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Interactions between krill
and its predators in the
western Ross Sea
Andrea De Felice, Ilaria Biagiotti , Ilaria Costantini ,
Giovanni Canduci and Iole Leonori*

National Research Council – Institute for Marine Biological Resources and Biotechnology (CNR-
IRBIM), Largo Fiera della Pesca, Ancona, Italy
Krill is a fundamental resource in the pelagic food web of the Ross Sea,

constituting an important link between primary production and top predators.

A series of Italian research voyages to the Ross Sea from 1994 to 2016 have

contributed to our understanding of the dynamics of krill populations inhabiting

the Ross Sea. Only the surveys in 1994 and 2004 reported information on krill’s

predators through visual census data, and 2004 data were not object of

publication until now. Analyzing Euphausia superba and Euphausia

crystallorophias abundance spatial distribution in the study area in relation to

the distribution of its key natural predators have shown a significant relationship

between the spatial distribution of minke whales’ abundance and the density of E.

superba biomass, indicating a classical predator-prey interaction. Moreover, krill

biomass density data in the water column were analyzed together with the main

environmental data from CTD samplings. The analysis of krill density data in

relation to environmental factors throughout the water column revealed a

significant relation between E. superba abundance and salinity, a result that

may be linked to the presence of ice melting effects improving environment

productivity conditions.
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1 Introduction

The knowledge of krill role in the pelagic food webs in Antarctic and sub-Antarctic

waters has been greatly enhanced through extensive research efforts focused on these

crustaceans in such environments (Cavan et al., 2019; Testa et al., 2022). The dynamics of

these animals could be influenced by many biotic and abiotic factors. Among the main

biotic factors, we could mention prey availability, predators’ presence, and competitors for

food (Meyer et al., 2020), whereas, among the main abiotic factors, we could consider ice

cover, water temperature, salinity, dissolved oxygen and water circulation (Leonori et al.,

2017; Veytia et al., 2020; De Felice et al., 2022).
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Many species rely on krill as a main food source in Antarctic

waters. Focusing on the top predators of the pelagic food chain,

penguins (Watters et al., 2020), seals (Melbourne-Thomas, 2020)

and whales (Konishi et al., 2014; Smetacek, 2021), in particular,

show a huge percentage of their diet as consisting in these small

crustaceans (Trathan and Hill, 2016). One study, based on isotope

analysis, dealing with penguins’ diet in the Ross Sea (Jafari et al.,

2021) has shown that the relative krill and fish consumption by

Adélie penguins (Pygoscelis adeliae) and emperor penguins

(Aptenodites forsteri) changed in relation to the prey availability,

in function of seasonal sea ice dynamics and penguin life cycle

phases. Dietary variability of Adélie penguin was already known,

but not in emperor penguin. In contrast, other authors (Hong et al.,

2021), from isotope analysis, found that emperor penguins in the

Ross Sea maintain preference for the typology of prey (Antarctic

silverfish), while Adélie penguin chicks at Cape Hallett mostly fed

on Antarctic krill (Euphausia superba), since this krill species is

particularly abundant there, but Adélie penguin chicks at

Inexpressible Island, located near Terra Nova Bay, mainly fed on

both Antarctic silverfish and ice krill (Euphausia crystallorophias),

demonstrating a regional characterization of the diet and an

adaptation to prey availability. In any case krill reveals to be one

of the preferred preys, at least for Adélie penguin.

Seals are very important krill consumers. Crabeater seals prefer

to breed close to krill and are sensible to the conditions of seasonal

sea for breeding success. Weddell seals are less dependent on krill as

a food source and remain connected to the stable ice and to the

preys that can be found there (Wege et al., 2021). Trathan et al.

(2022) found a positive response relationship between predator

offspring mass (Antarctic fur seals, gentoo penguins and macaroni

penguins) and the spatial distribution of krill, measuring the

patchiness in krill distribution, while they found little relation

between predator performance and krill density levels at South

Georgia. This result evidence the importance of the information

derived from krill spatial distribution when studying krill predators’

diet and breeding success.

Marine mammals often play a fundamental role concerning

krill predation. Miller et al. (2019) have shown that blue whales

prefer to concentrate where Antarctic krill swarms are bigger and

shallower in order to maximize the energy intake respect to the

predation effort. The spatial distribution of minke whales

(Balaenoptera bonaerensis) in the Ross Sea was studied together

with the distribution of Antarctic and ice krill using Generalized

Additive Models (GAMs); the results showed that the distribution

of these whales was influenced by many factors, such as longitude,

distance from shelf break, oceanographic conditions, and densities

of both krill species.

Following the examples given above, it could be expected that

the spatial distributions of these top predators would overlap, at

least partially, with those of the krill species, especially Euphausia

superba, in the Ross Sea.

For similar reasons, krill preys, mainly represented by

phytoplankton species and at a minor level by mesozooplankton

species (Hellessey et al., 2020; De Felice et al., 2023), could influence

abundance level and spatial distribution of Euphausiids in

Antarctica. Different krill species are competitors for food, a fact
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evidenced by their similar feeding appendages and their diet

(Haberman et al., 2003). It is also important to note, at least in

the Ross Sea, that the cores of the two most relevant krill

populations, E. superba and E. crystallorophias, tend to separate

spatially, passing from austral spring to austral summer (Azzali

et al., 2006; Leonori et al., 2017). The abovementioned behavior

represents a potential strategy for reducing the risk of starvation

resulting from competition for food resources.

The main aim of this work was to investigate potential

correlations between the spatial distribution of krill biomass

density and the distribution of krill predators in January 2004,

having the opportunity of available data on krill predators. The

prevalent localization of krill in the water column and the possible

influence on the krill density of environmental variables along the

water column were also studied, benefitting from in situ CTD data

acquired during the acoustic survey.
2 Materials and methods

2.1 Study area, target species and
sampling procedures

Acoustic and biological data concerning E. superba and E.

crystallorophias came from an acoustic survey conducted in the

western sector of the Ross Sea (Antarctica) and the adjacent

Southern Ocean in January 2004. The study was conducted

within the framework of the 19th Italian National Program for

Research in Antarctica (PNRA) Expedition aboard the research

vessel “Italica”. The area boundary coordinates were 69° and 76° S

latitude and 165° E and 175° W longitude. The acoustic survey

targeting krill was carried out from 28/12/2003 to 23/01/2004,

synoptically with the census on krill predators. Both the acoustic

and the visual surveys were taken 24 hours a day. The acoustic

monitoring followed CCAMLR guidelines and focused on the top

200 m of the water column, the stratum with the core of krill

abundance in the study area, as confirmed by the scarce krill

abundance level found in the stratum between 200 and 300

meters during the following 2014 survey (Leonori et al., 2017).

Krill swarms were monitored acoustically at three frequencies (38,

120, and 200 kHz), in order to separate krill echoes from non-target

signals and separate the two krill species between them. Krill

aggregations were identified in echograms on the base of the

experience from the previous surveys and relying on frequency

comparison methodology as described in Azzali et al. (2004a) to

discriminate in the categories “E. superba”, “E. crystallorophias” and

“other”. Periodical trawl hauls were carried out to obtain ground

truth information. Bottom depth ranged from about 300 to 3500 m;

the highest depths were in the northern area at the border between

the Ross Sea and the Southern Ocean. Specimens were collected by

means of the HPRI-1000 plankton net (mesh size 1 mm), which was

designed by CNR-IRBIM (Ancona, Italy); haul position was decided

on the basis of the observation of krill swarms during the acoustic

survey (Azzali et al., 2004b; De Felice et al., 2023). The sampling net

was equipped with SIMRAD ITI system that allowed, by acoustic

wireless connection, to know information about the catch stratum,
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such as temperature, net depth and vertical opening.

Oceanographic sampling was carried out by means of CTD probe

Sea Bird Electronics SBE 911 plus.

For what concerns biomass estimation procedure, the density

contrast (g) and sound speed contrast (h) coefficients applied for the

two species were derived from Foote et al. (1990); the average tilt

angle was hypothesized to be 15°. The fluid sphere model was

applied for biomass calculation (Simmonds and MacLennan, 2005)

in all the acoustic surveys carried out in the Ross Sea since 1989 by

the CNR Institute of Ancona. The fluid sphere model has been

improved in time (Anderson, 1950; Johnson, 1977; Stanton et al.,

1993; Macaulay, 1994) and represents a valid tool for krill biomass

evaluation. Hewitt et al. (2004) length-weight relationship was used

for conversion from numbers to biomass. Biomass estimates were

expressed as mean krill density per elementary statistical sampling

rectangle (Simmonds and MacLennan, 2005). The ESSR method

has been employed in all previous surveys, because it is suitable for

acoustic monitoring of large areas. Western Ross Sea was

subdivided into rectangular grid cells, spaced at intervals of 1° in

longitude, but variable in latitude, according to the Earth’s

curvature variation at the poles. All rectangles had an area of 600

nm2; the origin of the grid (rectangle A0) was set at coordinates 64°

25.1′ S 164°30.0′ E. Numbers and letters (in alphabetical order)

proceed from the coast to offshore and southwards. Species

abundance and biomass in each rectangle were estimated from

the average NASC value of the Elementary Sampling Distance Units

(ESDUs) laying within the rectangle.
2.2 Study of the relationships between krill,
its predators and
environmental parameters

Up to now, several acoustic surveys were conducted in the

western Ross Sea during Italian expeditions to Antarctica (De Felice

et al., 2022), but synoptic information on krill predators was often

lacking. Apart from the survey held in January 2004 (Azzali et al.,

2004b), only the two surveys carried out in 1994 had this

information that was reported in Saino and Guglielmo (2000);

however, krill dataset was not studied in relation with its predator

dataset at that time, but data were analyzed and reported separately.

In the present paper krill distribution was studied both as spatial

distribution over the whole study area in relation with the main krill

predators and also along the water column at selected haul positions

in relation with environmental parameters.

Consequently, as a first approach, the spatial distribution of krill

biomass density within the study area was analyzed using multiple

regression analysis (DISTLM), together with estimates of

abundance of the main krill natural predators derived from visual

census (strip transect methodology) conducted during the survey.

Visual census on krill predators took place from a dedicated

platform located at 14 meters (level of the ship’s bridge) on the right

side of the ship. Individuals spotted on that side within a strip of
Frontiers in Marine Science 03
varying width, dependent on visibility and weather conditions, were

considered. The census of krill predators was achieved with both

traditional and digital binoculars; the latter allowed to take photos

of the observed animals and store them, with relative time and

geographical position, in the acoustic database. This allowed a more

accurate recognition of the animals and facilitated the studying of

the interaction between krill and its predators. Density values were

calculated taking into account the number of individuals sighted for

each species within each statistical rectangle (as defined for the

estimation of krill biomass) and the total observed area (number of

miles with sighting activity multiplied by the strip’s width). Four

predator species were selected based on their dietary dependence on

krill and their average krill consumption (minke whale) or the high

density of these predators, as determined from visual census

(crabeater seal, emperor penguin and Adélie penguin). Marine

birds, as skuas and petrels, were not considered in this analysis,

even if petrel species in particular presented very high densities,

since they can predate krill only at surface and the relative data

collected by means of visual census could contain more bias, since

these animals usually follow the vessel, with the risk of multiple

counts for the same specimen. In general, krill predators’ species

identified in the study area were the same as reported in Saino and

Guglielmo (2000) and are comparable to what found by Double

et al. (2015) and Naganobu et al. (2006) for the portion of the area

that is common with the data presented in this work. Limiting to

penguins, seals and marine mammals, the species that were

observed in decent numbers were respectively: Adélie penguin,

emperor penguin, crabeater seal, Weddell seal, minke whale and

killer whale. No humpback whales were observed and there was

only one sighting of blue whale, but not during official visual census

monitoring. The aforementioned data was averaged within the

same statistical rectangles to prepare them for subsequent analysis

with DISTLM, using the best “AIC (Akaike Information Criterion)”

as selection criterion. Data were log (x+1) normalized and were

formatted for processing using GIS software.

In second instance, acoustic data was matched with CTD data

corresponding to the fishing stations in the core abundance areas

for the two krill populations, that corresponded respectively with

their highest catches with the trawl (Figure 1). Hauls nos. 1, 27, 28

and 30 were selected for E. superba, while hauls nos. 7, 8, 10, 13, 17

were selected for E. crystallorophias. The density of krill (Nautical

Area Scattering Coefficient in m2/nm2) measured at the frequency

of 120 kHz, which is the reference for biomass calculation, was

obtained by layers of 20 meters stretching from 15 up to 195 meters

(Azzali et al., 2004a; Leonori et al., 2017). The above data was then

analyzed by means of DISTLM, using the best “AIC” as selection

criterion. Temperature data were log (x+2) normalized, because

values could be below -1°C in some cases, while the other variables

were log (x+1) normalized.

Figure 2 shows vertical profiles of fluorescence (as proxy for

phytoplankton) and krill density, after normalizing the data for

hauls where the fluorescence parameter was available. This was

done to visually check any potential correspondence in abundance

peaks, which could indicate predator-prey interaction.
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3 Results

3.1 Spatial distribution of krill in relation to
the density of their main natural predators

Krill biomass density data from the two species was studied by

DISTLM analysis against abundance of the main natural predators.

Maps depicting the spatial distribution of E. superba, E.

crystallorophias and of natural krill predators are reported in

Figure 3. The results of this analysis are shown in Tables 1 and 2;

the only statistically significant relationship observed was between

the density of minke whales and the biomass density of E. superba

with a best estimate for AIC criterion being 235.49 for the model

considering only minke whale density as explanatory variable.
3.2 Krill density in relation to
environmental parameters

Table 3 shows the results of the multivariate multiple regression

applied to krill density data and CTD data recorded throughout the

water column. The main environmental parameters measured by

CTD probe were averaged within the corresponding depth ranges as

it was done for krill density. The analysis was carried out

considering one krill species at a time versus all the

environmental parameters (temperature, salinity and water

density) except for fluorescence, as the fluorimeter broke after the

first 10 stations.

Due to autocorrelation issues between water density and

salinity, water density was discarded from the analysis.

Salinity exhibited a highly significant correlation with E.

superba density, with AIC being -1.8898 in the best model

considering only this correlation.

Examining in detail Table 4, which provides insights into the

vertical distribution of krill in the water column in relation with
Frontiers in Marine Science 04
fluorescence peaks, as proxy of phytoplankton, it becomes evident

that E. superba in proximity of the considered stations tended to be

located within the first 40 meters, apart from station 30 where it was

abundant up to about 60 meters. On the contrary, E.

crystallorophias was generally located in deeper strata, specifically

within depth intervals of 80-120 meters at station 7, 40-80 meters

and 140-200 meters at station 8, 60-120 meters at station 13, and

finally within 100 meters at station 17. The overall vertical

distribution bands for the two species were not significantly

different, as the trend showed that E. superba predominantly

occupied the upper meters of the water column while E.

crystallorophias presented peaks of abundance below 40-60

meters. This suggests circadian movements along the water

column, potentially associated with the time of day.
4 Discussion

Multiple regression analysis applied to krill biomass data and

krill predators’ abundance data showed a significant relationship for

Antarctic krill only in the case of Balaenoptera bonaerensis. This

result is in agreement with the literature that identifies in particular

Antarctic krill as preferred prey for the numerous specimens of B.

bonaerensis present in the Ross Sea and surrounding areas (Tamura

and Konishi, 2009; Murase et al., 2013; Ishikawa et al., 2022). It

suggests that minke whales tend to reside in areas with a high

abundance of E. superba for feeding purposes. Several other species

of marine mammals have krill as their main prey, for example

humpback whale (Pallin et al., 2023), blue whale (Miller et al., 2019)

and other baleen whales (Savoca et al., 2021) and in certain cases it

was demonstrated that their migration seems to be well coordinated

with environmental conditions and krill availability (Szesciorka

et al., 2020). Our study area involves the western Ross Sea and

the portion of the Southern Ocean bordering with it, extending

from 69° to 76° S in latitude and from 165° E to 175°W in longitude.

Considering the results by Double et al. (2015), going from 65° to

70° S of latitude we have sightings of humpback whales, blue whales,

fin whales and minke whales, but south of 70° S the only marine

mammals that were identified were minke whales and killer whales.

These results are quite consistent with our study, confirming the

predominant presence of B. bonaerensis and Orcinus orca in the

Ross Sea among marine mammals, and, for the first species, its

strong dependence on krill as a food source. It is highly probable

that minke whales concentrate in the area north of Cape Adare,

because they can find big E. superba swarms that can give a high

energy level with limited efforts, a mechanism similar to what

described by Miller et al. (2019) for Balaenoptera musculus.

Minke whale exhibits also a marked preference for E. superba

respect to E. crystallorophias; this fact is reflected by the difference

in abundance of B. bonaerensis comparing the core of its

distribution (and core for Antarctic krill) in the northern part of

the study area, respect to the core of the distribution of ice krill in

the central coastal part of the Ross Sea, where minke whales are

present, but in much lower density. The spatial distribution of E.

superba and E. crystallorophias in January 2004 reflects quite well

what has been observed for all the years in which the acoustic survey
FIGURE 1

Geographic positions of the pelagic hauls with the highest catch
levels of E. superba and E. crystallorophias.
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was conducted in December-January (Davis et al., 2017; Leonori

et al., 2017; De Felice et al., 2022) with Antarctic krill concentrated

along the northwestern shelf break and ice krill mainly found in the

central part. This could be a good condition for krill to avoid

competition for food, and predators highly specialized with a diet

based prevalently on krill, adapt to this distribution.

An exception in our dataset was constituted by crabeater seal

(Lobodon carcinophagus) that has a relatively high dependence on

krill as a food source (Nachtsheim et al., 2017; Bengtson and
Frontiers in Marine Science 05
Stewart, 2018), but did not show a significant relation with krill

biomass spatial distribution. A possible explanation could be that

crabeater seals are observed and registered easily while they are

resting on ice sheets but are less visible when in the water actively

feeding on krill. Almost all the sightings of this species were relative

to individuals resting on ice and their spatial distribution (Figure 3),

resulting from our study, confirms that they are found prevalently

on floating sea ice during austral summer, quite far from the coast,

in contrast to Weddell seals that are mainly found on stable ice
FIGURE 2

Vertical profiles of krill density compared with fluorescence for hauls 1, 7, 8 and 10 where the fluorimeter was operative. In black krill density profile,
in red fluorescence.
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along the coast (Wege et al., 2021). Another possible reason for the

absence of a correlation between the spatial distribution of krill and

crabeater seals in western Ross Sea could be a switch in the diet

composition by these animals in years when krill biomass is not

particularly abundant, such as the year considered in this work
Frontiers in Marine Science 06
(Leonori et al., 2017). It is not known how adaptable these seals

could be for the diet, being considered highly specialists in feeding

krill, but they have shown a shift in the diet towards other prey in

the Antarctic Peninsula when krill biomass was at low levels

(Hückstädt et al., 2012).
FIGURE 3

Spatial distribution of E. superba and E. crystallorophias density (above) in comparison with the spatial distribution of krill’s natural predators in
January 2004 (below) along the grid of statistical rectangles in use for the estimation of krill biomass.
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The situation for what concerns dietary preferences in penguins

living in Antarctica is varied, in the sense that different results were

obtained in different researches. Emperor penguin (A. forsteri)

seems to be less dependent on krill as a food source (Putz, 1995;

Gales et al., 1990; Zimmer et al., 2007), showing a wider range of

possible preys also depending on the study area. When comparing

emperor penguin and Adélie penguin, basing on stable isotope

analysis (Hong et al., 2021), it was found that emperor penguins in

the Ross Sea maintain preference for the typology of prey (Antarctic

silverfish), while Adélie penguin chicks at Cape Hallett versus Terra

Nova Bay presented a regional characterization of the diet and an

adaptation to prey availability. By contrast, another study, based on

isotope analysis, dealing with penguins’ diet in the Ross Sea (Jafari

et al., 2021) has shown that the relative krill and fish consumption

by Adélie penguins (Pygoscelis adeliae) and emperor penguins

(Aptenodites forsteri) changed in relation to the prey availability,

in function of seasonal sea ice dynamics and penguin life cycle

phases. Dietary variability of Adélie penguin is generally confirmed

by the various studies, but it is not always the case for emperor

penguin. However, krill reveals to be one of the preferred prey, at

least for Adélie penguin. In conclusion, it is not surprising that we

have not found any relation between krill and emperor penguin, but

it could be expected to find it with Adélie penguin; a possible reason

for not finding any relation could be that we monitored these

penguins during phases of active movement to or from feeding

areas. Jafari et al. (2021) identified in spring and summer an active

feeding period for P. adeliae, but we should take into account that

duration of foraging trips by these animals could be very different

within Antarctic areas (Juáres et al., 2016; Olmastroni et al., 2020).
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As regards krill vertical distribution along the water column, the

results have evidenced that the highest densities of the two krill

species under investigation were mainly located within the first 100

meters, with occasional exceptions for E. crystallorophias, which in

some cases was found even deeper. These results seem to be in line

with those of other authors for the summer season, particularly in

the case of E. superba (Pauly et al., 2000; Amakasu et al., 2011).

However, it has been suggested that E. superba swarms make more

than one vertical migration per day (Swadling, 2006). Probably, we

could not detect migrations from the surface to deeper waters and

back for E. superba due to the limited number of hauls considered,

covering the daily time span only partially. However, it was possible

to identify these movements for E. crystallorophias. In the initial

stations, where the fluorescence data were available, a certain

correspondence could be observed between the fluorescence peak

and the peak of krill density when E. superba predominated

(stations 1 and 10). By contrast, when E. crystallorophias

prevailed (stations 7 and 8), the krill peak density was slightly

deeper than that of fluorescence.

For what concerns the possible relations between krill and

environmental parameters along the water column, the only

significant one was found between Antarctic krill and salinity.

This relation seems to be a similar result to the inverse

correlation found by Leonori et al. (2017) between E. superba

biomass and salinity in the water column. A possible

interpretation for this relation is that a decrease in salinity could

be associated with ice melting conditions that often mean higher

availability of food freed from entrapping ice (Nicol, 2006; Murase

et al., 2013) and consequently an increase in prey availability for
TABLE 2 Results of DISTLM models run on E. crystallorophias density values vs. the abundance of its main predators.

SEQUENTIAL TESTS

Variable R2 SS(trace) Pseudo-F P Prop. Cumul. res.df

B. bonaerensis density (N/nm2) 1.808E-3 1.0524 0.19742 0.6738 1.808E-3 1.808E-3 109

L. carcinophagus (N/nm2) 1.2018E-2 5.9434 1.1161 0.2966 1.021E-2 1.2018E-2 108

P. adeliae (N/nm2) 2.6969E-2 8.7025 1.644 0.198 1.495E-2 2.6969E-2 107

A. forsteri (N/nm2) 6.0497E-2 19.516 3.7828 0.0541 3.3528E-2 6.0497E-2 106
TABLE 1 Results of DISTLM models run on E. superba density values vs. the abundance of its main predators.

SEQUENTIAL TESTS

Variable R2 SS(trace) Pseudo-F P Prop. Cumul. res.df

B. bonaerensis density (N/nm2) 5.73E-02 54.266 6.6206 0.0068 5.73E-02 5.73E-02 109

L. carcinophagus (N/nm2) 5.80E-02 0.69622 8.42E-02 0.773 7.35E-04 5.80E-02 108

P. adeliae (N/nm2) 6.10E-02 2.822 0.33931 0.558 2.98E-03 6.10E-02 107

A. forsteri (N/nm2) 6.11E-02 0.10233 1.22E-02 0.9099 1.08E-04 6.11E-02 106

BEST SOLUTION

AIC R2 RSS No. Variables Selections

235.49 5.73E-02 893.42 1 B. bonaerensis density
fr
Statistically significant values were evidenced in bold.
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krill, once again confirming the importance of the trophic factor for

these animals. This result could also be connected to the buoyancy

of krill. Krill is capable to swim changing stratum in water column

quite well, as also evidenced by the data from this paper, but in

certain condition, such as when their stomach is full and they rest,

they are transported passively downwards (Tarling and Thorpe,

2017) and the extent of this transport could depend on salinity.
5 Conclusion

The analyses presented in this paper focused on the interactions

between krill and its predators. The spatial distribution of E.

superba and E. crystallorophias was studied together with four

predator species; the results evidenced a relation between the

abundance of B. bonaerensis and the biomass density of E.

superba, confirming the high dependence of minke whales on

krill as a prey. Krill density, particularly that of E. superba,

showed a significant correlation only with salinity throughout the

water column, a result that could be linked to local increases in
Frontiers in Marine Science 08
productivity due to ice melting, but also to the regulation of water

density of krill sinking, when resting, in relation to the buoyancy of

these animals.
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