette, 1987; Taylor et al.,

2007). The precision of abundance estimates often incorporates the

variance from multiple factors (e.g., group size, densities, visibility

corrections), and is also influenced by the number of groups sighted

(Buckland et al., 2001). In species with highly clumped and

heterogenous distributions, these sources of variation may inflate

uncertainty, and even bias abundance estimates depending on

survey design (Nomani et al., 2012). Adopting a systematic

transect line placement, increasing survey coverage, and reducing

the interval between survey years may help improve accuracy and

precision of abundance estimates (Gerrodette, 1987; Holt et al.,

1987; Nomani et al., 2012). Obtaining repeat estimates of

abundance for a given year may also help achieve this goal,

although data-driven demonstrations of the sensitivity of survey

point abundance estimates (i.e., relative precision and accuracy) to

the number of replicate surveys is generally lacking for

marine mammals.

Systematic strip- and line-transect surveys are popular,

statistically robust methods for estimating abundance of

organisms, including cetaceans and ice-associated pinnipeds

(Buckland et al., 2001; Williams et al., 2002; Elphick, 2008; Foster,

2012; Hammond et al., 2021). However, survey-derived abundance

estimates can be biased when animals that are visible to observers

are not seen (perception bias), or when they are unavailable to be

counted because they are concealed by vegetation, boulders, other

animals or turbid waters (availability bias) (Caughley, 1974; Marsh

and Sinclair, 1989; Buckland et al., 2004; Brack et al., 2019).

Corrections for perception and availability bias are multipliers of

un-corrected counts, and can have a substantial effect on final

abundance estimates (Marsh and Sinclair, 1989), and vary with

survey design. In the case of photographic surveys, perception bias

is generally estimated and minimized through repeated imagery

readings (Gosselin et al., 2014; Stenson et al., 2014; Bröker et al.,

2019). For visual surveys, perception bias is usually larger, and can
02
be assessed by using two independent observation teams, and

applying a mark-recapture distance-sampling procedure to the

data (Burt et al., 2014). Correcting for availability bias is more

challenging, and often requires an independent source of data on

animal behavior and distribution (i.e., to estimate the likelihood of

animals being visually available at the time of survey). In diving

species, availability bias is primarily the result of animals being

below the surface of the water, and can be estimated from circle-

back or “racetrack” method during surveys (Hiby, 1999), or from

the distribution of surface and dive times using a variety of

approaches such as radio-telemetry data (Schweder et al., 1991),

visual observations (Barlow et al., 1988; Laake et al., 1997; Kingsley

and Gauthier, 2002; Slooten et al., 2004), or archival tag data

(Pollock et al., 2006; Edwards et al., 2007; Fuentes et al., 2015;

Watt et al., 2015a; Nykänen et al., 2015b, 2018; this study). The

magnitude of the availability bias varies with survey design, and is

expected to be less for visual than for photographic surveys, mainly

given that the time window for detection is longer for an observer

during a visual survey as compared to the snapshot of potentially

detectable individuals offered via imagery (McLaren, 1961; Laake

et al., 1997; Forcada et al., 2004; Gómez de Segura et al., 2006).

Various factors that are inherent to the species, or their

environment, can affect availability bias (e.g., Langtimm et al.,

2011; Thomson et al., 2012; Fuentes et al., 2015; Sucunza et al.,

2018; Brown et al., 2023). In aquatic species, turbidity can limit

depth at which animals can be detected, whereas bottom depth can

modulate availability by influencing dive depth and duration (e.g.,

Slooten et al., 2004; Pollock et al., 2006). Seafloor depth effects on

surface time or availability might be particularly strong in areas

where feeding occurs at deeper depths (Martin and Smith, 1999;

Doniol-Valcroze et al., 2011). Conversely, the influence of seafloor

depth might be less when animals are travelling, resting, or

socializing near the surface (e.g., Whitehead and Weilgart, 1991).

The physiological condition and reproductive status of individuals

can also affect availability. For instance, females accompanied by a

calf may dive less than non-calving females or other age- or sex-

classes (e.g., Dombroski et al., 2021; Brown et al., 2023). Diving

capacity increases allometrically with size, causing differences in

availability among age-classes, and between males and females in

sexually dimorphic species (Schreer and Kovacs, 1997). Juveniles or

animals in poor body condition may also forage at different depths
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or in different areas than adults or animals that are in better shape

(i.e., Orgeret et al., 2019). However, while there is growing evidence

for the need to account for environmental and behavioral factors

when assessing availability bias, very few studies, if any, have

provided the means for incorporating location-specific availability

bias corrections, and most importantly, for propagating uncertainty

associated with these corrections into final abundance estimates.

For cetaceans, abundance is often obtained through aerial or

vessel-based surveys (Hammond et al., 2021). The propension of

these species to spend a considerable proportion of their time away

from the surface, make them more prone to both availability and

perception biases. Abundance estimation is particularly challenging

with these species, given their wide distribution range and clumped

distributions. Distribution and clumping are generally driven by

habitat heterogeneity, but for delphinids and some other species,

also by social structure. The beluga (Delphinapterus leucas) is one

such particularly challenging species to survey, given its highly

social and gregarious nature (Michaud, 2005). Sex and age classes

segregate spatially among habitats with widely different

characteristics during summer, when calving occurs (Michaud,

2005; Loseto et al., 2006; Mosnier et al., 2010). While distribution

range is relatively constrained during summer, drivers of habitat use

are not fully understood (Mosnier et al., 2010; Hornby et al., 2016;

Mosnier et al., 2016; Smith et al., 2017; Pirotta et al., 2018). As a

result of their clumped distribution, and potentially coordinated

behaviours, abundance estimates for beluga populations are often

associated with low precision (i.e., CVs of 25—40%), with point

estimates of abundance potentially varying almost 2-fold between

consecutive survey days (Gosselin et al., 2017; Higdon and

Ferguson, 2017; Lowry et al., 2019).

In the St. Lawrence Estuary (SLE), Canada, beluga abundance has

been monitored since 1988 using systematic aerial surveys covering

their entire summer range. While high-coverage (50%) strip-transect

photographic surveys have been used consistently since then, lower

coverage (10-15%) line-transect visual surveys, often repeated multiple

times per year, have been conducted since 2001 (Kingsley and

Hammill, 1991; Kingsley, 1993, 1996, 1999; Gosselin et al., 2001,

2007, 2014, 2017; St-Pierre et al., 2023). This exceptional dataset (11

photographic and 52 visual surveys), combined with dive data obtained

at high spatial and temporal resolution from 27 individuals, offered a

unique opportunity to examine methodological, environmental, and

behavioral factors potentially affecting the accuracy and precision of

abundance estimates from survey data. Specifically, we first examined

the relative influence of survey design (photographic versus visual),

seafloor depth, water turbidity and habitat used, as well as whether

animals were likely in transit or foraging on availability bias estimates

from photographic and visual aerial surveys. We also proposed a

methodology to incorporate location-specific availability bias

corrections and associated uncertainty into survey data analysis and

abundance estimation to increase their accuracy. Finally, using a data

set of 28 visual surveys repeated over a 16 to 29-day period depending

on survey year (St-Pierre et al., 2023), we estimated the optimal number

of surveys required to achieve adequate accuracy and precision of

abundance estimates for species with a clumped distribution such

as beluga.
Frontiers in Marine Science 03
Materials and methods

Survey data and methodology

Surveys to obtain abundance estimates for SLE beluga are

conducted during summer (generally from mid-August to first

week of September) when distribution is the most constrained

(Mosnier et al., 2010). The Estuary portion of the beluga habitat

(Zones 1 to 3 in Figure 1) is flown using systematic parallel lines

with a random start placement, spaced by 2 or 4 nautical miles (3.7

or 7.4 km) for photographic and visual surveys, respectively

(Gosselin et al., 2014; St-Pierre et al., 2023). This sampling design

results in an exemplary high survey effort for both the photographic

and visual surveys (covering approximately 50% and 12% of the

survey area, respectively). The narrow Saguenay Fjord is flown up

and down on a single track, and the number of non-duplicate

sightings between passes, based on sightings location and a

maximum displacement speed for a beluga of 10 knots, is used as

a total count (St-Pierre et al., 2023). Photographic surveys using

large format color-positive films or digital images were flown

followed a strip-transect design, whereas visual surveys were

conducted with 2 to 3 visual observers and followed distance

sampling protocols (details in St-Pierre et al., 2023). While

individual sightings were used to assess effects from various

factors on availability bias, point abundance estimates as

determined by St-Pierre et al. (2023) formed the basis for

estimating the number of replicate surveys needed to ensure

adequate accuracy and precision.
Beluga habitat

The SLE beluga summer habitat is highly heterogeneous in

bottom topography and turbidity. For example, the mouth of the

Saguenay Fjord is a few tens of meters deep while 20 km to the

north-east, the Laurentian Channel reaches more than 350 m

(Figure 1). Turbidity also varies widely between sectors from 1.5

m to 11.6 m, with an average of 4 m during years with no excessive

rainwater runoffs (Kingsley and Gauthier, 2002). This heterogeneity

is likely to affect beluga availability to a camera or observer, and was

accounted for in the current study by dividing the beluga summer

habitat into three turbidity zones as per Gauthier (1999): Zone 1 has

high turbidity (1.5–2.5 m) and is located in the upstream portion of

the SLE (Upper Estuary); Zone 2 is of intermediate turbidity (3.5–

6.5 m) and includes the southern half of the downstream portion of

the SLE (Lower Estuary); Zone 3 has low turbidity (4.5–11.5 m) and

encompasses the northern half of the Lower Estuary (Figure 1). On

the assumption that white (adult) beluga can be detected at depths

equivalent to Secchi-disk measurements (Kingsley and Gauthier,

2002), mid-range turbidity values were used as thresholds for beluga

detection for the three zones (i.e., 2, 5 and 8 m, respectively). It is

noteworthy that the relative use of these different zones of turbidity

is not uniform among age and sex classes within the SLE beluga

population (Michaud, 1993; Ouellet et al., 2021). In general, adult

males are less often observed in the high turbidity zone than in the
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low turbidity one, whereas the opposite is true for adult females

with calves and juveniles.

Areas of consistent summer aggregation within each of the

three turbidity zones have been identified for SLE beluga using

two long-term datasets and different statistical approaches, which

yielded similar results (Lemieux Lefebvre et al., 2012; Mosnier

et al., 2016). Areas of high density (AHD; 50% kernel density)

identified by Mosnier et al. (2016) from aerial survey data were

retained for this analysis as they offered a full coverage of the SLE

beluga summer range; Lemieux-Lefebvre et al. (2012) identified

high residency areas but covered only the core of their summer

distribution. The specific functions associated with each of these

AHD have not been identified. However, based on the reasonable

assumption that foraging most often occurs in areas of AHD, with

transit occurring more frequently outside these areas, availability

to a passing aircraft should be less in AHD compared to transit

areas (i.e., outside of AHDs), and even more so when beluga feed

at depth and/or if they tend to remain closer to the surface when

transiting. These assumptions are supported by the behaviors

observed for SLE beluga inside and outside high residency areas

(Lemieux Lefebvre et al., 2018). Availability may also decrease

with increasing seafloor depth if beluga dive to the bottom,

although the proportion of time an animal is available to a

passing aircraft in this case would also depend on recovery time

at the surface.
Frontiers in Marine Science 04
Estimating availability bias

For a given survey, event S represents the occurrence of a group

of one or more beluga at or near the surface, and within field of view

(McLaren, 1961). For visual surveys, availability a is represented as

(S,x), the probability of such an occurrence at perpendicular

distance x from the track-line (in m). Availability depends on

beluga surface interval and dive durations (in s), and the amount

of time a point at or near the water surface at distance x remains

within observer view. Surface interval s and dive duration d are

treated as a two-state continuous-time Markov process, and are

estimated from individually-tracked beluga (Laake et al., 1997),

such that:

a(S, x) =  
s

s + d
+
d½1 − e−w(x)=d�

s   +d
(1)

Equation 1 is the addition of two ratios or probabilities. The first

ratio estimates the mean proportion of time during a dive cycle that

an animal spends at the surface or the probability that an animal is

at the surface when an aircraft arrives overhead. The second ratio

estimates the probability of this animal appearing within an

observer field-of-view during the aircraft passing, given the

probability it was diving when the aircraft arrived. This second

ratio is a function of w(x), the time any location at the surface at

distance x remains in the observer view (in s), given the obstructed
FIGURE 1

Movement patterns of the 27 St. Lawrence Estuary beluga equipped with archival tags (Tag data) that were retained for dive data analyses. Open
circles represent sequential surface intervals for individual whales. Turbidity, estimated using a Secchi disk, increased from Zone 1 to Zone 3, with
mid-range turbidity values of 2 m, 5 m, and 8 m, respectively (Kingsley and Gauthier, 2002). Dotted lines represent the limits of the population
summer range (Michaud, 1993; Gosselin et al., 2017; St-Pierre et al., 2023).
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lateral view forward and backward (angle Ø1 and Ø2, respectively in

radians), plane speed v (in m s-1) and perpendicular distance x of

the sighting (in m; Forcada et al., 2004; Gómez de Segura et al.,

2006), where:

w(x) =  
x
v
½cot (∅1 ) + cot(∅2 )� (2)

For photographic surveys, only the probability that an animal is

at or near the surface when the photo was taken is considered (i.e.,

first term in Equation 1), making availability necessarily lower for

photographic than visual surveys. In this case, availability P is

calculated as:

P =  
s

s + d
(3)

Availability adjusted for photo overlap (�P), i.e., for the

probability PD of a beluga being imaged in at least one of two

successive photographs, was calculated following Kingsley and

Gauthier (2002). This probability PD was estimated using tag data

for the range of intervals between photos recorded during SLE

beluga surveys (i.e., 3—19 s, for an achieved photo overlap of 0 to

39%; Lesage et al., 2023; St-Pierre et al., 2023).
Dive data collection

Availability bias for photographic and visual aerial surveys was

estimated using high-resolution (0.25 m and 1 s) dive data from 27

beluga from the St. Lawrence Estuary (Mk8 recorders, Wildlife

Computers, Redmond, WA). Tagging efforts spanned from June to

September 2001—2005, and covered a variety of habitat used by all

herd types and segments of the population (Figure 1*; Michaud,

1993; Mosnier et al., 2016; Ouellet et al., 2021). The suction cup

attached archival tags were equipped with a 30 g radio transmitter

(VHF, Telonics, Mesa, AZ), allowing remote tracking (400—600 m)

with minimal effects on behavior (Blane and Jaakson, 1994).

Tracking ceased either at dusk, when signal was lost, or when the

tag came off. Tracked individuals were geolocated during each

surface interval based on the animal’s relative distance (estimated

by eye or range finder) and angle from the tracking vessel (using

binoculars with compass), for which GPS position was logged every

minute. Surface intervals with missing positions were interpolated

from the preceding and following surface intervals when within

25 min from each other, i.e., SLE beluga maximum dive

time based on tag data (Lemieux Lefebvre et al., 2018)1.
Dive data analysis

Dive profiles and various statistics, including dive maximum

depth and duration, and surface time (post-dive), were extracted

using a custom-made program. Zero-offset correction was

performed manually using Instrument Helper (Wildlife
1 V. Lesage, Fisheries and Oceans Canada, Mont-Joli, QC.
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Computers Inc., Redmond, WA). The first and last dive cycles

were removed as they were incomplete. Data was excluded when

contact with the animal was lost for > 25 min, during periods

outside survey hours (i.e., between dusk and dawn, which varied

throughout the summer), or when individuals were in the Saguenay

Fjord where counts are uncorrected for availability bias.

A dive was initially defined as any excursion below 0.5 m to

capture series of short and shallow dives associated with surface

intervals. Dive duration corresponded to the time elapsed between

two successive surface intervals. A bout-ending criterion with the

maximum likelihood estimation method (MLM) discriminated

between dives and surface intervals (Langton et al., 1995; Luque

and Guinet, 2007). An optimization algorithm (an extension of

limited memory Broyden-Fletcher-Goldfarb-Shanno, or L-BFGS-B;

Liu and Nocedal, 1989) was applied as part of the function to

identify bouts. The upper and lower bound values were specified

following Luque (2007).

Animals can be detected under water before they reach the

surface, with detection depth varying with local turbidity. However,

although beluga might dip momentarily (0.1—3.6 s on average)

below the turbidity threshold during surface intervals and become

invisible to a visual observer, these effects on availability are trivial

even in the most turbid waters of the SLE, with time-in-view

exceeding dip time at virtually all perpendicular distances (Lesage

et al., 2023). Consequently, dip time was included as part of surface

time for visual surveys, and as part of dive time for photographic

surveys given that the latter are based on instantaneous detections.
Statistical analysis

The data set consisted of multiple geolocated dives (including

dive and post-dive surface interval) from focally-tracked beluga

with associated date, local time, and bathymetry (50 m horizontal

resolution; Canadian Hydrographic Service), and location relative

to turbidity zones (1, 2, or 3) and to areas of consistent aggregation

(inside or outside AHD zones). Data were explored using standard

procedures (Zuur et al., 2010) to ensure the absence of outliers in

the data, and of collinearity, interaction or dependency (i.e. repeated

measurements and spatial) among the observations of seafloor

depth, behavior and Zone variables.

Dependency among successive dives when examining

availability as a function of covariates was accounted for by

including beluga focal ID as a random intercept in generalized

additive mixed-effects models (GAMM). The validity of using a

GAMM (and not a generalized linear mixed model) was assessed

from the effective degree of freedom (edf) of the smooth term, where

an edf > 1 indicates a non-linear relationship. A single response

variable was considered for photographic surveys, i.e., the

proportion of time a beluga was available during a dive cycle [i.e.,

P in Equation 3], whereas two response variables were considered

for visual surveys [i.e., s and d were predicted using two separate

GAMMs]. Resulting functions from the GAMMs incorporating

each sighting’s location and associated characteristics were used

to obtain sighting-specific s and d, then to estimate availability a(S,x)

from Equation 1 (visual surveys), or were used to obtain sighting-
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specific P directly from Equation 3 (photographic surveys). Equation

1 also required information on perpendicular distance. When

missing, sightings were georeferenced from the secondary observer

data if available; otherwise, they were given a default value of 0 m (i.e.,

directly underneath the aircraft). Note that this was done only for

estimating environmental and behavioral context of the sighting and

not for estimating detection functions (details on how sightings with

missing perpendicular distance were handled in abundance

estimation are provided in St-Pierre et al., 2023). The relationship

between residuals from the models using s or d as response variables

was examined using scatterplots and Pearson correlation coefficients

to ensure none existed and thus, that a multivariate model was not

needed, and that incorporating functions for s and d into Equation 1

was appropriate.

Three covariates were considered in the GAMM models: Zone

(1, 2, and 3) and location relative to AHD (inside or outside) were

included as categorical covariates, whereas seafloor depth was

included as a smooth term. Julian date and time-of-the-day were

also considered for inclusion, but were ultimately excluded from the

models; there were concerns that the uneven coverage of daytime

hours due to short deployment times and span of tagging effort over

several months would increase the likelihood of a few individuals

biasing seasonal and diel effects. Initial models indicated that there

were no spatial residual patterns, and we therefore refrained from

using models with spatial dependency. Seven models were tested,

representing all potential combinations of the three covariates;

interactions were not included in the model (Supplementary 2

lists all the models tested). The highly restricted diving depth

range used by several of the tagged individuals prevented testing a

model with a random intercept and random smooths, i.e., with an

overall and an animal-specific depth smoother.

Generalized additive mixed models were used to describe effects

from environmental and behavioral features on P, s, and d in a
Frontiers in Marine Science 06
three-step process (Figure 2). First, the potential heterogeneity in

beluga surface s and dive times d as a result of the defined covariates

was explored without consideration for turbidity, i.e., using 0.5 m as

the threshold for defining a dive. These two response variables were

continuous and positive; therefore, we used a Gamma GAMM with

a log-link function. Thin plate regression splines were used for the

smoothers and restricted maximum likelihood (REML) was used to

estimate the smoothing parameters (Wood, 2018). The resulting

models were defined as follows:

dij or sij ∼ Gamma (mij, r)

E½dij� or E½sij� = mij

var½dij� or var½sij� = m2
ij=r

uij = exp (Intercept + Covariatesij + ai)

ai ∼ N(0, s 2)

where dij and sij are respectively, the estimated diving and

surface interval durations for animal i and jth dive, r is an

unknown parameter controlling the variance, and ai is a random

intercept for animal i, which is assumed to be normally distributed

with mean 0 and variance s2. This analysis was not conducted for

photographic surveys given that time s, spent at the surface above

0.5 m, was generally ≤ 1 second for most dives, resulting in overly

small P.

The added effect of turbidity on instantaneous availability P,

and on s and d was then examined as a function of the same three

covariates but this time, using 4 m as a threshold to define a dive,

i.e., the average turbidity for the SLE beluga summer habitat (as in
FIGURE 2

Analytical process for assessing effects from environmental and behavioral correlates on availability P during photographic surveys, and on surface
time s and dive time d using generalized additive mixed effects models (GAMM). An example of all the models tested is available in Supplementary 2.
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Kingsley and Gauthier, 2002). Given that P is a ratio ranging from 0

to 1, a beta GAMM with a logistic link function was used, such that:

Pij ∼ beta(pij, q)
E½Pij� = pij

var½Pij� = pij ∗ (1 − pij)=(1 + q)

logit(pij) = Intercept + Covariates + ai

ai ∼ N(0, s 2)

where Pij is the proportion of time spent at the surface for

animal i and jth dive, q is an unknown parameter controlling the

variance, and ai is a random intercept for animal i, which is

assumed to be normally distributed with mean 0 and variance s2.
In a third step, the added effect of location-specific turbidity was

examined using a composite file consisting of the data reprocessed

with a 2 m, 5 m and 8 m threshold to define a dive, and from which

only sightings falling within the corresponding zone of turbidity

(either Zone 1, 2 or 3, respectively) were extracted. Again, a beta

GAMM was applied to P (photographic surveys), and a gamma

GAMMs applied to s and d (visual surveys), to examine effects of the

three covariates.

Models were fitted using the mgcv package (v1.8-40; Wood,

2011) in R software (v4.2.2, R Core Team, 2022). The main tool to

find the optimal model was the Akaike information criterion (AIC);

the simplest model was selected when difference in AIC was< 2.

Model assumptions were verified by plotting Pearson residuals

against fitted values, and against each covariate in the model and

not in the model (Zuur et al., 2009). Spatial dependency of the

residuals and the random effect was assessed using variograms

(Schabenberger & Pierce, 2002).
Other factors affecting availability bias

The sensitivity of availability bias to survey design

(photographic or visual), survey platform (with different field of

view), distribution of sightings within the SLE beluga summer

range, turbidity threshold, and each covariate was examined using

the best model selected based on AIC and two datasets: 1) all

photographic surveys conducted from 1990—2019 (n = 11), and 2)

replicate visual surveys available from 2005 (n = 14), and 2019 (n =

4) (St-Pierre et al., 2023).

Because detection time varies with field-of-view and perpendicular

distance from the aircraft, search patterns of an observer (i.e., limits on

searching angles and distance from the aircraft) are expected to affect

availability bias. To examine this question, we used the four surveys

flown in 2019 with the Twin Otter, i.e., the platform offering the

largest field-of-view, and estimated availability bias while varying the

obstructed lateral view forward and backward (Ø1 and Ø2,

respectively) for each sighting (Equation 2).
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Estimating corrected group size
and abundance

The estimated cluster size for a group seen in a specific location

can then be corrected by producing for instance 5000 availability

bias estimates (P or a(S, x)) for each sighting according to its specific

seafloor depth, Zone, and AHD values by resampling model

parameters (including random effects) using posterior simulation

(Wood, 2018).

The 5000 P and a(S, x) obtained per sighting can then be used to

generate 5000 corrected cluster size estimates �E from observed

group size E, as follows for photographic and visual surveys,

respectively:

�E = E ·
1
�P
 or �E = E ·

1
a(S, x)

(4)

These corrected cluster sizes then form the basis for estimating

5000 abundance estimates and associated variance, which can then

be used as part of survey data analysis. An example of such an

application can be found in St-Pierre et al. (accepted).
Accuracy and precision of abundance
estimate and sample size

The sensitivity (i.e., relative precision and accuracy) of survey

abundance estimates to the number of replicate surveys conducted

was examined using a simulation-based power analysis. We based

this analysis on replicate visual surveys conducted during three

seasons: 14 surveys within a 29-day window in 2005, 6 surveys

within a 16-day period in 2009, and 8 surveys conducted within a

22-day period in 2014 (total surveys = 28) (St-Pierre et al., 2023).

Because each set of replicate surveys was conducted over a brief

time window, we assumed that underlying “true abundance”

remained constant within each year. We ensured that abundance

estimates from sequential surveys each year were independent by

testing for temporal autocorrelation using a Durbin-Watson test,

the results of which were found to be non-significant (P = 0.9974,

0.6911, and 0.7364 for year 2005, 2009 and 2014 respectively). We

next developed a simple Bayesian model to estimate the parameters

for a process-based simulation model of replicate surveys to use as

the basis for the power analysis. Using a process-based model to

inform simulations provided several advantages: 1) it allowed us to

generate large numbers of “new” survey data sets that would exhibit

the same underlying variance structure as observed data sets; 2) we

could more reliably extrapolate to smaller or larger numbers of

survey replicates; and 3) we could assess the relationship between

sample size and accuracy because simulated “true” values would be

known (Zielinski and Stauffer, 1996; Arnold et al., 2011; Bellier

et al., 2013). We structured the model to reflect two assumptions: 1)

uncertainty in survey point estimates and their associated variance

estimates are log-normally distributed (Fewster et al., 2009); and 2)

variation across years in log abundance, and across surveys in log
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observer error, is normally distributed and thus appropriately

modeled using a hierarchical design (Royle et al., 2007). Based on

these assumptions, we define the following parameters: �m(the
asymptotic median of log-transformed abundance estimates,

averaged across years); sm (which determines variation in log-

transformed abundance estimates across years); mt (the

asymptotic median log-transformed abundance estimate for year

t); �q(the average value of qs,t, which is the log of parameter ss,t

describing uncertainty in the abundance estimate for survey s); y
(which determines variation in qs,t across surveys); b (the average

effect of high-altitude surveys on log-transformed abundance

estimates); and f (a nuisance parameter allowing for differences

between the computed estimation errors and the actual precision of

replicate estimates). We assumed mt and qs,t were normally

distributed hierarchical parameters:

mt ∼ normal(�m,sm)

qs,t ∼ normal(�q ,y )
(5)

From the above-described base parameters we derived the

estimate for asymptotic “true abundance” for year t using the

standard equation for the mean of a log-normally distributed

variable:

E : truet = exp (mt +
s2

2= ), s = exp (�q) (6)

Additional derived parameters included the log uncertainty

parameter for survey s in year t (ss,t = exp(qs,t)), which we

converted to the expected estimator variance (V.ests,t) using the

standard equation for computing the variance of a log-normal

variable:

V : ests,t = ½( exp (s 2
s,t) − 1) · exp (2 · log (Es,t) + s2

s,t)� · f (7)

In Equation 7, Es,t represents the observed point estimate for

survey s in year t, assumed to be drawn from a log-normal

distribution:

Es,t ∼ log _ normal(mt + b · As,t ,ss,t) (8)

where As,t is a switch variable set to 0 for low altitude surveys

(i.e., 305 m) and 1 for high altitude surveys (i.e., 457 m). The

observed variance estimate for survey s in year t, Vs,t, was similarly

assumed to be drawn from a log-normal distribution:

Vs,t ∼ log _ normal( log (V : ests,t),sv) (9)

where parameter sv described uncertainty in variance estimates.

We fit the above-described model to observed data variables Es,t
and Vs,t available from the 28 replicate surveys, using standard

MCMC methods. We used R (R Core Team, 2022) and Stan

software (Carpenter et al., 2017) to code and fit the model, saving

10,000 samples after a burn-in of 1000 samples. We set vague normal

priors for �m, �q , and b, a vague gamma prior (with mean of 1) for f,
and half-Cauchy priors for variance parameters sm, sv and y
(Gelman 2006). These priors were selected to describe biological

feasibility but provide minimal information relative to the observed

data, and we ensured posteriors were distinct from priors by

graphically comparing distributions. We evaluated model
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convergence by graphical examination of trace plots from five

independent chains and by ensuring that the Gelman-Rubin

convergence diagnostic (R-hat) was< 1.01 and the effective sample

size (SSeff) was > 500 for all fitted model parameters. We conducted

graphical posterior predictive checking to evaluate model goodness of

fit, ensuring that out-of-sample predictive distributions of abundance

point estimates and variances were consistent with observed

distributions. We also calculated Bayesian-P values (using the sum

of Pearson residuals as the test statistic to be compared for observed

vs. out-of-sample predicted data), with good model fit indicated by

0.1< Bayesian-P< 0.9. We used model results as the basis for a power

analysis using iterated simulations of replicate surveys. Specifically,

we drew parameter values from the joint posterior distribution of the

fitted model and used these to generate simulated data sets of Es and

Vs by solving Equations 5–9. We created 1000 random data sets for

sample sizes ranging from n = 1 to n = 20 replicate surveys. For each

random data set, r, for sample size n, we calculated an abundance

estimate ( �Er,n) as the average of replicate survey point estimates (Es),

and we used the delta method to calculate the associated variance,
�Vr,n = (1=n2) · (SVS). We expressed the variance in terms of the

coefficient of variance (CV), calculated as:

CVr,n =
ffiffiffiffiffiffi
�Vr,n

p
�Er,n

.
(10)

We also computed a statistic describing relative accuracy,

P.accn, which we calculated as the proportion of random point

estimates (�Er,n) that differed by less than 15% from the “true

abundance value” for the given simulation (calculated following

Equation 6). We graphically examined the relationship between

sample size and CVr,n (reflecting the precision of abundance

estimates) and P.accn (reflecting the accuracy of abundance

point estimates).
Results

Twenty-seven of the 44 tags deployed could be used (one was

lost, four recorded no data, three provided data solely in the

Saguenay Fjord, and nine were deployed on beluga we lost sight

of after tagging). Deployment duration among these 27 tags varied

from 0.7 to 29.8 h. Once nighttime activity and other segments of

unusable data were removed, there remained an average of 4.5 h of

usable data per beluga (total: 134 h), with geolocations spread

among the three zones (Figure 1).

Not all individuals visited the three zones, with 9, 8, and 21 out of

27 individuals visiting Zones 1, 2, and 3, respectively. Seafloor depth

was unevenly distributed among these zones, being deeper on average

in Zone 3 (Figure 1), and also deeper on average outside than inside

AHD zones (95 m versus 37 m).
Correlations among variables

Data exploration revealed no specific problems with the data,

other than interindividual variability in s and d and irregularity in

spatial distribution, which were both expected. There was no
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relationship between s and d, with d [but not s] increasing with

seafloor depth.

Using a 0.5 m threshold to define a dive, d and s were variable

among the 27 tagged individuals, averaging 176.6 s (weighted SE =

12.6 s) and 51.6 s (weighted SE = 4.5 s), respectively. Beluga dove on

average for similar durations in all three zones of their summer

range; however, surface times were approximately 50% longer when

in the deeper zone (Zone 3) than when in the other two zones

(Supplementary Table 1A).

Overall, mean availability decreased with increasing turbidity.

As expected, availability was higher for visual than photographic

surveys due to dips below the turbidity threshold being logged as

part of surface time for visual surveys, although values became

almost identical between photographic and visual surveys at

turbidity ≥ 4 m (Supplementary Table 1B).
Dive time

Environmental correlates of beluga dive times were the same

regardless of whether effects of turbidity were considered (4-m
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average or zone-specific) or not (0.5 m) when estimating d.

Specifically, variations in dive time were best explained by models

including all three covariates, i.e., seafloor depth, Zone, and location

relative to AHD (inside or outside) (Supplementary 2). Generally, d

increased with seafloor depth down to about 50 m, with mild

fluctuations at deeper depths (Figure 3), and was overall longer when

belugas were inside AHDs or in Zone 1 (2 m turbidity threshold; the

Upper Estuary). In all three models (0.5 m, 4 m, or zone-specific

turbidity), a spatial dependency in Pearson residuals was noted up to

approximately 400 m. The average net displacement speed for these

tagged beluga (5.8 km h-1; Lemieux Lefebvre et al., 2012) andmean dive

durations (1.3—3.3 min depending on dive type; Lemieux Lefebvre

et al., 2018) suggest that spatial dependency was greatly reduced

beyond 2—3 consecutive dives or for dives performed > 4 min apart.
Surface time

Variations observed in s were generally unrelated to covariates.

Only when zone-specific turbidity was taken into account were Zone or

seafloor depth slightly improving the fit to the data over the intercept-
FIGURE 3

Mean dive time d (black curve) with 95% confidence interval (in blue) as a function of seafloor depth (m), Zone used, and whether animals were
inside or outside AHD, and when considering zone-specific turbidity. Turbidity 2, 5 and 8 m correspond to Zones 1, 2 and 3, respectively. Black dots
are raw data points.
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only model (Supplementary Table 3). However, the depth smoother

was non-significant (P-value = 0.34), and the Zone effect arose mainly

from a difference in s between the most and least turbid zones of the

study area (Zones 1 and 3). Similar to d, there was a mild spatial

dependency detected in Pearson residuals for s, also up to

approximately 400 m, i.e., within the time frame for completing two

consecutive dives.
Instantaneous availability (P)

When P was modulated according to local turbidity, influential

covariates included seafloor depth, Zone, and whether animals were

inside or outside AHD (Supplementary 4). Generally, instantaneous

availability to a photographic survey decreased from Zone 3 to 1,

decreased with seafloor depth, and was lower when animals were

inside than outside AHDs (Figure 4).
Model selection

The residuals from the optimal dive model d were unrelated

(correlation ≤ 0.10) to the residuals of the optimal surface model s,
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confirming that a multivariate model for Equation 1 was

unwarranted. Given pronounced differences in turbidity across

the study area, models accounting for local turbidity (2, 5 and 8

m) were deemed more appropriate for our datasets than models

assuming a uniform turbidity of 4 m. For photographic surveys, the

selected model included seafloor depth, Zone and location relative

to AHDs, with 26.4% of the deviance explained. For visual surveys,

availability was estimated using the model without any covariates

for s, and a model including all three covariates for d, which

explained respectively 17.8% and 22.6% of the total deviance.
Sensitivity analysis

Beluga availability was on average higher during visual than

photographic surveys (Figure 5). Estimates were also associated with

a larger variance for visual than photographic surveys, likely as a result

of variability in perpendicular distance among individual sightings and

thus, variable time-in-view (see Equation 1). Survey platform for

conducting visual surveys can also strongly affect availability through

their specific angles of obstructed field-of-view: the Twin Otter with a

5°-5° forward-backward obstructed view resulted in a mean availability
FIGURE 4

Instantaneous availability P (black curve) with 95% confidence interval (in blue) as a function of seafloor depth (m), Zone used, and whether animals
were inside or outside AHD, and when considering zone-specific turbidity. Black dots are raw data points.
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on average 54% higher (mean of 0.763, SE = 0.10 versus 0.496, SE =

0.007) than the Partenavia or Cessna 337 (mean 0.339, SE = 0.005),

which had a 30°-20° forward-backward obstructed field-of-view

(Figure 6). Using the 2019 Twin Otter visual survey data with

various combinations of forward-backward obstructed field-of-view,

our data indicates that the searching pattern of observers within the

available field-of-view can have a substantial impact on estimated

availability: a change from a 5°-5° to a 45°-45° or 0°-90° forward-

backward obstructed field of view reduced mean availability by 43—

46% (Figure 6). This analysis also highlights that applying an average

availability from tag data a posteriori to mean abundance estimates

instead of including this information in Equation 1 along with observed

perpendicular distances and realistic field-of-view data, is likely to lead

to an underestimation of availability and thus an overcorrection for this

bias, especially for survey platforms with a wider field-of-

view (Figure 6).

Based on photographic survey data, the majority of beluga

sightings in the SLE are made in the zone of highest turbidity during

summer time: in all but three surveys (all in 2019), between 50 and 75%

of the sightings were from Zone 1. This zone is also where mean

availability was the lowest (i.e., 0.307 versus 0.363 and 0.399 for Zones 2

and 3, respectively); not accounting for zone effects for SLE would

overestimate availability and thus, would lead to an underestimation

of abundance.

Mean availability estimates were generally the lowest when all

three covariates were included, i.e., the best model selected based on

AIC. This was true for both photographic and visual surveys.

Accounting for local turbidity (instead of using an average 4-m
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turbidity across the study area) increased availability by 2.6% and

1.6% on average for photographic and visual surveys, respectively.

Adding one covariate at a time to these models revealed that the

most influential covariate for both types of surveys was Zone; this

variable which corresponds to the latent processes associated with

using a specific zone, increased availability by 7.8% relative to

turbidity-only (Null) models in the case of photographic surveys,

and reduced availability by 3.8% relative to Null models in the case

of visual surveys. Seafloor depth changed availability (either

positively or negatively) by less than 2% in all but two [visual]

surveys (mean: -0.1% and +2.0% relative to the Null models for

photographic and visual surveys, respectively). In contrast,

sighting’s location relative to AHDs had, to one exception, a

consistently negative effect on availability (mean: -1.7 and -2.5%

for photographic and visual surveys, respectively).

Overall, accounting for all covariates and local turbidity decreased

availability by an average of 6.6% for photographic surveys, i.e., from a

mean of 0.363 for the Null model with a 4-m average turbidity (range

0.335—0.381), to a mean of 0.339 for the model with all three

covariates and location-specific turbidity (range 0.314—0.366)

(Figure 7). Similarly, using the full model for the 14 visual surveys

conducted in 2005 decreased availability by an average of 6.0%

compared to the Null model using a 4-m average turbidity and no

covariates (i.e., from a mean of 0.556 to 0.523). For a fictive population

of 1000 individuals, using a 4-m Null model instead of the full model

with location-specific turbidity would result on average in an under-

estimation of the mean population size by approximately 190 and 115

individuals or 20% and 10%, for photographic and visual

surveys, respectively.
FIGURE 5

Mean availability for all visual (n = 52) and photographic (n = 11)
surveys estimated using the best identified models (i.e.,
photographic surveys: a model accounting for location-specific
turbidity, and including as covariates the seafloor depth, Zone, and
location of sightings relative to areas of high densities (AHD); visual
surveys: a model which takes into account the observer’s field of
view, is estimated using a null model for surface time s, and one
accounting for location-specific turbidity and incorporating the
above three covariates for dive time d). Standard deviation (SD) is
used here to highlight differences in the range of sighting-specific
availability among surveys.
FIGURE 6

Effect of different combinations of forward-backward obstructed
field-of-view on mean availability, illustrated using the best model
for estimating availability and the four replicate visual surveys
conducted using the Twin Otter in 2019 (St-Pierre et al., 2023). The
horizontal dotted lines represent the range of mean availability
obtained for the 51 visual surveys, estimated from the 27 tagged
beluga while using turbidity thresholds varying from 2 m (lower line)
to 8 m (upper line). Standard error (SE) is used here to highlight
differences in mean availability among surveys.
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Precision and accuracy of
abundance estimates

The Bayesian model examining the sensitivity of abundance

estimates to the number of replicate surveys converged well and

provided excellent fit to the data, with all R-hat values ≤ 1.01, a

mean effective sample size of 2952 (minimum1433), and Bayesian-P

values for posterior predictive checks of 0.403 for Es,t and 0.503 for

Vs,t. A summary of estimated model parameters is provided in

Supplementary Table 5. Simulations based on this model indicated

that the precision of abundance estimates (CVr,n; Equation 10)
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decreased with sample size (number of survey reps), while

estimation accuracy (P.accn) increased with sample size

(Figures 8, 9). Because these functional relationships were non-

linear, there was a large benefit of conducting more than 1 or 2

survey reps, but a declining benefit of conducting more than 5 to 10

survey reps. A sample size of 5 survey reps provided an estimated

CV of 18% on average, while a sample size of 10 provided a CV of

13% (Figure 8). The probability that the resulting point estimate

deviated by less than 15% from the true value for a sample size of 5

was 0.65, while the probability that the point estimate deviated by

less than 15% from true value for a sample size of 10 was

0.76 (Figure 9).
Discussion

This study provided availability bias estimates for visual and

photographic survey designs, and offered a comprehensive analysis

of the relative influence of multiple methodological, environmental

and behavioral factors on these estimates. Using an exceptional

dataset, it also highlighted the large effect that a low number of

survey replicates may have on accuracy and precision of

abundance estimates.
Factors affecting availability bias

Although diving behavior is expected to vary as a function of

habitat type, local depth, season, activity, group size, sex and age

class (e.g., Würsig et al., 1984; Stockin et al., 2001; Southall et al.,

2005; James et al., 2006; Pollock et al., 2006; Langtimm et al., 2011;

Thomson et al., 2012), availability bias estimations are generally

based on averages, without consideration for contextual variables

(e.g., Barlow et al., 1988; Laake et al., 1997; Skaug et al., 2004;
FIGURE 8

Plot of the precision of abundance estimates as a function of sample size (number of replicate surveys). The solid line indicates the mean expected
coefficient of variation (CV) value associated with a given sample size, while the grey shaded band shows the 95% CI of the CV-sample size
relationship. The dashed lines show the CV values associated with a sample size of 5 (CV = 18%) and a sample size of 10 (CV=13%).
FIGURE 7

Relative contribution of adjustments made to account for behavioral
and environmental effects (red bars) on availability bias (blue bar),
estimated from the 27 tagged beluga while accounting only for local
turbidity and expressed as the correction (multiplier) applied to
abundance estimate.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1289220
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Lesage et al. 10.3389/fmars.2024.1289220
Doniol-Valcroze et al., 2020; Pike et al., 2020). Our results indicate

that both dive time and instantaneous availability, but not surface

time, were affected by local turbidity, seafloor depth, behavior

(i.e., transit versus foraging), and latent processes that were

habitat-specific. Our analysis confirmed that dives were longer

when animals were inside compared to outside AHDs, consistent

with the prediction that these areas are used for behaviors like

foraging. However, the impact of adjusting availability bias to

account for these effects was relatively minor compared to the

influence exerted by survey design (photographic or visual),

platform type, and observer search patterns (i.e., time-in-view).

The systematically higher availability bias observed for

photographic compared to visual surveys underscores the

importance of developing estimates that are specific to survey

design (i.e., distinguishing instantaneous from non-instantaneous

time-in-view). Using an instantaneous availability bias correction

when detection process is non-instantaneous can positively bias

abundance estimation (McLaren, 1961). For visual surveys, the

strong dependency of availability bias on survey platform and

obstructed field-of-view also raised questions about the influence

of the search patterns of observers, and how availability and

perception biases may counterbalance each other under different

conditions. For instance, observers may be instructed to search the

entire field-of-view available to them (e.g., St-Pierre et al., 2023) or

instead, may be asked to restrict search area near the aircraft within

a 0—90 degree forward angle (e.g., Hammond et al., 2013). More

groups available at the surface may be missed in the first case, thus

generating a higher perception bias. In counterpart, searching a

wider field-of-view is likely to lead to a larger number of detections

given the increase in detection time with distance from the aircraft.

For instance, potential time-in-view within the typical observation
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distances for SLE beluga surveys (i.e., effective strip half width of

~ 600 m; e.g., Gosselin et al., 2017) can vary from ~ 0 s (on the

trackline) to ~ 50 s for a Cessna 337 or Partenavia aircraft, and from

0 to ~ 270 s for a Twin Otter equipped with large bubble windows

(Supplementary 2 in Lesage et al., 2023).

With distance sampling, a minimum of 60-80 observations are

required to reliably estimate the detection function, and an even

larger sample size is required when sampling species with a

clumped distribution (Buckland et al., 2001). A basic assumption

in distance sampling is that objects on the track line are detected

with certainty, i.e., detection probability g(0) is 1.0 (Buckland et al.,

2001). When the number of sightings is expected to be low,

however, restricting search to an area near the aircraft or within a

small angle may reduce the overall sample size, increase availability

bias, and amplify the relative influence of individual sightings on the

estimated detection function and abundance (Matthews et al.,

2017). At high (or intermediate) density, searching efficiently

close to the trackline is desirable despite higher availability bias

correction, given that densities obtained from the reduced effective-

strip-width can be expanded without bias to unsearched areas

(Buckland et al., 2001). A potential caveat of such an approach,

however, is related to cluster size estimation. At high density,

observers continuing to monitor a large field-of-view may start

rounding counts and thus be less accurate, or may not use the

entirety of the field-of-view prescribed from limitation of the

aircraft or specific guidance (Hobbs et al., 2000). Lumping

multiple groups together at high density may inflate mean cluster

size and associated variance (e.g., St-Pierre et al., 2023). However,

this should theoretically be compensated by the encounter rate

estimate and variance, and not result in any bias except if rounding

or actual searching area is affected as mentioned above. This
FIGURE 9

Estimation accuracy (defined as the proportion of simulations where the deviation between estimated abundance and “true abundance” was< 15% of
true abundance) plotted as a function of sample size (number of replicate surveys). The solid line indicates the mean expected accuracy associated
with a given sample size, while the grey shaded band shows the 95% CI of the accuracy-sample size relationship. The dashed lines show the
proportional accuracy associated with a sample size of 5 replicate surveys (P.acc = 65%) and a sample size of 10 (P.acc = 76%).
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tendency may be exacerbated at short time-in-view, i.e., when

searching within a small angular area near the aircraft. Overall,

these findings indicate that decisions about the search area to cover

during line-transect visual surveys can have notable impacts on

abundance estimates and precision. They emphasize the

importance of clearly defining field-of-view and search behavior

to be adopted by observers at low and high densities for obtaining

an unbiased estimate of availability bias (see Buckland et al., 2001

for strategies).

Availability bias corrections are often applied directly to total

abundance as a proportion of time available to the survey platform,

without consideration for the variability of time-in-view with

perpendicular distance, i.e., not using Equation 1 (e.g., Hammond

et al., 2013; Heide-Jørgensen et al., 2016; Marcoux et al., 2016; Pike

et al., 2020). Our results further indicate that such an approach is

likely to bias abundance estimates by an unknown and variable

amount: a uniform but underestimated mean time-in-view would

bias availability downward and abundance estimates upwards,

whereas the reverse would lead to an underestimation of

abundance. Not accounting for the variability in perpendicular

distance among sightings when estimating availability will also

likely lead to an underestimation of survey variance (McLaren,

1961; Laake et al., 1997).

Previous studies have highlighted the sensitivity of availability

correction to turbidity for beluga surveys (e.g., Hobbs et al., 2000;

Kingsley and Gauthier, 2002; Marcoux et al., 2016). A previous

study of SLE beluga, observing the appearance and disappearance of

groups of beluga of various sizes from a hovering helicopter,

estimated instantaneous availability at 0.404 for areas with

turbidity of 1 to 2 m, and at 0.543 for areas with turbidity > 4 m

(Kingsley and Gauthier, 2002). In Cumberland Sound, availability

based on daylight satellite telemetry data summarized by 6-h period

(i.e., equivalent to instantaneous availability bias) varied from 0.224

to 0.485 for turbidity of 1 to 6 m, increasing abundance estimates by

factors of 4.46—2.06 (e.g., Marcoux et al., 2016). Turbidity effects of

a similar magnitude were noted in our study (Lesage et al., 2023,

Supplementary 4B). However, the tendency of beluga in the SLE to

occur in larger numbers in more turbid waters during surveys

(Lesage et al., 2023) lowered their overall availability to survey

platforms in our study.

Availability in our study was estimated from the behavior of

individuals, and not groups as in Kingsley and Gauthier (2002), and

was consistently lower (26—42%) than in the latter study. In both

studies, data collection required use of an aircraft or vessel. While

the helicopter altitude and vessel tracking distance were set to avoid

behavioral reactions, a possible effect on beluga cannot be ruled out

(Senigaglia et al., 2016). In the Kingsley and Gauthier (2002) study,

an overestimation of availability could arise from selecting the first

sighted beluga group if these individuals were engaged in more

visible behaviors. Maximum group size was also set as the

maximum number of beluga seen simultaneously; if not all beluga

surfaced synchronously during surface intervals, then true group
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size was underestimated and visibility overestimated. Kingsley and

Gauthier (2002) indicate that a recording session was initiated at the

sight of a randomly chosen group, but provided no information as

to when a session was terminated. If a session ended with the

disappearance of a group and not with the initiation of a new post-

dive surface interval, then surface time would be overrepresented

relative to total observation time in each session, again biasing

availability upwards. Tagging more than one individual in a group,

although challenging logistically, or examining drone videos from

multiple groups could have been instructive for understanding the

synchrony of surface intervals within groups and the link between

the probability of detecting a group during visual surveys versus

individual behavior.

Availability bias in this study was obtained using 27

individually-tagged beluga. While this sample size is much larger

than that of many studies having estimated availability of cetaceans

from tag data (e.g., Heide-Jørgensen et al., 2012; Watt et al., 2015b;

Matthews et al., 2017), a larger sample size, more evenly distributed

sample among zones, and ideally included in a spatial model, would

have been desirable. A sensitivity analysis using coastal dolphins

suggests that availability is unlikely to have been biased by our

sample size, but that an increase in sample size would have reduced

variance further (Brown et al., 2023). While beluga tagging effort

covered a large portion of the summer distribution of SLE beluga, it

did not reach the two extremities of the SLE (Figure 1). There were

also few individuals using Zone 3 that were sampled while over the

Laurentian Channel where seafloor depth can reach more than 300

m; many whales were in the shallower waters at the head of the

Channel. Beluga can reach depths of up to 1 000 m in other areas

(Citta et al., 2013) and thus, are not limited by seafloor depth in the

SLE. Beluga include benthic prey in their diet in the SLE (Vladykov,

1946; Lesage, 2021), and are expected to feed near the bottom at

least in some of the AHD identified (Mosnier et al., 2016). In our

study, dive duration increased with seafloor depth, although the

effect of seafloor depth or of being in an AHD on availability

appeared relatively weak. Given that 13—35% of the beluga may use

the deep and clear waters of the Laurentian Channel at any one time

(Michaud, 1993; see also Simard et al., 2023), increasing sample size

for this region within zone 3 might enhance the relationship

between availability and bottom depth and alter modelled

estimates of availability. There is currently no information leading

us to believe that beluga distribution or habitat use has changed

substantially since the tagging study in the early 2000s. However,

the extension of the tagging study to more recent years would

confirm dive patterns and habitat use have remained consistent

over time.

Another caveat of our study is related to not having sampled all

age- and sex classes: females with newborn calves were required by

research permit to be avoided. This segment of the population may

be more available than others to survey platforms (by diving less

often or to shallower depth), as suggested by diving records from

beluga elsewhere (Heide-Jørgensen et al., 2001), and from other
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species such as coastal dolphins and North Atlantic right whales

(Eubalaena glacialis) (Baumgartner and Mate, 2003; Brown et al.,

2023). Not including females with calved in our sample may have

biased availability downward.

An experiment in the SLE using grey and white beluga models

has determined that white adults can be seen at Secchi-disk depth

while grey juveniles can be seen on the film only at 50% or less of

Secchi-disk depth (Kingsley and Gauthier, 2002). Similar results

were obtained in the Arctic, where grey juveniles could only be seen

at depths half that of adults, and dark-grey neonate models, not

even at 20% of an adult depth (Richard et al., 1994). This means that

grey juveniles might be under-represented on photographs by an

unknown amount, leading to an underestimation of abundance.

This bias might be less in Zone 3 where young and darker juveniles

are less likely to be seen than in Zones 1 and 2 (Michaud, 1993;

Ouellet et al., 2021). This aspect could be examined further by

looking at differences in diving behavior of grey versus white

individuals in the different zones, and by estimating the

proportion of these classes in the population at the time surveys

are conducted. High contrast imagery is often used during

photographic surveys to increase detection of animals that are

just below the water surface. For SLE beluga surveys, most

animals appear white on such high contrast imagery, limiting its

use to estimate the proportion of grey versus white animals in

the population.
Precision and accuracy of
abundance estimates

Ideally, abundance estimates should be derived from surveys

targeting a single species to maximize data quality, and minimize

uncertainty around estimates (Buckland et al., 2001), although

surveying multiple species instead of focusing on a single species

may or may not bias detection probability and abundance

estimation depending on animal densities and degree of overlap

(Lambert et al., 2019). It is also recommended for abundance

estimates to have a precision (CV) of 0.3 or less if used for

management advice (International Whaling Commission (IWC),

2003). Given the expectation of a decrease in the coefficient of

variation (CV) with the increase in sample size (Kelley, 2007),

repeated surveys may be necessary in some cases to increase

precision of abundance estimates, and hence achieve greater

power to detect an abundance trend (Gerrodette, 1987).

However, surveys for marine mammals and cetaceans in

particular, are logistically challenging and generally highly

onerous. As a result, they are often multi-specific, with the

number of replicate surveys being generally limited to one or

two per year/season (e.g., Heide-Jørgensen et al., 2016; Doniol-

Valcroze et al., 2020; Pike et al., 2020). Overall however, our

analysis of an exceptional dataset of 8 to 14 replicate surveys per

year conducted over a short period of time suggests that

abundance estimates from single surveys, which is the rule for

most cetacean surveys (e.g., Hammond et al., 2013; Taylor et al.,
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2017; Mannocci et al., 2018; Doniol-Valcroze et al., 2020; Pike

et al., 2020), can be biased and imprecise. For social odontocetes

such as SLE beluga, which occur at low densities with a highly

clumped distribution, the results of single surveys may be too

imprecise and unreliable as a basis for management advice

(Nomani et al., 2012). These findings will be of particular

relevance for species with similar distributions, including species

of conservation concerns, i.e., that are at low abundance or

harvested near maximum sustainable yield (e.g., Wade and

DeMaster, 1999). It is also worth noting however, that there is a

recognized need to improve the methodologies currently available

for incorporating perception bias and sighting-specific availability

bias and various other sources of uncertainty into the abundance

estimation process. A more integrated approach to variance

estimation may help reduce the number of surveys needed to

achieve adequate precision and accuracy.
Conclusions

Accounting for behaviour and habitat-related effects on

availability of marine mammals to survey platforms can improve

accuracy of abundance estimates. Impacts of these factors are often

minor relative to those exerted by survey design (photographic or

visual), platform type, and observer search patterns (i.e., time-in-

view), but may be more substantial when turbidity impairs animal

detection during breathing sequences, or when strong behavioural

or topographical variability is expected within the surveyed area. It

is recommended that availability correction be applied to sightings

while accounting for perpendicular distance (i.e., using Equation 1)

and not just as a post hoc correction factor to surface

abundance indices.

There are benefits and drawbacks to both visual and

photographic surveys (reviewed in Hammond et al. 2021). Visual

surveys are often associated with a smaller correction for availability

than photographic surveys (unless search area is small), but require

a much larger correction for perception bias than photographic

surveys for which this bias may be negated by repeated photo

readings. Photographic surveys are well adapted to census

populations expected to be found at high densities; visual surveys

may be more appropriate for populations occurring at low or more

variable densities (Hammond et al. 2021). For visual surveys, the

field-of-view should be adjusted to ensure high detection

probability near the track line, even at high density, especially if

surveys are not flown in a double-platform configuration to account

for perception bias.

For some cetacean species, especially those with highly clumped

distributions such as social odontocetes, a single survey may not

achieve adequate precision and accuracy for abundance estimation.

Replicate surveys can help improve estimation precision and

accuracy in such cases: for SLE Beluga we found that 5 survey

replicates were generally sufficient to meet management needs,

although, this number might be less for other species or if a more

integrated approach is adopted for variance estimation.
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