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Detecting deep-sea megabenthic organisms is of foremost importance for

seabed resource surveys, typical habitat protection, and biodiversity surveys.

However, the complexity of the deep-sea environment, uneven illumination, and

small biological targets that are easily obscured all increase target detection

difficulty significantly. To address these, this paper proposes a deep-sea

megabenthic detection algorithm, DS-YOLO, based on YOLOv5s. To improve

the detection ability of the model for deep-sea megabenthic organisms, the

space-to-depth module and the spatial pyramid pooling cross stage partial

channel module are introduced in the Backbone layer to enlarge the receptive

field and enhance the retention of small-scale features. Then, the space-to-

depth and normalization-based attention modules and the Add and Concat

functions of the bidirectional feature pyramid network are introduced in the Neck

layer to increase the multiscale fusion ability of the model and highlight the

insignificant features. Finally, the two branches of the decoupling header output

the category and location of the target, which causes the model to utilize the

feature information to the maximum extent. Experiments showed that DS-YOLO

improved mAP0.5 from 89.6% to 92.4% and mAP0.5:0.95 from 65.7% to 72.3%

compared to the original YOLOv5s on the homemade dataset and outperformed

other algorithms in the YOLO series. DS-YOLO reaches 84.7 FPS for deployment

on mobile platforms. In addition, the combined DS-YOLO and DeepSORT

algorithm can be used to calculate the abundance and community structure of

deep-sea megabenthos. The model outperforms general target detection

models for deep-sea megabenthos detection and is suitable for use in

complex deep-sea environments.
KEYWORDS

computer vision, deep sea object detection, megabenthos, YOLOv5, automatic
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1 Introduction

The deep sea is rich in biological resources, including

megabenthos, which can support research on the origin of life

and global climate change and can also be used as raw materials for

new medicines and industrial products. Reasonable development,

research, and conservation of deep-sea megabenthos are of great

significance to the health of marine ecology and resource

development. The most intuitive and reliable way to obtain

information on deep-sea organisms is to use high-definition

cameras on submersibles to capture videos. However, due to the

complexity of the deep-sea environment, the obtained video images

are subject to many problems, such as off-color, fading, uneven

illumination, and the small proportion of deep-sea megabenthos in

the video images, all of which bring difficulties in the detection of

organisms. Recognizing organisms manually is time-consuming

and susceptible to subjective influences. This paper proposes a

deep-sea biology detection method, DeepSea-YOLO (DS-YOLO),

for automatically detecting deep-sea megabenthic organisms,

investigating the structure of biological communities, and

assessing marine ecological resources.

Deep-sea target detection is usually challenging due to complex

natural environments, so collecting target information accurately

and quickly is crucial. Traditional target detection methods use a

strategy for selecting regions based on sliding window ports (Dalal

and Triggs, 2005), which are untargeted and complex, and

manually designed feature extractors do not apply to multiple

classes of targets. In recent years, owing to the improvement in

computer performance, especially GPUs, deep learning methods

that require convolutional computation have gradually gained the

attention of researchers. Convolutional neural network (CNN)-

based models learn using backpropagation, and their excellent

feature extraction ability and multi-layer convolutional learning

render the models with good generalization ability (Krizhevsky

et al., 2017). Based on whether a candidate frame is generated,

target detection algorithms can be classified into two broad

categories: one-stage and two-stage. One-stage detection

algorithms achieve end-to-end training (i.e., simultaneously

determining the target category and detection frame) and thus

have faster detection speed. Typical one-stage algorithms include

YOLO (Yi et al., 2019), SSD (Liu et al., 2016), Retina-Net (Lin et al.,

2017a), and CornerNet (Law and Deng, 2018). Of these, the YOLO

family of algorithms is the most commonly used and includes

YOLO (Lin et al., 2017b), YOLO9000 (Redmon and Farhadi,

2017), YOLOv3 (Zhao and Li, 2020), YOLOv4 (Bochkovskiy

et al., 2020), YOLOv5 (Zhu et al., 2021), YOLOv6 (Li C. et al.,

2022), YOLOv7 (Wang et al., 2023), and YOLOv8 (Reis et al.,

2023). They are characterized by high speed but are not effective in

detecting small objects and are not accurate enough for

localization. The two-stage target detection algorithm first

generates a series of candidate bounding boxes as samples and

then classifies these samples using a neural network. Two-stage

detection algorithms include RCNN (Girshick et al., 2014), Fast-

RCNN (Girshick, 2015), Faster-RCNN (Ren et al., 2015), and their

improved series (Girshick, 2015). Faster-RCNN generates a

candidate region through region preconditioning, then extracts
Frontiers in Marine Science 02
features for the region with a neural network, classifies the target

with a classifier, and finally fine-tunes the position with a register.

With continuous improvement and innovation, the current one-

stage target detection algorithms have guaranteed speed while

considering detection accuracy.

The YOLO family of algorithms effectively learns and extracts key

information, such as the target’s color, texture, shape, and

background changes for detecting targets against complex

backgrounds. Such algorithms are widely used in autonomous

driving (Zhang et al., 2022), agricultural production (Zhao et al.,

2021), and medical diagnosis (Samothai et al., 2022). Therefore, some

scholars have also applied YOLO to underwater target detection.

Underwater target detection is affected by many factors, such as

difficulties in data acquisition, uneven illumination, interfering

information, and photo fading (Ancuti et al., 2012; Azmi et al.,

2019). Xia C. et al. selected images from a video clip for YOLOv2

training and achieved in-situ detection of Holothuroidea (Xia et al.,

2018). Hu, J. et al. proposed a lightweight, improvedmethod based on

YOLOv3 and combined it with a lightweight underwater imaging

system to detect fish (Hu et al., 2021). Moreover, Nixon, D. combined

YOLOv4 and Darknet to achieve high detection performance with a

small amount offish image data (Nixon, 2021). Fan H. et al. borrowed

the idea of GhostNet and introduced in YOLOv5 the

GhostBottleneck and Attention Module (CBAM), which ensures

the accuracy of the network while reducing the computation of the

model (Fan et al., 2021). Li S. et al. designed a new lightweight

Backbone network model using group convolution and inverse

residual block instead of the original Backbone network of

YOLOv5, which reduces the computation while increasing the

detection accuracy (Li S. et al., 2022). Zhai X. et al. aiming at the

problem of low contrast of underwater images of holothuroidea,

introduced the Multiscale Color Recovery (MSRCR) algorithm to

enhance the contrast of the images. They added a detection layer to

the Backbone of YOLOv5, combined with CBAM to make detecting

small targets more accurate (Zhai et al., 2022). Zhu J. et al. proposed a

marine organism detection method based on a one-stage deep

learning algorithm, YOLOv4- embedding, which can quickly detect

different species of marine organisms (Zhu et al., 2022). Wang H.

et al. improved YOLOv5 by incorporating multilevel features and

increasing feature mapping. The algorithm solved the target tracking

problem while maintaining a satisfactory level of accuracy and speed

(Wang et al., 2022). Xu X. et al. proposed a marine benthic organism

detection algorithm based on an improved YOLOv5 MAD-YOLO

(Xu X. et al., 2023). It uses VOVDarkNet as the feature extraction

backbone and AFC-PAN as the feature fusion network to enable the

network to learn the features and location information of objects at

different scales and improve its ability to perceive small objects.

Despite some progress, there are still many difficulties in detecting

benthic organisms in complex underwater environments (Al Muksit

et al., 2022; Li H. et al., 2022). Shen X. et al. proposed an attention

module based on multi-information perception (MIPAM) and

explored a more suitable attention mechanism for underwater

detection tasks (Shen et al., 2023). Li J. et al. proposed a novel

detection model and tracking algorithm and achieved good tracking

results on a laboratory homemade dataset, but the article did not

further study in the in-situ environment than that (Li et al., 2023). Liu
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K. et al. added an attention module to YOLO and investigated a

suitable image enhancement algorithm, achieving good results on a

public dataset (Liu et al., 2023). Xuan K. et al. proposed a deep

learning model for underwater small target recognition based on the

YOLOv5 attention module, studied the suitable image enhancement

algorithm, and achieved good results on public datasets (Xuan et al.,

2023). Xu W. proposed a deep learning model SO-YOLOv5 for sea

cucumber fusing coordinated attention and a bi-directional feature

pyramid network for the DT-YOLOv5 intelligent recognition model

(XuW. et al., 2023). Complex underwater environments are prone to

misses and misdetection of targets. Specifically, considerable human

and material resources are required in the deep sea to obtain bio-

visual information, posing challenges to deep-sea biological

detection research.

Currently, underwater target detection is mostly limited to

diving, with corals and sponges as typical species in the Pacific

deep-sea seamount communities, but less research has been done

on target detection methods for them. In deep-sea environments,

natural light is almost attenuated, and artificially provided light

sources become a necessary method for illumination. Under

artificial light source conditions, the process of collecting deep-sea

video data is susceptible to environmental influences. First, blue-

green light with a wavelength in the 480 ± 30 nm band has the

smallest attenuation coefficient in water, so most of the obtained

videos are bluish-green, resulting in color distortion. Second, the

contrast of deep-sea video data is usually low due to light scattering.

Again, the water quality becomes turbid due to underwater

submersible operations, resulting in severe blurring of the

obtained video. Finally, various substances in the water column

strongly absorb light energy, resulting in a general darkening of

organisms at a distance from the light source and loss of their

original colors and contours.

Based on the above, our study improved YOLOv5s, so the

proposed DS-YOLO model is more effective when applied to

detecting giant benthic organisms in complex deep-sea environments.

This study considered the problems of complex deep-sea

environments, small image areas occupied by target organisms,

and low resolution and introduced the SPD-Conv module in the

Backbone and Neck layers of YOLOv5 to retain small-scale feature

information and improve the feature learning efficiency.

Sediments stirred up by the bottom of the submersible and the

complex seafloor topography have obscured the organisms to

varying degrees. This research led to a smaller effective feature

area, expanding the sensory field of the model by replacing the

spatial pyramid pooling (SPP) module of the Backbone layer with

the SPP cross stage partial channel (SPPCSPC), enriching the

features in the region of the missing values, and strengthening the

model’s feature fusion ability for partially occluded targets.

Deep-sea benthic organisms of the same type vary greatly in

size; for example, in the hexactinellida class, large sponges can reach

more than 1 meter while small sponges can be less than 10

centimeters. Models are needed that can focus on features at

different scales to improve detection accuracy. Since the FPN

+PAN structure used in the Neck layer of YOLOv5 could not

make full use of the features between different scales, the Neck layer

of this model drew on a bidirectional feature pyramid network
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(BiFPN) structure with cross-scale connectivity and weighted

feature fusion. This layer used the Add and Concat functions to

allow the model to better carry out multiscale feature fusion, thus

improving detection accuracy.

Most deep-sea benthic organisms vary widely in characteristics

from one another, and it is usually only necessary to focus on some

of the organisms’ important characteristics to effectively classify

them. To strengthen the network’s attention to deep-sea

megabenthic targets and reduce the weights of insignificant

features, a normalization-based attention module (NAM) was

added at the end of the Neck layer to highlight features by

calculating the variance of the weights of the training model and

enhance the detection of small targets.

To address the lack of attention to the classification and

localization tasks in YOLOv5, two branches were designed using

decoupled detection heads for the localization and classification

tasks to reduce the mutual interference and enable the model to

make full use of the feature information.
2 Methods

2.1 Overview of Yolov5

YOLO is an innovative design concept for predicting a target’s

type and bounding box by direct output. Much research in target

detection focuses on improving optimization based on the YOLO

family. YOLOv5, one of the famous one-stage target detection

algorithms, has been widely used since it was proposed by

Redmon J. in 2016 due to its simple network structure and

extremely fast detection speed. Due to the limited computational

capacity of deep-sea submersibles, which lack GPU devices, the

computational requirements for the model are relatively low. In this

study, we use YOLOv5 as the base model and further enhancing it

to address the challenges of real-time processing and maintaining

high accuracy in deep sea environments. The network structure of

YOLOv5 is shown in Figure 1.

The YOLOv5 structure comprises Input, Backbone, Neck, and

Head layers. First, the images in the training set are fed to the

Backbone layer after processing, such as mosaic image

enhancement, k-mean computation of anchor frames, and image

scaling. The Backbone layer of the model is responsible for

extracting the target features, which consist of Focus, Bottleneck

CSP, and SPP. The Neck layer is responsible for augmenting the

extracted target features, adopting the structure of PA Net, which

can pass the target features of different scales for multiscale target

detection. The Neck layer enhances the extracted target features and

has the PA Net structure. Note that C3 in Figure 1 consists of

BottleneckTrue in Backbone and BottleneckFalse in Neck. The

output is processed by the GIOU function and a non-great

suppression module, which can obtain three different scales of

feature maps. If the prediction frame does not intersect the real

frame, the GIOU function uses non-great suppression to enhance

the detection of multi-targets and partially occluded targets.

YOLOv5 ultimately outputs the position, category, and prediction

probability of the objects in the original image and labels the targets.
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Based on the difference in feature map width and convolution

depth, the YOLOv5 family can be divided into YOLOv5s,

YOLOv5m, YOLOv5l, and YOLOv5x (Li et al., 2021). These four

algorithms have the same network structure as YOLOv5, with

YOLOv5s having the smallest feature map width and convolution

depth. The latter three algorithms are obtained by continuously

widening and deepening the feature maps and convolution depths

based on YOLOv5s, and their detection accuracy increases in order,

but their speed decreases.
2.2 DS-YOLO structure

Although YOLOv5 performs better in common target

detection algorithms, most video blurring and color distortions

in deep-sea environments make detecting organisms difficult. To

improve the detection effect, this paper proposes the DS-YOLO

target detection algorithm, whose structure is shown in Figure 2.

In the Backbone layer, a space-to-depth (SPD) module is

located before each C3 module, which increases the retention

of small-scale features in the channel dimension and improves

the small target detection capability. The original SPP module is

replaced with SPPCSPC to improve the feature extraction

capability. In the Neck layer, the original Concat module is

replaced with a weighted BiFPN module, and both Add and

Concat are used to retain more feature information. The NAM

is added at the end of the Neck network and calculates the

variance of the weights of the training model to highlight

features. Finally, a decoupled head separates the classification

and regression tasks to reduce their mutual interference and

improve the detection effect.
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2.2.1 Space-to-depth
CNNs are often designed using convolutional steps and pooling

layers, which can lead to inefficiencies in feature learning and loss of

information at small scales. The SPD module consists of an SPD layer

and a non-step-size convolutional layer that extends the image

transformation technique to downsampling the feature maps within

and across the CNN while preserving all features in the channel

dimension, so there is no loss of information, and it works better on

low-resolution images and small target detection tasks with better

results (Sunkara and Luo, 2022). This is achieved by scale segmenting

the original feature maps of arbitrary dimensions, X(S, S, C1). With an

original feature map of any size, we can obtain scale*scale subfeature

maps, all of which have a scale of x
scale ,

y
scale ,C1

� �
, as shown in the

following formulas (Equation 1):

f 0,0 = X½0:S:scale, 0:S:scale�,

f 1,0 = X½1:S:scale, 0:S:scale�,

⋯

f scale−1,0 = X½scale − 1:S:scale, 0:S:scale�,

⋮

f 0,scale−1 = X½0:S:scale, scale − 1:S:scale�,

f 1,scale−1 = X½1:S:scale, scale − 1:S:scale�,   and

⋯

f scale−1,scale−1 = X½scale − 1:S:scale, scale − 1:S:scale� (1)
FIGURE 1

YOLOv5 network structure.
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When scale = 2, the feature maps X can be obtained with four

subfeature maps all of size S
2 ,

S
2 ,C1

� �
to downsample the subfeature

maps. Downsampling is doubled when the subfeature maps are f0,0, f0,1,

f1,0 and f1,1. Next, these four subfeature maps are connected along the

channel dimension to obtain a new feature map  X0 S
2 ,

S
2 , 4C1

� �
. The

spatial dimension X' is reduced by a factor of two, and the channel

dimension is increased by a factor of two. After completing the above

SPD transformations, the non-strided layer C2 filter can transform the

intermediate feature map X' into X0} S
2 ,

S
2 ,C1

� �
and the step size of the

transformationprocess is 1 so that the feature information is preserved to

the maximum extent. The specific module of SPD is shown in Figure 3.
2.2.2 SPPCSPC
The SPP module and, by drawing on the CSP structure,

constitutes the SPPCSPC module. In this study, we replaced

SPPCSPC with SPP (Wang et al., 2023). The SPP structure has

four branches to perform MaxPool operations, with pooling kernel

sizes of 1, 5, 9, and 13. These MaxPool operations enable the SPP
Frontiers in Marine Science 05
structure to deal with four different sensory fields, which can better

differentiate between large and small targets. CSP divides the output

into two branches and performs different operations. The SPPCSPC

structure is shown in Figure 4. It improves the model’s ability to

recognize deep-sea megabenthic organisms through convolution,

batch normalization, activation function, and pooling. SPPCSPC

also improves the feature extraction of the target with a minor

increase in the parameters and amount of computation.
2.2.3 BiFPN
The FPN structure in the original YOLOv5 network is substituted

with BiFPN to fuse the deep, shallow, and input feature information,

enhance feature fusion, and reduce the feature information loss in

convolution, which improves the detection capability of the flexible

target foreign objects (Tan et al., 2020). The FPN and BiFPN

structures are shown in Figure 5. Since the nodes at the upper and

lower input edges contribute little to the feature fusion, the nodes in

the BiFPN structure are removed, which helps to simplify the
FIGURE 3

Structure of the space-to-depth module (shown in scale = 2).
FIGURE 2

DS-YOLO network structure.
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network. For the case where the output and input nodes are in the

same layer, adding an edge between the two nodes allows the network

to fuse more features without increasing the computational load.

The network model divides, feature fusion into Add and Concat

processes. The Add operation increases the amount of information

describing the features of the image, but only the amount of

information under each dimension is increased, and the number

of dimensions describing the image is not increased. The Concat

operation merges the number of channels, increasing the number of

features describing the image, and the information under each

feature is not increased. Therefore, the Add operation can be

considered a special form of Concat, and its computation load is

smaller than that of the general Concat. In this paper, the Add and

Concat operations retain more feature information under the

careful consideration of feature fusion and computation amount.

2.2.4 NAM
The NAM attention mechanism acts as an efficient, lightweight

attention module that highlights features by calculating the variance of

the weights of the training model. NAM adopts the modular

integration of CBAM with a redesigned Channel Attention Module

and Spatial AttentionModule (Liu et al., 2021). The channel and spatial

attention modules in the NAM are shown in Figure 6, respectively.

In the Figures above, Mc and Ms denote the output

characteristics of the channel and spatial modules, respectively.

They are calculated by Equation 4 and Equation 5 respectively.
Frontiers in Marine Science 06
Wg =
g i

oj=0g j
(2)

Wl =
l i

oj=0l j
(3)

Mc = Sigmoid Wg (BN(F1))
� �

(4)

Ms = Sigmoid Wl(BNs(F2))ð Þ (5)

Of these, gi and li are the channel and spatial scale factors,

respectively, and Wg and Wl are their associated weighting factors.

They are calculated by Equation 2 and Equation 3 respectively. The

scale factor in the batch normalization is used for the channel

attention sub-module, and the variance of the scale factor indicates

the weight importance from Equation 6, i.e.,

Bout = BN(Bin) = g
Bin − mbffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2

b + e
q + b (6)

mb and sb are the mean and standard deviation of b, respectively,
and g and b are trainable affine transformation parameters.
2.2.5 Decoupled head
Coupled detection heads are used in the YOLOv5 algorithm,

where both classification and regression tasks are performed in a

single head. These two tasks interact with each other during model

training. Depending on the classification confidence, redundant

frames are removed during post-processing using non-maximal

suppression. This may result in the erroneous deletion of some of

the predicted frames due to the mutual interference of the

classification and localization tasks. Because of this, the model has

more difficulty classifying and regressing each target in the image.

The decoupled head uses output feature maps with two different

channels for category and location computation separately, which
FIGURE 4

Spatial pyramid pooling cross stage partial channel structure.
BA

FIGURE 5

Structure of the feature pyramid network (A) and bidirectional feature pyramid network (B).
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can improve the accuracy while reducing the miss-detection rate

(Ge et al., 2021).

The specific structure of the decoupled detection head is shown

in Figure 7, where the input feature map is first convolved by 1×1 to

reduce the channel dimension to 256 and then input to the parallel

branch with two 3×3 convolutions. Then, the result obtained by re-

inputting the result of the previous step to the 3×3 convolution is

used for the classification task. If the result of the previous step is re-

input to two parallel 1×1 convolutions, it can be used for the

regression for localization and confidence. After this, it is possible to

output the classification, localization, and confidence tasks using

different detection layers, which substantially improves the

detection capability of the network and alleviates the leakage

problem that occurs during non-maximal suppression.
3 Experiments and analysis headings

3.1 Dataset construction

To verify the effectiveness of the proposed method in this paper,

the dataset used for the experiment contains two parts: one part is from

the video data obtained from the ROV dives during the China Oceanic

61 survey, and the other part is from the image data in the URPC2020

public dataset. Combining the filmed deep-seabed videos with the

public data produces a dataset representing different seabed scenes.

During the China Oceanic 61 cruise, ROVs captured videos and

still photos at a water depth of 1500–4500 m. A combination of

video screenshots and photographs was used to obtain benthic

biological information, including a total of 1115 high-definition

video screenshots with a resolution of 1920×1080, 2040 still
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photographs with a resolution of 3648×2736, and 457 images

selected from the URPC2020 public dataset with a resolution of

3840×2160. The whole dataset consists of 3612 images, including 13

different marine megabenthos: bolosominae, ophiuroidea, dead

sponges, pheronematidae, lepidisis, pisces, nematocarcinidae,

holothuroidea, isididae, plexauridae, tretopleura, echinus, and

starfish, as shown in Table 1.

It is worth noting that when the ophiuroidea were attached to

corals and sponges, the morphological differences were large, and it

was not easy to distinguish between individuals. As shown in

Figure 8, only the ophiuroidea on the bedrock on the left side

were examined. The ophiuroidea attached to other organisms on

the right side were not studied for the time being. Lepidisis show

greater morphological differences with age, as shown in Table 1, so

they are discussed separately in this paper. The echinus and starfish

are from the labeled data of URPC2020, and the other 11 organisms

are from the ROV submersible survey. In this paper, the category

and location information of the organisms from the ROV shots was

annotated one by one using the Lamblme annotation tool and saved

as a json file. Then, the json file was converted into a txt file suitable

for YOLO, and the dataset was divided according to the ratio of the

training set: test set=5:1, i.e., 3012 and 600 images were used as the

training set and test set, respectively. The statistics of the number of

organisms in each training set and test set are shown in Table 1.
3.2 Indicators for model evaluation

This paper evaluates the effectiveness of the model using Average

Precision (AP), two accuracy averages (mAP0.5 and mAP0.5:0.95),

and Giga Floating-point Operations Per Second (GFLOPs). These

criteria are widely used for evaluating target detection tasks.

AP refers to the area under the Precision-Recall (PR) curve as

shown in the following Equations 7–9.

Precision =
TP

TP + FP
; (7)

Recall =
TP

TP + FN
(8)

AP =
Z 1

0
P(R)dR (9)
FIGURE 7

Decoupled head structure.
BA

FIGURE 6

Channel attention module (A) and Spatial attention module (B).
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In the above equations, the True Positive (TP) represents

correct detection, i.e., the number of detection frames with IOU

greater than or equal to a certain set threshold value; False Positive

(FP) represents false detection, i.e., the number of detection frames

with IOU less than a set threshold; False Negative (FN) represents

the number of targets not detected; P (Precision) stands for

detection accuracy, i.e., the proportion of the results predicted by

the model that are correct; and Recall (R) stands for the detection

rate, i.e., the proportion of all real targets that the model

correctly predicts.
TABLE 1 Statistics on the number and example image of organisms.

Example Image
Total

number

Training

set
Test set

combined

organisms
– 6008 4981 1027

Bolosominae 909 760 149

Ophiuroidea 326 273 53

Dead sponge 370 312 58

Pheronematidae 536 449 87

Lepidisis 815 689 126

Pisces 300 244 56

Nematocarcinidae 216 182 34

Holothuroidea 120 95 25

Isididae 333 276 57

Plexauridae 105 89 16

(Continued)
TABLE 1 Continued

Example Image
Total

number

Training

set
Test set

Tretopleura 263 225 38

Echinoidea 1174 960 214

Asteroidea 541 427 114
fron
FIGURE 8

Ophiuroidea in different positions. The red circle on the left
indicates the Ophiuroidea on the bedrock. The red circle on the
right indicates the Ophiuroidea attached to other organisms.
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mAP refers to the average of all category APs and is given by

Equation 10

mAP =
1
mo

m

i=1
APi (10)

where m is the number of categories in the test set. In this study,

mAP0.5 and mAP0.5:0.95 are used as the evaluation criteria.

mAP0.5 represents the average value of APs of all categories

when the IOU threshold is set to 0.5, which is mainly used to

reflect the recognition ability of the model. mAP0.5:0.95 represents

the average value of APs of all categories when the IOU threshold is

set from 0.5 to 0.95 in steps of 0.05, which is mainly used to reflect

the recognition ability of the model in predicting target locations

and boundary regression. GFLOPs are the number of floating-point

operations per second, representing the computational power of

the model.
3.3 Experimental procedure

The hardware configuration used in this experiment was as

follows: an Intel Core i9-9920X processor @ 3.50GHz and an

NVIDIA Quadro P5000 graphics card. The software environment
Frontiers in Marine Science 09
was CUDA 11.5 and cuDNN8.3.3, and the operating system was

Windows 10. The network model was based on the Pytorch

framework, and Python version 3.7 and Pytorch version 1.11.0

were used. In the experiment, the batch size was automatically set

according to the number of model parameters and computation, the

epoch was pre-set to 1500, and the training was stopped when the

number of model iterations was greater than 100, and there was no

improvement in the detection effect (mAP0.5 accounts for 5% of the

total, and mAP0.5:0.90 accounts for 95% of the total). Using the

SGD optimiser, the learning rate was set to 0.01, the momentum

was set to 0.9, the initial learning rate was set to 0.01, the cosine

annealing strategy was used to reduce the learning rate, and the

weight decay was set to 0.0005.
3.4 Experimental results

3.4.1 Ablation experiments
To validate the detection performance of the algorithm

proposed in this study and to explore the effect of a particular

substructure of the network on the model, we designed nine sets of

ablation experiments for DS-YOLO based on YOLOv5. Table 2

shows the results. In the table, “√” represents the introduced
TABLE 2 Results of DS-YOLO ablation experiments.

Methods SPD SPPCSPC BiFPN NAM Decoupl-
ed GFLOPs mAP0.5 mAP0.5:0.95

YOLOv5s – – – – – 16 0.896 0.657

Model 1 √ – – – – 18 0.907 0.679

Model 2 – √ – – – 21.1 0.914 0.668

Model 3 – – √ – – 16.5 0.908 0.66

Model 4 – – – √ – 15.9 0.909 0.668

Model 5 – – – – √ 21.4 0.913 0.696

Model 6 √ √ – – – 23.1 0.913 0.682

Model 7 √ – √ – – 18.5 0.919 0.679

Model 8 √ – – √ – 17.9 0.913 0.678

Model 9 √ – – – √ 23.4 0.917 0.701

Model 10 – √ √ – – 21.8 0.901 0.652

Model 11 – √ – √ – 21 0.904 0.658

Model 12 – √ – – √ 26.5 0.914 0.696

Model 13 – – √ √ – 16.6 0.908 0.659

Model 14 – – √ – √ 22.2 0.91 0.685

Model 15 – – – √ √ 21.4 0.909 0.694

Model 16 – – √ √ √ 22.2 0.912 0.69

Model 17 – √ – √ √ 26.5 0.905 0.687

Model 18 – √ √ – √ 22.2 0.904 0.687

Model 19 – √ √ √ – 21.8 0.907 0.653

Model 20 √ – – √ √ 23.3 0.909 0.707

(Continued)
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module, “-” represents the unquoted module, and bold indicates the

optimal effect.

The effectiveness of the proposed method can be seen in

Table 2. Model 1 improved mAP0.5:0.95 by 2.2% and mAP0.5 by

1.1% after adding the SPD-Conv module, indicating that SPD-Conv

could retain feature information to a larger extent. Model 2 replaced

the original SPP module with the SPPCSPC module to expand the

model’s sensory field with a small amount of computation.

mAP0.5:0.95 and mAP0.5 improved by 1.1% and 1.8%,

respectively. Model 3 increased mAP0.5:0.95 and mAP0.5 by

1.2% and 0.3%, respectively, while increasing the computation

load by a small amount. After adding the decoupled detection

head with adaptive partial occlusion to the model, Models 5 and 9

presented satisfactory performance, with mAP0.5:0.95 improving

by 3.9% and 5.4%, respectively, indicating that the decoupled

detection head reduced the problem of high missed detection rate

due to overlap and occlusion during the detection process. By

incorporating all the improved methods presented in the table, it

can be seen that DS-YOLO improved mAP0.5:0.95 and mAP0.5 by

6.6% and 2.8%, respectively, relative to YOLOv5, suggesting that it

is highly effective in detecting deep-sea megabenthic organisms.

Figure 9 shows that DS-YOLO converged faster, showed better

detection performance, and had less loss during training than

YOLOv5s. To further validate the effectiveness of DS-YOLO, this
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study compared the algorithm with YOLOv5s AP0.5:0.95 for

various organisms, and the results are shown in Figure 10.

As shown in Figure 10, the mAP0.5:0.95 of DS-YOLO proposed

in this paper improved by 6.6% relative to YOLOv5s. Pisces showed

the largest improvement of 16.0%, followed by plexauridae and

holothuroidea, with 12.1% and 11.3%, respectively. For the

detection of various other marine megabenthic organisms, the

method proposed in this paper had different degrees of

improvement. These experiments indicate that, relative to

YOLOv5, DS-YOLO improved the classification and localization

tasks and detection performance.

3.4.2 Comparative experiments
To verify the model performance and detection effect of DS-

YOLO, five other models were selected for comparison

experiments. All the YOLO series algorithms used in the

experiments met the real-time detection requirements, and the

results are shown in Table 3. The detection effect of DS-YOLO

was the best in both mAP0.5:0.95 and mAP0.5 evaluation metrics.

Regarding GFLOPs, DS-YOLO was better than YOLOv4-tine and

YOLOv5s, but the increase in inference time is acceptable

considering the enhanced performance. DS-YOLO reached 84.7

FPS, which makes the model suitable for deployment on mobile

platforms. Based on the above, it can be concluded that the DS-
TABLE 2 Continued

Methods SPD SPPCSPC BiFPN NAM Decoupl-
ed GFLOPs mAP0.5 mAP0.5:0.95

Model 21 √ – √ – √ 23.9 0.915 0.707

Model 22 √ – √ √ – 18.4 0.919 0.682

Model 23 √ √ – – √ 28.5 0.905 0.696

Model 24 √ √ – √ – 23 0.912 0.675

Model 25 √ √ √ – – 23.6 0.914 0.679

Model 26 √ √ √ √ – 20 0.915 0.675

Model 27 √ – √ √ √ 23.8 0.917 0.705

Model 28 √ √ – √ √ 28.4 0.914 0.694

Model 29 √ √ √ – √ 29 0.918 0.695

Model 30 √ √ √ √ – 23.5 0.917 0.674

DS-YOLO √ √ √ √ √ 28.9 0.924 0.723
“√” represents the introduced module, “-” represents the unquoted module, and bold indicates the optimal effect.
FIGURE 9

Fitting curves of YOLOv5s and DS-YOLO.
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YOLO algorithm outperforms the common YOLO family of

algorithms for deep-sea megabenthic detection and meets real-

time requirements.

3.4.3 Qualitative analysis
The trained models were tested against small targets, poor

illumination, partial occlusion, high exposure, target overlap, and

special background conditions, and the organisms included

bolosominae, ophiuroidea, dead sponges, pheronematidae,

lepidisis, isididae, and echinus and starfish on the public dataset.

The automatic collection of deep-sea megabenthic organisms

requires high detection accuracy, so the confidence threshold of

the detector was set to 0.7. Figure 11 shows some of the results for

YOLOv5 and DS-YOLO. In the first set (A, B) of comparison plots,

YOLOv5 did not detect the small-scale bolosominae and

pheronematidae, and DS-YOLO successfully detected the two

small, missed targets, demonstrating a strong capability in small

target detection. The second group (C, D) shows that a large part of

the echinus at the top of the comparison image was occluded,

causing YOLOv5 to fail to detect it successfully, However, DS-

YOLO detected its position correctly, showing that DS-YOLO had a

better ability to detect organisms that are partially occluded. The

third group (E, F), there is a cross between the two corals on the

upper right. YOLOv5 misdetected them, but DS-YOLO successfully
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showed the edge area, demonstrating its excellent ability to detect

overlapping organisms. In summary, the detection performance of

DS-YOLO proposed in this paper outperforms that of the original

YOLOv5 in multiple extreme scenarios in the deep sea and on

public datasets, and DS-YOLO is therefore suitable for use in

complex deep-sea environments.

3.4.4 Video counting and bio-density calculation
To further validate the capability of DS-YOLO for video

counting of deep-sea megabenthic organisms, this paper

demonstrates the effectiveness of DS-YOLO+DeepSORT for

biological target tracking. DeepSORT first obtains a predicted

trajectory using the Kalman filter prediction module. Then, a

Hungarian algorithm is used to determine how well the detection

result of the current frame matches the predicted trajectory. The

specific calculation Equation 11 is as follows:

a(1)(x, y)=(ay− tx)
rB−1

−y(ay− tx) (11)

Where ay is the position of the y target detected by the detection

algorithm, tx is the position of the target predicted by the x tracker,

and By is the covariance matrix, and the above formula indicates the

fitting degree between the y detection result and the x motion

trajectory. Finally, incorrect trajectories are eliminated during

tracking to complete target tracking, and the Kalman filter

module updates the corrected trajectories. The experimental video

comes from two dives in the China Oceanic 80 voyage with a frame

rate of 30, and this paper stipulates that the counting is valid when

the number of frames in which the target appears exceeds 60. The

object tracking results are shown in Table 4.

When the organism is judged as an effective organism, the

model will take the position information of the deep-sea

submersible as the actual position of the organism. This method

of determining the position will produce some errors, but the errors

are usually regarded as within the acceptable range. Since the

submersible can get its actual position every 7 seconds, we think

that the submersible’s diving trajectory is a broken line obtained by

connecting all the actual positions. When the deep-sea submersible
FIGURE 10

Comparison of AP values for various organisms.
TABLE 3 Comparative experimental results.

Model mAP0.5:0.95 mAP0.5 GFLOPs

YOLOv4-tine 0.452 0.662 16

YOLOv5s 0.657 0.896 16

YOLOv6s 0.706 0.909 45.3

YOLOv7s 0.703 0.922 26.7

YOLOv8s 0.705 0.901 28.7

DS-YOLO 0.723 0.924 28.9
Bold indicates the optimal effect.
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completes a dive, the position of all creatures will be recorded on the

dive trajectory. We calculate the length of the broken line from the

time the submersible sees the seabed. When this length is

approximately 100 meters, we calculate the density of the

biological line once. The specific calculation method is shown in

the following Equation 12:

ld =
q
d
� 100 (12)

In the above formula, ld represents the linear density of

organisms, q represents the number of organisms, and d≈100

represents the diving distance of the actual submersible. The

number of occurrences of organisms per 100 m, i.e., the line

density, was used to represent the density of organisms. The

results are shown in Figure 12, where the vertical axis represents

the line density of organisms, and the horizontal axis indicates the

distance traveled along the seafloor after the submersible bottomed,

which was approximately 3270 and 2990 m for Dive 1 and Dive 2,

respectively. Figures 12A, B shows the line densities of total
B

C D

E F

A

FIGURE 11

Comparison of detection results of different methods (A, C, E) results from YOLOv5, and (B, D, F) results from DS-YOLO.
TABLE 4 Comparison between target tracking and manual
statistical results.

Organism

Target
tracking result

Manual
statistical results

Dive 1 Dive 2 Dive 1 Dive 2

Bolosominae 17 314 17 309

Ophiuroidea 30 62 33 66

Dead sponge 28 418 30 442

Pheronematidae 62 397 58 389

Lepidisis 151 2062 160 2123

Nematocarcinidae 19 33 20 35

Isididae 15 585 16 603

Plexauridae 7 221 8 245

Tretopleura 8 162 8 155
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organisms for dive 1 and dive 2, respectively, with the density of

organisms in dive 2 being approximately 13.81 times that in dive 1

and with organisms occurring along the trajectory. Figures 12C, D

shows the line densities of various organisms at dives 1 and 2,

respectively, with lepidisis occurring the most (49.3%) at dive 1,

followed by pheronematidae (18.4%); a small proportion of

ophiuroidea (8.90%) and dead sponges (8.31%), as well as other

organisms, were also present. Although the density of organisms in

dive 2 was much higher than in dive 1, their community structures

were similar. Both dives were dominated by lepidisis (62.2%),

pheronematidae (9.33%), and dead sponges (9.83%). A small

number of bolosominae and plexauridae were also present. This

experiment demonstrates the utility of the DS-YOLO model

proposed in this paper in combination with DeepSORT in

calculating the bio-density. In addition, DS-YOLO+DeepSORT

achieves a frame rate of 46.5 frames per second, which is suitable

for deployment on underwater submersibles for real-time tracking

and counting of organisms.
4 Discussion

Due to the rapid development of machine learning, its use is

increasing in marine engineering, such as aquaculture, ship

inspection, and plankton detection. Automatic identification of

deep-sea megabenthic organisms through visual images is crucial

for deep-sea ecological research. Compared with deep-sea images,

deep-sea videos have good spatial extensibility and can better

express the changes of deep-sea organisms in the positional

dimension. Thus, deep-sea videos can contain more and more

accurate biological information. It should be noted that different

species in the dataset we produced do not have the same taxonomic

rank, e.g., Ophiuroidea belongs to the class level, while Lepidisis

belongs to the family level. This is due to the generally small size and
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similar features of the ophiuroidea, making it almost impossible to

identify serpent tails from different families relying on video alone.

Anthozoa are larger and have greater morphological differences

between families. This characteristic means that the dataset must be

produced with appropriate trade-offs between organisms at

different taxonomic levels based on their morphological features.

Better results can be obtained if a class of organisms is divided as

finely as possible based on morphology. To prove this point, in this

paper, we merged the bolosominae, pheronematidae, and

tretopleura in the original dataset into the class hexactinellida,

and we merged the lepidisis, isididae, and plexauridae into the

class anthozoa. The combined dataset includes nine organisms

ranked as phyla. In the western Pacific seamounts, hexactinellida

and anthozoa are typical species, and we analyzed their line density

variations using the methods of Section 3.4.4. Hexactinellida and

anthozoa are the main macrobenthos in the mountainous areas of

the western Pacific Ocean. Deep-sea hexactinellida are generally

attached to hard substrates, and complex and abundant

hydrodynamic forces bring organic matter produced in shallow

waters to the deep sea to form large hexactinellida forests. Deep-sea

seamounts and canyons are ideal areas for hexactinellida

development because of their rich nutrition and complex

topography. Cold-water hexactinellida communities attached to

bedrock are similar to terrestrial forests, providing a good habitat

for active animals. Anthozoa are also one of the important benthic

organisms, which are distributed from intertidal zone to deep sea. In

the deep sea, anthozoa is the dominant species in the deep sea,

second only to hexactinellida. At the same time, anthozoa contains

a large number of active substances and rich microorganisms,

which is the focus of current research. Anthozoa symbiotic

microorganisms are also considered to play an important

ecological role in the carbon, nitrogen and sulfur cycle of the

earth’s biosphere. This paper focuses on the target detection

results of two typical organisms based on models of different data
B

C D

A

FIGURE 12

Schematic representation of biological density. (A, B) Line densities of organisms combined at dives 1 and 2, respectively. (C, D) Line densities of
different organisms at dives 1 and 2, respectively.
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sets. Figures 13A, B respectively show the prediction results of

training weights using data sets with different biological

classification levels, respectively, and compare them with the

results of the manual video analysis. It can be seen in Figure 13

that the dataset made by prioritizing biomorphology is closer to the

manual results than the dataset made by considering only biological

classification. In the target detection task, it is not possible to

consider only biological classification and ignore the inherent

morphology among organisms, and this idea can be extended to

other fields as well.

Considering the complex deep-sea seabed environment, this

paper proposes a deep learning-based deep-sea megabenthic

organism detection method, DS-YOLO, to provide accurate

detection of deep-sea organisms. When investigating the structure

of biological communities in deep-sea areas, it is necessary to

photograph as many benthic organisms as possible. DS-YOLO

has a better detection effect on organisms in a single image than

YOLOv5s and can be combined with DeepSort to track and count

organisms. The algorithm in this paper can be combined with the

position information of the deep-sea submersible to show the bio-

distribution points on the map in real time and further calculate the

bio-density. The method proposed in this paper can initially reveal

the distribution characteristics of biological resources and their

community structure features in the investigated area and provide

data support for the interrelationship between biodiversity

and habitat.

DS-YOLO enables the detection of deep-sea organisms in small

targets, uneven illumination, and special scenarios, and the model

detection capability exceeds that of common detection methods.

Compared with YOLOv5, DS-YOLO increases part of the

computational load and detection time, so it still has room for

improvement. There are four avenues for future research. First, a

more lightweight model should be developed for lightweight deep-

sea survey equipment to ensure acceptable detection accuracy.

Second, it is necessary to expand the dataset by using data

expansion technology because deep-sea megabenthic organisms

generally grow below 1,000 m, and domestic and international

visual survey data are scarce, resulting in little visual information

and the biomass of different species not being balanced. Then, the

network structure can be fine-tuned to adapt to different deep-sea

organisms and lighting conditions to enhance the application range

of the model. Finally, a laser scale should be developed to measure
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the size of huge benthic organisms and the distance from the

camera, combined with intelligent control technology to

automatically acquire organisms or other targets.

Obtaining biological samples is an indispensable step in deep-

sea biological research. However, due to the special characteristics

of the deep sea, conducting deep-sea investigations often requires

greater costs than those in the shallow sea. In order to obtain a

sufficient number of biological samples for each dive of a deep-sea

submersible, we often use biodistribution prediction models to

assess the density of various organisms based on the environmental

information of the seafloor to further design the dive sites and

routes. In future research, we plan to embed the biodistribution

prediction model into the YOLO tail so that the predicted species

of organisms for each dive result from the mutual integration of

image features and the density of organisms. By doing so, it is

expected that the false detection rate of YOLO can be further

reduced. With the same dive cost, a more accurate biological

composition of the area is obtained, providing data support for

further ecosystem studies.
5 Conclusion

Deep-sea detection of megabenthic organisms is significant to

marine life sciences and resource development. The research

reported in this paper aims to improve the intelligent detection of

megabenthic organisms in deep-sea environments. Considering the

special environment and organisms in the deep sea, the proposed

DS-YOLO was improved in five versions of YOLOv5. First, the

SPD-Conv module was introduced to improve the model’s ability to

detect small targets. Second, SPPCSPC enhances the model’s feature

fusion capability when the organism is partially occluded. Then,

BiFPN used both Add and Concat structures to increase the feature

extraction ability of the model at different scales. Then, a NAM

attention mechanism was added at the end of the Neck layer to

increase the weight of salient features. Finally, the decoupled

detection head reduced the mutual interference between

classification and localization tasks, improved localization

capability, and reduced the leakage detection problem. DS-YOLO

had good detection results on homemade datasets fused with deep-

sea video and URPC2020, with mAP0.5:0.95 reaching 72.3% and

mAP0.5 reaching 92.4%. Compared with YOLOv5s, mAP0.5:0.95
BA

FIGURE 13

Dive1 linear density results based on different data sets. (A) is the linear density of coral. (B) is the linear density of sponge.
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and mAP0.5 improved by 6.6% and 2.8%, respectively, while the

frame rate reached 84.7, which meets real-time requirements. DS-

YOLO was combined with DeepSORT to estimate the density of

deep-sea megabenthic organisms, which can be used to study the

species richness and community structure in the deep sea. DS-

YOLO is better than popular target detection methods and is most

suitable for detecting deep-sea megabenthos.
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