
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Johan Schijf,
University of Maryland, College Park,
United States

REVIEWED BY

Kaustubh Thirumalai,
University of Arizona, United States
Ed Hathorne,
Helmholtz Association of German Research
Centres (HZ), Germany

*CORRESPONDENCE

Casey Saenger

saengec@wwu.edu

RECEIVED 13 October 2023

ACCEPTED 20 September 2024
PUBLISHED 15 October 2024

CITATION

Saenger C, Jimenez-Diaz C, Gagnon A,
Mix A, Ross A and Xu T (2024) A framework
for reconstructing marine heatwaves
from individual foraminifera in
sedimentary archives.
Front. Mar. Sci. 11:1321254.
doi: 10.3389/fmars.2024.1321254

COPYRIGHT

© 2024 Saenger, Jimenez-Diaz, Gagnon, Mix,
Ross and Xu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 15 October 2024

DOI 10.3389/fmars.2024.1321254
A framework for reconstructing
marine heatwaves from
individual foraminifera in
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Marine heatwaves (MHWs) are warm sea surface temperature (SST) anomalies

with substantial ecological and economic consequences. Observations of MHWs

are based on relatively short instrumental records, which limit the ability to

forecast these events on decadal and longer timescales. Paleoclimate

reconstructions can extend the observational record and help to evaluate

model performance under near future conditions, but paleo-MHW

reconstructions have received little attention, primarily because marine

sediments lack the temporal resolution to record short-lived events. Individual

foraminifera analysis (IFA) of paleotemperature proxies presents an intriguing

opportunity to reconstruct past MHW variability if strong relationships exist

between SST distributions and MHW metrics. Here, we describe a method to

test this idea by systematically evaluating relationships between MHW metrics

and SST distributions that mimic IFA data using a 2000-member linear inverse

model (LIM) ensemble. Our approach is adaptable and allows users to define

MHWs based on multiple duration and intensity thresholds and to model

seasonal biases in five different foraminifera species. It also allows uncertainty

in MHW reconstructions to be calculated for a given number of IFA

measurements. An example application of our method at 12 north Pacific

locations suggests that the cumulative intensity of short-duration, low-

intensity MHWs is the strongest target for reconstruction, but that the error on

reconstructions will rely heavily on sedimentation rate and the number of

foraminifera analyzed. This is evident when a robust transfer function is applied

to new core-top oxygen isotope data from 37 individual Globigerina bulloides at

a site with typical marine sedimentation rates. In this example application, paleo-

MHW reconstructions have large uncertainties that hamper comparisons to

observational data. However, additional tests demonstrate that our approach

has considerable potential to reconstruct past MHW variability at high

sedimentation rate sites where hundreds of foraminifera can be analyzed.
KEYWORDS
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1 Introduction

Marine heatwaves (MHWs) are prolonged periods of

anomalously warm ocean temperature relative to local

climatologies that can have considerable socioeconomic impacts

(von Biela et al., 2019; Free et al., 2023; Leggat et al., 2019; Oliver

et al., 2021; Rogers-Bennett and Catton, 2019; Smith et al., 2023,

2021). MHWs can occur throughout the global ocean as evidenced

by recent events in the northeast Pacific, East China Sea, Tasman

Sea, Mediterranean Sea, northwest Atlantic, southwest Atlantic and

Benguela current region (Oliver et al., 2021). Observational data

suggest that MHW frequency, duration and spatial extent have

increased in recent decades (Frölicher et al., 2018; Holbrook et al.,

2020; Oliver et al., 2018; Yao et al., 2022), and a prominent north

Pacific event from 2014-2016 may be the most ecologically and

economically impactful ever recorded (Bond et al., 2015; Cheung

and Frölicher, 2020; Di Lorenzo andMantua, 2016). Nicknamed the

“Blob,” this event caused major shifts in the geographic range of

organisms from copepods to sunfish, closed commercially-

important fisheries, initiated an unprecedented harmful algal

bloom and contributed to mass strandings of birds and marine

mammals (Cavole et al., 2016; Jones et al., 2018; McCabe et al.,

2016). Recent trends in MHW behavior are due at least in part to

anthropogenic global warming (Barkhordarian et al., 2022;

Laufkötter et al., 2020), and forecasts based on general circulation

model (GCM) ensembles such as phases 5 and 6 of the Coupled

Model Intercomparison Project (i.e. CMIP5 and CMIP6, Eyring

et al., 2016; Taylor et al., 2012) generally predict these trends will

continue (Frölicher et al., 2018; Oliver et al., 2019). However,

comparisons of these GCM ensembles to observed MHWs show

significant biases that can both overestimate and underestimate

various measures of MHW behavior (Hirsch et al., 2021; Plecha

et al., 2021), thereby raising concern regarding the accuracy of

decadal to centennial forecasts.

MHW variability reflects the combined influence of

temperature changes due to external radiative forcing and

internal modes (Holbrook et al., 2019; Oliver et al., 2021). Both

internal and external forcings operate on decadal timescales that are

relatively well captured by instrumental data, and longer centennial

to millennial timescales that are not resolved by observations.

Accordingly, MHW forecasts exhibit considerable skill on sub-

annual timescales (Holbrook et al., 2020; Jacox et al., 2022), but not

on longer timescales over which the models are uncalibrated and

unvalidated. Furthermore, observational data reflect the recent,

relatively low CO2 climate, which may not accurately record the

breadth and magnitude of feedbacks expected in the high CO2

climate of future centuries (Tierney et al., 2020). Both processes

likely contribute to the biases in CMIP forecasts of future MHW

activity, and point to a need for new strategies to validate MHW

behavior in models over a larger dynamic range.

Paleoclimate data offer the potential to extend the observational

record and thus evaluate model performance under boundary

conditions different than those recorded during the observational

era. For example, climates such as those of the Pliocene and Eocene

have been identified as good analogs for future warming (Burke

et al., 2018), and can serve as benchmarks against which to calibrate
Frontiers in Marine Science 02
and validate models. Despite this, few studies have approached

MHWs from a paleoclimate perspective, likely because most

paleoceanographic archives lack the high temporal resolution

necessary to characterize individual MHWs. Massive hermatypic

corals may be an exception (Zinke et al., 2015), but this archive is

primarily limited to low-latitude ocean regions during the latest

Quaternary period. In contrast, marine sediments can record ocean

variability across millions of years in diverse oceanographic settings,

and preserve proxies like foraminifera that are sensitive to MHWs

(Lane et al., 2023). Unfortunately, most marine sedimentary

archives have low sediment accumulation rates and experience

bioturbation, which leads to temporal resolutions of centuries to

millennia that are far too coarse to record monthly to

annual MHWs.

Individual foraminifera analysis (IFA) offers a potential solution

to this temporal averaging problem in marine sediments. Unlike

traditional paleoceanographic applications of foraminifera, which

pool individuals to estimate mean conditions, IFA measures

geochemical proxies in many single foraminifera and then

interprets the shape of the resulting distribution (Ford et al.,

2018, 2015; Groeneveld et al., 2019; Khider et al., 2011; Koutavas

et al., 2006; Koutavas and Joanides, 2012; Leduc et al., 2009;

Rongstad et al., 2020; Rustic et al., 2020; Thirumalai et al., 2019;

White et al., 2018). Given the ~4 week lifespan of most mixed layer

planktonic foraminifera (Spero, 1998) due to a lunar-pacing of

reproduction (Erez et al., 1991; Jonkers et al., 2015), each measured

shell approximates a monthly snapshot of ocean conditions. The

collective distribution of these snapshots then represents changes in

the statistical properties of both mean climate and extremes over a

time interval that is dictated by sedimentation rate, bioturbation

and sampling interval. For example, IFA has been used to

reconstruct the El Niño Southern Oscillation (ENSO) in the

tropical Pacific based on the expectation that increased ENSO

variability will broaden the distribution of reconstructed SST

relative to the seasonal cycle, which manifests itself as an increase

in standard deviation (Ford et al., 2015; Khider et al., 2011;

Koutavas et al., 2006; Koutavas and Joanides, 2012; Rustic et al.,

2020; White et al., 2018). Like ENSO variability, MHWs are also

characterized by relatively short-lived sea surface temperature (SST)

anomalies, and changes in their mean behavior between time

periods could produce distinct changes in IFA-based

SST distributions.

In practice, there are a number of complications that make it

challenging to identify how an IFA-based SST distribution might be

altered by changes in MHWs. For example, traditional approaches

to calibrating foraminifera proxies using global core-top sediment

(Elderfield and Ganssen, 2000; Malevich et al., 2019; Saenger and

Evans, 2019; Tierney et al., 2019) or sediment traps (Anand et al.,

2003; Gray et al., 2018; Huang et al., 2008) would be extremely

costly because orders of magnitude more analyses would be

necessary to generate IFA-based SST distributions for each site or

time interval. Furthermore, it is not yet obvious how the accuracy of

IFA-based SST distributions vary with the number of geochemical

proxy measurements made, which makes it difficult to know how

many foraminifera would need to be sampled to make meaningful

MHW reconstructions. Variations in the seasonality of different
frontiersin.org
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foraminifera species is also a complicating factor, and it is likely that

relationships between IFA-based SST distributions and MHWs are

specific to both individual species and sites. Finally, the numerous

ways of describing both MHWs and SST distributions create a large

pool of potential relationships, which may make it challenging to

identify those that are most useful.

In light of these complications, it is attractive to evaluate

relationships between IFA-based SST distributions and MHWs in a

pseudoproxy framework. Pseudoproxies (Mann and Rutherford, 2002)

are realistic approximations of actual proxy data that are generated by

passing the output of physically consistent climate simulations through

a proxy system model (Dee et al., 2016; Evans et al., 2013) that mimics

complicating factors such as variations in seasonality. This approach

obviously avoids the cost and labor of true geochemical proxy

measurements and allows relationships between IFA-based SST

distributions and MHWs to be explored quickly and efficiently.

Furthermore, generating pseudoproxies from large ensembles of

climate model simulations allows many realistic climate states to be

sampled, thereby providing the large sample size necessary for robust

measures of skill and error. Because pseudoproxies are generated from

a known signal, they also provide valuable opportunities for validation

and a testbed for evaluating how the accuracy of a relationship might

change due to choices such as the MHW definition assumed, the

foraminifera species considered, the sedimentation rate at a site or the

number of proxy measurements used to generate an IFA-based SST

distribution. Finally, because climate model simulations are spatially

complete, a pseudoproxy approach allows relationships to be compared

across large regions to identify sites where they have the greatest

potential to generate meaningful MHW reconstructions.

Here we describe a method for evaluating quantitative

relationships between SST distributions similar to those that

could be generated via IFA and various measures of MHW

variability with the goal of identifying which have the greatest

potential to yield paleo-MHW reconstructions. We adopt a

pseudoproxy approach in which a 2000-member linear inverse

model (LIM) ensemble is used to compare MHW behavior to

SST distribution statistics that mimic IFA measurements. Our

approach is adaptable and allows users to evaluate five different

foraminifera species, numerous MHW definitions and a number of

realistic complications. While we are motivated by the desire to

eventually reconstruct paleo-MHWs, the goal of this study is simply

to define a framework for identifying the most robust quantitative

transfer functions between IFA-based SST distributions and

MHWs. Below, we first describe the data sources, construction

and validation of an algorithm that can evaluate transfer functions

based on different foraminifera species and MHW definitions. We

then demonstrate the utility of our approach through the example

application of identifying the most promising targets for paleo-

MHW reconstructions in the northeast Pacific. Finally, we

demonstrate how our approach can be integrated with IFA data

using new high-precision oxygen isotope (d18O) analyses of

individual Globigerina bulloides from core-top sediments. We

focus on the northeast Pacific domain with the goal of generating

transfer functions that could eventually be used to generate paleo-

MHW reconstructions that place events like the 2014-2016 “Blob”

MHW (Bond et al., 2015) into context. However, the approach we
Frontiers in Marine Science 03
describe is also valid for other species and ocean regions, thereby

providing a framework for developing additional transfer functions

and paving the way toward an improved understanding of the

spatiotemporal behavior of MHWs.
2 Methods

2.1 Overview of the algorithm design

A simplified design of our method and its basic order of

operations are summarized in Figure 1, while more specific

information is presented in later subsections. The primary input to

our algorithm is an ensemble of monthly SST timeseries. Monthly

data is required since this is the approximate lifespan of an individual

foraminifera (Spero, 1998), and each SST value can be considered

analogous to what might be reconstructed from the measurement of a

paleotemperature proxy in a single foraminifer. Multiple timeseries

are required because each timeseries is ultimately reduced to a single

SST distribution, and thus effectively contributes only a single data

point to a given transfer function. We note that we use the phrase

“transfer function” throughout the remainder of the text to describe

the quantitative relationships between IFA pseudoproxy SST

distributions and MHWs.

The algorithm then allows a user to specify how a MHW is

defined and this information is used to calculate MHWs for each

SST timeseries within the ensemble. One offive foraminifera species

(Neogloboquadrina pachyderma, Neogloboquadrina incompta,

Globigerina bulloides, Trilobatus sacculifer or Globigerinoides

ruber) is also specified, and used to weight the monthly SST

timeseries based on the seasonal concentration of that species as

calculated by the proxy system model of Kretschmer et al. (2018).

Statistics that summarize the shape of weighted SST distributions

are then regressed against MHW measures using partial least

squares regression (Mehmood et al., 2012) to develop initial

transfer functions. If regression statistics and comparisons to

observed MHWs suggest that a transfer function is promising, the

user can perform additional cross validation to evaluate how a

transfer function might perform in a paleoclimate context. For

example, realistic sedimentation rates and sampling intervals can be

specified to estimate how many foraminifera will be required to

achieve a desired accuracy in a MHW reconstruction. This can be

compared against the number of foraminifera actually present or

the analytical budget available to provide a feasibility check before

committing to a laborious and costly study.
2.2 Monthly SST from a linear inverse
model (LIM) ensemble and observations

As noted previously, implementing our method requires an

ensemble of monthly SST data. For the purposes of calibration, data

should span a wide range of MHW states while still being physically

realistic. Here, we achieve this using a 2,000member LIM ensemble that

has previously been used to explore Pacific MHWs (Xu et al., 2021).
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LIMs are stochastically-forced linear dynamical models that are

empirically determined. That is, the predictable dynamics of the

climate system are inferred from auto covariance and lagged

covariance of the coarse-grained climate variables, whereas the

remaining unresolved fast-decaying and rapid nonlinear processes

associated with weather are parameterized as spatially-coherent

Gaussian white noise. The underlying assumption of a LIM

construction is that the coarse-grained climate evolution acts

as an integrated response to the rapid weather variability

(Hasselmann, 1976), resulting in a system in which its predictable

dynamics can be represented to a reasonable approximation linearly

and deterministically. The unpredictable stochastic forcing, on the

other hand, contributes to energizing the climate system. A LIM

simulation obtained by integrating the stochastic forcing forward in
Frontiers in Marine Science 04
time thus represents a climate system that can be diagnosed in the same

manner as simulations from coupled GCMs, but with the advantage

that many realizations of the simulated timeseries can be generated

relatively easily (e.g. Ault et al., 2013; Newman et al., 2011). This general

approach has been used extensively to explore Pacific SST on sub-

annual to multidecadal timescales using LIMs (Alexander et al., 2008;

Capotondi et al., 2022; Penland and Matrosova, 1994; Penland and

Sardeshmukh, 1995; Xu et al., 2022, 2021).

The LIM ensemble in this study is based on Extended

Reconstructed Sea Surface Temperature data set version 3

(ERSSTv3; Smith et al., 2008) in the tropical and north Pacific (110°

E–60°Wand20°S–60°N) from1950-2019 (Xu et al., 2021). It is gridded

at 2° x 2° andconsistsof2,000physically-realistic timeseries ofmonthly

SST that are 70 years each. This ensemble represents a large number of
FIGURE 1

Schematic of our workflow for generating transfer functions between pseudoproxy SST distribution statistics and MHW metrics, and evaluating their
skill. Italicized text indicates a user-defined choice. Monthly SST timeseries derive from COBEv2, ERSSTv5, HadISST or the LIM ensemble. MHW
intensity and duration thresholds refer to the minimum intensity and duration necessary for a warm anomaly to be defined as a MHW, and metrics
represent various measures of these MHWs. Monthly foraminifera concentrations, based on the PLAFOM2.0 model of Kretschmer et al. (2018), are
used to generate a weighted monthly SST timeseries that represents the seasonal bias of a defined species. Distribution statistics summarize these
seasonally-weighted pseudoproxy SST timeseries. Partial least squares (PLS) regression is used to develop transfer functions between distribution
statistics and MHW metrics. If a user chooses to do so, the error on a reconstruction for a given number of individual foraminifera can be evaluated.
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“alternate histories” of north Pacific SST that drastically increases the

data available for generating transfer functions and allows for the large

sample size necessary for robust statistics. Furthermore, this large

ensemble is more likely to span the range of variability that could have

existed in the geologic past, thereby making our transfer functions

more relevant to paleo-MHW reconstructions.

To validate LIM-based transfer functions, we also evaluate

MHWs in monthly SST timeseries from three additional gridded

observational products. ERSST version 5 (ERSSTv5) is gridded at

2° x 2° and was analyzed for the period from 1854-2023 A.D

(Huang et al., 2017). Version two of the Centennial in situ

Observation-Based Estimates of SST (COBEv2) is gridded at 1° x

1° and was analyzed for the period from 1850-2023 (Hirahara et al.,

2014). Finally, the Hadley Centre Sea Ice and Sea Surface

Temperature data set HadISST is gridded at 1° x 1° and was

analyzed for the period from 1870-2022 (Rayner et al., 2003).
2.3 MHW definitions and their detection in
observations and LIMs

While MHWs are broadly defined as periods when SSTs exceed

climatology by some amount for some period of time, there is no strict

consensuson these values. For example, observational studies based on

daily satellite SST data commonly define a MHW to be a thermal

anomaly that exceeds the 90th percentile for at least five days (Hobday

et al., 2016), but model-based studies have considered intervals that

exceed climatological SST by at least one standard deviation for at least

five months to be MHWs (Xu et al., 2021). While the daily MHW

definition is clearly outside the bounds of what our approach can

resolve, we see no need to make further a priori assumptions about

what magnitude of warming or duration constitutes a MHWs. We

therefore allow the user to define an intensity threshold and duration

for consideringawarmanomaly tobe aMHW.Intensity thresholdsare

formulated in terms of the number of standard deviations above

monthly climatology (e.g. across all Januarys) within a single

timeseries. Duration thresholds are simply an integer number of

consecutive months. We use the term “definition” throughout the

remainder of the text to refer to these various ways of definingMHWs.

For example, a low intensity, short duration definition may specify

MHWstobe timeswhenmonthly SSTexceeds the climatological value

by at least one standard deviation for at least one month, while a high

intensity, long duration definition might require SST to exceed

climatologyby at least two standarddeviations for at least fourmonths.

For a given definition, MHWs are calculated across the entire

lengthof a SST timeseries, but eachmonthly timeseries in the ensemble

is considered separately. In the case of LIMdata, thismeansMHWsare

identified within each 70-year realization, but the 2,000 ensemble

members are considered independently. Thus, the LIM ensemble

provides 2,000 separate estimates of MHW behavior for each

definition considered.

To account for global warming trends, a 30-year high pass filter

is applied to ERSSTv5, COBEv2 and HadISST timeseries prior to

calculating climatologies (Figure 2A). This is equivalent to a shifting

(as opposed to fixed) baseline approach and is consistent with the

idea that a MHW should be an exceptional event above a
Frontiers in Marine Science 05
background state that is distinct from lower frequency

anthropogenic warming (Amaya et al., 2023). LIM simulations do

not have a global warming trend so do not require filtering.

Once MHWs are identified, they are further characterized based

on five metrics (Figure 2). In some cases metrics are normalized to a

decade to account for the different lengths of ERSSTv5, COBEv2,

HadISST and LIM timeseries. We use the term “metric” throughout

the remainder of the text to refer to the following five ways of

characterizing MHW behavior:
• Count (n/decade): Total MHW events, normalized to

a decade

• Total months (n/decade): Total number of months in a

timeseries that meet the assigned MHW definition,

normalized to a decade.

• Cumulative intensity (°C/decade): Sum of monthly

intensities in a timeseries that meet the assigned MHW

definition, normalized to a decade.

• Mean duration (months): Average length of all MHWs in

a timeseries

• Mean intensity (°C): Average intensity of all MHWs in

a timeseries.
The values for these metrics can vary considerably with the choice

of MHW definition, and increases or decreases in one metric do not

necessarily cause equivalent changes in other metrics. An example

using COBEv2 data from the northeast Pacific gridbox closest to Deep

Sea Drilling Project (DSDP) Site 36 (Table 1) and spanning the 2012-

2018 interval that includes the “Blob” MHW is shown in Figure 2.

Usingone standarddeviation andonemonth as intensity andduration

thresholds, respectively, four MHW events are identified (Figure 2C).

Two events have a duration of a singlemonth and intensities of 0.89°C

and 0.75°C, respectively, which both exceed one standard deviation

(0.51°C), butnot two (1.02°C).Because these events are a singlemonth,

their cumulative intensities are identical to their mean intensities. A

third event has a duration of three months, a mean intensity of 0.91°C

and a cumulative intensity of 2.73°C. A fourth event represents the

“Blob” event andhas a durationof 24months, amean intensity of 1.12°

C and cumulative intensity of 26.87°C. If the MHW definition is

changed to have a duration threshold offivemonths, the three shorter

events are no longer considered MHWs and only the “Blob” event

remains with identical metrics (Figure 2D). Using two standard

deviations and one month thresholds to define MHWs excludes

most of the three shorter events, but also splits the “Blob” event into

four (Figure 2E). Thus, the count of MHWs actually increases to five,

whichhavedurations of one to sixmonths andmean intensities of 1.09

to 1.50°C. Using two standard deviations and five month thresholds,

eliminates all but one high intensity MHW that represents the most

intense portion of the “Blob” event (Figure 2F).
2.4 Accounting for seasonality in
foraminifera abundance

Planktonic foraminifera live in near-surface ocean environments

around the globe and have long been recognized as valuable tools for
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FIGURE 2

(A) COBEv2 SST at DSDP Site 36 (black) and the low frequency trend associated with the 30-year high pass filter (red). This filter is used to remove
the global warming trend from observational data when calculating MHW metrics (B) Subset of COBEv2 SST for the years from 2012-2018 spanning
the “Blob” MHW (black) and the same signal after removing the low frequency trend (grey). The climatology plus one standard deviation (blue) marks
a threshold above which a MHW could be defined (red shading) (C) SST with the low frequency trend and climatology removed (black) relative to
the upper bound of one standard deviation (grey dashed line) and two standard deviations (grey dotted line). Times exceeding one standard
deviation provide an equivalent definition (red shading) that are identical to panel (B). (D) As in panel (C) for intensity and duration thresholds of one
standard deviation and five months (E) As in panel (C) for intensity and duration thresholds of two standard deviations and one month (F) As in panel
(C) for intensity and duration thresholds of two standard deviations and five months.
TABLE 1 Locations and sedimentation rates of north Pacific sites.

site latitude longitude sedimentation rate (cm/kyr) sedimentation rate reference

ODP 887 54.3654 -148.446 7 Galbraith et al., 2007; Rea, 1994

DSDP 36 40.9847 -130.11 2.4 Brennan et al., 2022; McManus et al., 1970

DSDP 183 52.52 -161.2055 0.92 Costa et al., 2024

DSDP 179 56.409 -145.9887 6.95
Jaeger et al., 2014; Opdyke and

Foster, 1970

DSDP 37 40.979 -140.7185 0.26 Opdyke and Foster, 1970

DSDP 177 50.4697 -130.205 2 approximated from Costa et al., 2024

ODP 1023 47.9173 -128.792 2 approximated from Costa et al., 2024

A 55 -140 1 approximated from Costa et al., 2024

B 50 -150 0.23 Costa et al., 2024; Kemnitz et al., 2023

C 50 -140 0.14 Costa et al., 2024

D 45 -150 0.48 Donahue, 1970; Opdyke and Foster, 1970

E 45 -140 0.22 Opdyke and Foster, 1970
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reconstructing past SST (Anand et al., 2003; Bemis et al., 1998;

Elderfield and Ganssen, 2000; Emiliani, 1955; Lea et al., 2000, 1999).

Given their lifespan, measuring established paleotemperature proxies

such as d18O (Bemis et al., 1998) or magnesium to calcium ratios

(Mg/Ca; Lea et al., 1999) in individual foraminifera allows for

distributions of monthly SST to be generated (Ford et al., 2015;

Koutavas et al., 2006; Rongstad et al., 2020; Rustic et al., 2020). These

distributions are approximately equivalent to those based onmonthly

LIM and observational SST data, and therefore provide a means to

use LIM-based transfer functions to reconstruct past MHW behavior.

However, planktonic foraminifera preferentially live at depths

and during seasons when optimal growth conditions exist, and are

therefore seasonally-biased recorders of SST (Jonkers et al., 2013,

2010; Jonkers and Kučera, 2015; Ortiz et al., 1995; Sautter and

Thunell, 1989; Taylor et al., 2018; Tolderlund et al., 1971). To

account for seasonality, monthly LIM ensemble data must be

weighted to generate pseudoproxy SST timeseries that mimic the

information that can be reconstructed from IFA. We achieve this

using an existing planktonic foraminifera proxy system model

(PLAFOM2.0), which is a global model of foraminifera abundance

that predicts the monthly concentration (in mmol C m-3) of five

species:N. pachyderma, N. incompta, G. bulloides, T. sacculifer and G.

ruber (Fraile et al., 2008; Kretschmer et al., 2018). PLAFOM2.0 uses a

marine ecosystem model that predicts foraminifera food sources

(Moore et al., 2001) to calculate species-specific rates of growth and

mortality (Fraile et al., 2008). PLAFOM2.0 has recently been

integrated with the biogeochemically-active ocean component of

the Community Earth System Model (Hurrell et al., 2013) to

calculate global estimates of foraminifera concentration in each

month of the year and at 24 vertical levels between 0 and 250

meters (Kretschmer et al., 2018).

Our approach extracts PLAFOM2.0 concentrations for the

user-defined foraminifera species from the grid-box closest to
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monthly SST data. Monthly foraminifer concentrations are

summed across the model’s entire 250 m depth domain, thereby

removing the user from a priori assumptions regarding depth

habitat. The total annual foraminifer concentration is then used

to convert monthly concentrations into proportions. Values greater

than 0.083 (i.e. 1/12) reflect some degree of foraminifera seasonal

preference. An example based on G. bulloides from DSDP Site 36 is

shown in Figure 3. Monthly proportions are used as weights to

resample the original SST timeseries and generate a new SST record

that mimics the seasonal bias of the selected foraminifera species.
2.5 Summary statistics of SST distributions

A number of statistical values have been developed to summarize

the shape of a distribution. These statistics are attractive for

establishing transfer functions because they condense the large

amount of data in a SST distribution into a single value. For each

of the monthly-weighted SST timeseries described above, we calculate

a series of statistics that summarize the shape of their distributions.

We use the term “statistic” throughout the remainder of the text to

refer to the following measures of distributions that are plausible

predictors of MHW metrics:
• Shapiro-Wilk test: A statistical test evaluating the null

hypothesis that data are Gaussian (Shapiro and Wilk, 1965).

Test statistic values range from 0 to 1, with higher values

representing closer agreement with a Gaussian distribution.

• Kurtosis: A measure of how often outliers occur or the

“tailedness” of a distribution

• Skewness: A measure of a distribution’s asymmetry

• Quantiles 1-21: Values dividing a distribution into 21

continuous intervals of equal probability.
FIGURE 3

Example of the modeled seasonal change in the relative concentration of G. bulloides at DSDP Site 36. Values greater than 0.083 (dashed line)
represent some degree of seasonal preference.
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Statistics are calculated from standardized SST anomalies by

subtracting means and dividing by standard deviations, and after

30-year high pass filtering in the case of ERSSTv5, COBEv2 and

HadISST. Standardizing has no effect on Shapiro-Wilk, kurtosis and

skewness values, and changes quantiles by a fixed proportion that

varies between sites. The latter is helpful when comparing sites with

different amplitude climatologies as it forces the total range of

quantiles to be approximately equal. Standardizing also eliminates

the need to select a specific proxy-temperature calibration for cases

that calibrations are linear. That is, if d18O values of foraminifera

were used to estimate SST using a linear calibration (e.g. Bemis

et al., 1998), the standardized anomalies of those d18O values would

have the same distribution statistics as d18O-based SST estimates

(for some statistics, the inverse relationship between d18O and

temperature would need to be accounted for by multiplying by -1).
2.6 Constructing transfer functions
between pseudoproxy SST distribution
statistics and MHW metrics

Our method next uses partial least squares regression (PLSR) to

evaluate if pseudoproxy SST distribution statistics (section 2.5) are

useful predictors of any MHW metric (section 2.3). PLSR is an

attractive alternative to more traditional ordinary least squares

regression for this application because it allows information from

all distribution statistics to contribute to a transfer function despite

considerable collinearity among them (Mehmood et al., 2012).

Pseudoproxy SST distribution statistics are transformed into a

new set of orthogonal components and a transfer function is

generated using only a subset of these components. The

dimensionality reduction of PLSR is therefore similar to principal

components regression (PCR) with the difference that PLSR

maximizes covariance between independent and dependent

variables when selecting components while PCR only considers

the variance of independent variables. Thus, PCR can inadvertently

eliminate components with considerable predictive power if they

have low variance, while PLSR is less prone to this effect.

We implement PLSR separately for each of the fiveMHWmetrics

using the scikit-learn Python module (Pedregosa et al., 2011). The

number of components to include in the PLSR is chosen by first

randomly selecting 30 pseudoproxy SST timeseries from the ensemble

along with their corresponding MHWmetrics. Subsets of 70% of each

pseudoproxy SST timeseries are then used to generate PLSR-based

transfer functions with 1 to 10 components that are each capable of

predicting a MHW metric. Applying each transfer function to the

withheld 30% of data allows the differences between the predicted and

observed MHW metrics to be used to calculate root mean square

errors (RMSE):

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i (MHWi −   dMHW i)
2

N

s

where MHWi-hat is the predicted MHW metric for ensemble

member i, MHWi is the true MHW metric for that ensemble

member and N is the number of ensemble members considered.
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The change in RMSE with additional components allows the user to

identify an appropriate number of components to include in the

PLSR (Figure 4). To guide users toward transfer functions that

balance lower RMSE with complexity, we highlight two values:

1) the number of components that yield the overall lowest RMSE

and 2) the number of components at which RMSE ceases to

improve by at least 1%. After the user selects a number of

components, a new PLSR transfer function is generated using all

pseudoproxy SST timeseries within the ensemble.

The performance of a transfer function is initially evaluated

using its correlation coefficient (r2), the standard deviation of

regression residuals (RMSEreg) and the RMSE relative to

observations (RMSEobs). The latter value is calculated by applying

the distribution statistics for ERSSTv5, COBEv2 and HadISST

monthly SST data to the LIM-based transfer function and

comparing the calculated MHW metric to each record’s true

value (Figure 5). This out of sample validation provides an

important check on how well a LIM-based transfer function

reflects reality. If the user deems a transfer function to be

sufficiently promising, the influence of under-sampling can then

be evaluated.

In practice, IFA will always under-sample past SST because only

tens or hundreds of monthly values will be reconstructed from

foraminifera within a sedimentary interval that represents decades

to millennia. To evaluate how sensitive transfer functions are to this

effect, our approach considers a series of scenarios in which 50 to

800 foraminifera tests are picked from a sedimentary interval.

Because the number of foraminifera measured is equivalent to the

number of months sampled, the amount of time represented in a

sedimentary interval (derived from sedimentation rate) can be used

to calculate what fraction of all months will be recorded by a given

number of IFA measurements. For example, if 200 foraminifera are

measured from a sedimentary interval representing 500 years

(equivalent to 6,000 months), 3.3% of all months are sampled.

Using a randomly selected ensemble member, we randomly draw

the fraction of values equivalent to each number of picked

foraminifera. This yields an under-sampled pseudoproxy SST

record that mimics what would be generated from IFA in marine

sediments. The distribution statistics from the under-sampled,

pseudoproxy IFA data are then applied to the transfer function

and the resulting reconstructed MHW metric is compared with the

true value. This is repeated 500 times to quantify the RMSE

associated with sampling each number of foraminifera

(RMSEsamp). A fit through a range of possible IFA measurements

gives an estimate of RMSEsamp for any number of foraminifera

(Figure 6) and is valuable for evaluating what level of accuracy can

be expected from a sample prior to geochemical analyses.

A disadvantage of PLSR is that the transformation of

distribution statistics into new orthogonal variables can

complicate the interpretation of regression coefficients in terms of

actual physical properties. Our algorithm produces two resources

that give some insight into how distribution statistics vary with

changes in a MHW metric. The first gives the loadings for each

distribution statistic and component (Figure 7A). Larger loadings

indicate that a particular distribution statistic has a greater influence

on a given component, while loadings of the same sign indicate
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FIGURE 4

Example of how regression RMSE (RMSEreg) changes with the number of components included in the partial least squares regression. In this case,
the cumulative intensity of MHWs, defined using intensity and duration thresholds of one standard deviation and one month, are related to the
statistics of a pseudoproxy SST distribution based on G. bulloides seasonality at DSDP Site 36. While the user is ultimately left to select the number
of components to use in a PLSR, the values at which RMSEreg is at its minimum (red triangle) and ceases to improve by at least 1% (yellow triangle)
are provided to inform this choice.
FIGURE 5

Example comparison of MHW cumulative intensity at DSDP Site 36 predicted from a PLSR-based transfer function versus that observed in the LIM
ensemble (red) or observational SST products (black). MHWs are defined using intensity and duration thresholds of one standard deviation and one
month and distribution statistics derive from a pseudoproxy SST distribution that is based on G. bulloides seasonality at DSDP Site 36. The
consistency with which the LIM-based transfer function estimates independent observations supports the validity of our approach.
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which distribution statistics covary in the same direction. The

second resource presents the difference in distribution statistics

between ensemble members with the highest and lowest 10% of a

MHW metric (Figure 7B). This allows the user to see which

distribution statistics change the most between extreme values of

MHW metrics.
2.7 Example application at northeast
Pacific sites

To demonstrate a potential application of our method we apply

it at 12 northeast Pacific locations (Figure 8; Table 1) with the goal

of identifying sites where IFA-based SST distributions have the

greatest potential to reconstruct paleo-MHW variability. We

consider a domain from about 40-60°N and 130-160°W that

approximates the area influenced by the 2014-2016 “Blob” MHW

(Bond et al., 2015). Of the 12 sites, seven locations (noted with site

numbers from the Deep Sea Drilling Program or Ocean Drilling

Program (ODP)) represent sediment cores that have been

recovered, while the remaining five locations (labeled A-E)

represent locations at which cores could potentially be collected

in the future. These five sites are exemplary, and selected only to fill

gaps in the spatial distribution of existing cores without considering

the type or thickness of sediment at specific coordinates.

Sedimentation rates at each site are taken from previously

published age models when possible, and estimated from adjacent

cores (Costa et al., 2024) when such data is unavailable (Table 1).
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At each site we consider a series of MHW definitions that

include duration thresholds of 1, 2 and 4 months and intensity

thresholds of 1 or 2 standard deviations. We model the seasonal

abundance of G. bulloides and N. incompta since they are common

in the modern northeast Pacific (Ortiz and Mix, 1992; Sautter and

Thunell, 1989; Taylor et al., 2018) and in sediment cores (Davies

et al., 2011; Praetorius et al., 2015; Taylor et al., 2014). We

consistently select the number of components included in the

PLSR based on the value at which RMSE ceases to improve by at

least 1% (section 2.6; Figure 4). We perform additional evaluation of

under-sampling only when a transfer function’s correlation

coefficient exceeds 0.5. This value is selected somewhat arbitrarily

to increase efficiency by not considering the influence of under-

sampling for transfer functions with seemingly little promise. Other

users may make alternative decisions. When under-sampling is

evaluated, we use our best-estimates of sedimentation rate at each

site (Table 1) and assume a 1 cm sampling interval. In total we

evaluate 60 potential transfer functions at each of the 12 sites to

identify which MHW metrics, based on which MHW definitions,

are mostly likely to be reconstructed by which foraminifera species

at each location.
2.8 Stable isotope analyses of individual
G. bulloides

To demonstrate how a transfer function may be applied to

actual IFA data to reconstruct paleo-MHWs we also measured d18O
FIGURE 6

Example result demonstrating how the RMSE of a reconstructed MHW metric will vary with the number of foraminifera measured. Results vary based
on the strength of a transfer function’s fit and the sedimentation rate at a site. Here, the transfer function in Figure 5 is applied to scenarios in which
50, 100, 200, 400 or 800 G. bulloides are measured at DSDP site 36. This suggests that the cumulative intensity of MHWs at this site would be
reconstructed with an error of approximately ±6°C/decade if 100 G. bulloides were measured. A fit through the five points allows RMSEsamp to be
calculated for any number of foraminifera, which in this case is: ln(RMSEsamp) = 5.385 - 0.753 * ln(n forams).
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in individual G. bulloides from core-top (0-1 cm) sediments at

DSDP Site 36. Core-top sediments are commonly assumed to

approximate recent oceanographic conditions, and have been

widely used to calibrate and validate paleoceanographic proxies

(Quintana Krupinski et al., 2017; Rongstad et al., 2020; Saenger and

Evans, 2019; Tierney et al., 2019). Core-top sediments were first wet

sieved at 63 mm and dried. All G. bulloides were then picked from

the 150-250 mm and >250 mm size fractions. Forty-five individuals
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from the larger size fraction were briefly sonicated in water and

methanol before being transferred to Kiel device vials. d18O was

measured at the Oregon State University Stable Isotope Laboratory

using a Thermo-Fisher Kiel IV carbonate device coupled to a

custom Thermo-Fisher MAT253+ isotope rat io mass

spectrometer that has been optimized to analyze small volumes of

carbon dioxide. For example, each ion beam has a factor of ~3

greater than stock amplification for m/z 44, 45, and 46, and a
FIGURE 7

Information to aid in the physical interpretation of a transfer function (A) The loadings on each component of the PLSR allow the user to visualize
how distribution statistics vary relative to one another. (B) The percent difference in each distribution statistic between the LIM ensemble members
with the highest and lowest 10% of a MHW metric. This example uses the regression from Figure 5 to plot the difference between LIM ensemble
members at DSDP Site 36 with the highest and lowest cumulative intensities.
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modified pressure-adjust routine that minimizes sample versus

standard pressure imbalances in small samples. This roughly doubles

the instrument’s signal to noise ratio at low beam intensities (typically

near 1000 mV with the greater amplification; Supplementary Table

S3), at the cost of a slight increase in nonlinearity with sample size.

Modifications prevent running high mass samples without saturating

the detectors, or requiring expansions, which can be problematic with

such small amountsofCO2gas.Loading small volumesof referencegas

reproducibly can also be a challenge, and requires extra analyses of

carbonate standards for the purpose of isotope calibration relative to

ViennaPeeDeeBelemnite (VPDB). In this study, small (up to0.1 to0.2

permil) linear corrections were made for source nonlinearity as a

function of major beam intensity. Specifically, 8-9 analyses of an in-

house standard (WileyMarble) within each runwere used to constrain

linear relationships for rawd18Oandd13Cversusm/z 44, and thenused

to correct source nonlinearity in all other analyses from that run using

their measured m/z 44 intensity. An additional small correction for

reference gas depletion during each runwas applied based on trends in

the same Wiley Marble standards versus analysis time. This gas

depletion correction has since been eliminated by increasing the size

of the reference gas reservoir. The weights of the individual shells were

calculated from the relationship between initial gas pressures (the Kiel

VM1 gauge) andmeasured weights of standards ranging from about 3

to 17 mg, measured on a Sartorius SE2 ultramicrobalance

(Supplementary Table S3). The uncertainty in the calcite weight

associated with each shell analysis estimated from initial gas

pressures is about 1 mg. Comparing measured to calculated mass for

standards in this study yields a RMSE of 2 mg (Supplementary Table
Frontiers in Marine Science 12
S3). Multiple analyses of NBS19 bracketed samples to evaluate

precision and normalized data to the VPDB scale.
3 Results

The primary result of this work is the methodology described

above, which identifies and quantifies robust transfer functions

between pseudoproxy IFA-based SST distributions and MHW

metrics. However, our application of it in the northeast Pacific

provides an important example of the information it generates, how

those results might be used, and the characteristics of sites with the

greatest potential to reconstruct MHWs.
3.1 Locations and characteristics of the
best transfer functions

Transfer function correlation coefficients vary significantly

depending on site, MHW metric and MHW definition. The best

fits occur at proposed locations B and C in the central part of the

domain (50°N, 140-150°W) where r2 values can exceed 0.8

(Figure 9A). Robust transfer functions with r2 >0.7 are still found

at many other locations including ODP Site 887, DSDP Site 183,

ODP Site 1023 and proposed location E, but sites further south and

west (e.g. DSDP Site 37 and proposed location D) have weaker best

fits with maximum r2 values below 0.6. Best fits consistently come

from transfer functions that target the cumulative intensity of
FIGURE 8

Locations of the northeast Pacific sites considered in this study relative to the 2015 SST anomaly associated with the “Blob” MHW. Numeric values
represent the locations of existing DSDP and ODP marine sediment cores. Letters represent hypothetical locations at which cores could be
collected within the geographic range of the 2015 MHW event.
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MHWs, while transfer functions that target other MHW metrics

rarely have correlation coefficients above 0.5 (Figure 9B). Fits are

typically best when MHWs are defined based on a duration of one

month, but the decline in r2 values for duration thresholds of two and

four months is modest (Figure 9C). Fits are also highest whenMHWs

are defined using an intensity threshold of one standard deviation,

but often decrease considerably when the threshold is changed to two

standard deviations (Figure 9D). In comparison, differences between

species are minor and transfer functions based on G. bulloides are

often similar to those based onN. incomptawithout evidence for once

species consistently outperforming the other.

However, high correlation coefficients do not guarantee a transfer

function can accurately reconstruct MHWs. While our evaluation of

under-sampling does show that RMSEsamp decreases in transfer

functions with higher r2 values (Figure 10A), sedimentation rate

appears to be a more important control on accuracy (Figure 10B).

For example, a transfer function that targets the cumulative intensity of
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short duration, low intensity MHWs using G. bulloides at proposed

location C has a very high correlation coefficient of 0.81, but applying

this transfer function to a SST distribution based on 200 foraminifera

would reconstructMHWcumulative intensity with an error of ±351%

due to the location’s low sedimentation rateof 0.14 cm/kyr. In contrast,

applying transfer functions with weaker fits (r2 0.66-0.71) to SST

distributions based on 200 foraminifera at sites with higher

sedimentation rates of ~7 cm/kyr (i.e. ODP Site 887, DSDP Site 179)

would reconstruct MHW cumulative intensity with an error of only

about ±45% (Figure 10B).
3.2 Individual G. bulloides stable isotopes

Of the 45 individual foraminifera analyzed from site DSDP Site

36, 37 were large enough (calcite weight 3-15 mg) for the dual inlet
pressure adjustment required for high precision analysis
FIGURE 9

Summary of correlation coefficients for all 720 transfer functions considered. (A) differences between transfer functions based on G. bulloides (red)
and N. incompta (blue) at the 12 northeast Pacific sites (B) differences between transfer functions targeting each of the five MHW metrics (C)
differences between transfer functions for each of the three duration thresholds considered when defining MHWs (D) differences between transfer
functions for the two intensity thresholds considered when defining MHWs.
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(Supplementary Table S3). External precision was 0.03‰ and

0.09‰ for NBS19 d13C and d18O, respectively (1s, n = 6) and

0.02‰ and 0.07‰ for in-house standardWiley Marble (1s, n = 13).

Average d18O internal precision for standards with masses >3 mg
was 0.05‰ (0.03‰ for masses 10-15 mg, 0.04‰ for 6-10 mg, and
0.07‰ for 3-6 mg). Average d18O for all G. bulloides was 1.84 ±

0.78‰ with a total range of 0.39 - 3.15‰. While G. bulloides with

masses of 3-6 mg had a somewhat higher mean d18O of 2.1 ± 0.76

(n=14) than those with masses of 6-10 mg (d18O = 1.66 ± 0.71;

n=11) and 10-15 mg (d18O = 1.69 ± 0.83; n=12), the slope of

-0.06‰/mg observed for all data was not significant (p = 0.06) and

we treated the data as a single population. The standard deviation of

the individual shell data is a factor of 20 greater than internal

precision, and a factor of 10 greater than external analytical

precision, so the variability in foraminiferal data can reliably

be interpreted to reflect the environment of their habitat.

The distribution of proxy data is shown in Figure 11

and complete distribution statistics are given in Supplementary

Table S4, acknowledging that the relatively small number of

foraminifera analyzed may not accurately capture the true

underlying distribution.

We applied these IFA-based distribution statistics to a transfer

function that predicts the cumulative intensity of MHWs at DSDP

Site 36. The transfer function accounts for the seasonal ecology of G.

bulloides, and defines MHWs using intensity and duration

thresholds of one standard deviation and one month, respectively.

Applying a transfer function that defines MHWs using a two month

duration threshold yielded similar results (not shown). IFA-based
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distribution statistics calculated a cumulative intensity of 10.63°C/

decade in core-top sediments, which is appreciably higher than

values of 6.68°C/decade, 6.37°C/decade and 5.52°C/decade in

ERSSTv5, COBEv2 and HadISST data, respectively. However,

because only 37 individuals are measured, the influence of under-

sampling is severe and we calculate the error on reconstructed

cumulative intensity to be ±14.38°C/decade.
4 Discussion

This study provides a framework for developing transfer

functions that can reconstruct past MHW variability from IFA

paleotemperature distributions. Our systematic application of this

approach at a series of northeast Pacific sites suggests that

promising transfer functions can be generated from multiple

species in most regions, and that the cumulative intensity of short

duration, low intensity MHWs is the metric that can be

reconstructed with the greatest skill. It is not immediately clear

why transfer functions that target cumulative intensity consistently

outperform others, but we speculate that it may relate to the

metric’s reliance on both duration and intensity. That is,

variations in MHW duration or intensity alone may cause only

modest changes to a SST distribution, while their combined

influence in the cumulative intensity metric may be larger and

more detectable. Similarly, we speculate that using duration and

intensity thresholds of one month and one standard deviation,

respectively, to define MHWs yields stronger transfer functions
FIGURE 10

The RMSE expected for MHW reconstructions when only 200 foraminifera are measured. (A) versus the correlation coefficient of the transfer
function and (B) versus the sedimentation rate of each site. The lowest RMSE values occur at the highest sedimentation rates, not the highest
correlation coefficients. RMSE is expressed as a percent of the LIM ensemble mean to accommodate the differing units of MHW metrics. Under-
sampling was only evaluated in transfer functions with a r2 > 0.5.
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because of the greater number of these low intensity, short duration

events within each LIM ensemble member. A thorough evaluation

of the mechanisms responsible for these observations and the

degree to which they occur outside the north Pacific domain is

left for future work.

In contrast, the relationship between transfer function skill and

sedimentation rate is more straightforward. One centimeter of

marine sediment in the central gyres can typically reflect many

thousand years of time for sedimentation rates <0.25 cm/kyr

(Table 1). Transfer function correlation coefficients at proposed

location C are the highest of any location we consider, but one

centimeter of sediment corresponds to about 7,000 years, or

equivalently, 84,000 months. In this case, 200 foraminifera only

represent about 0.25% of all months, leading to a severely under-

sampled SST distribution and MHW reconstructions with errors

exceeding ±350% (Figure 10B). Despite a higher sedimentation rate

at DSDP Site 36, the influence of under-sampling on the individual

foraminifera d18O data we generate is similar. Our 37 analyses

represent only about 0.75% of the approximately 5000 months

recorded by a centimeter of sediment at the site, making it unlikely

that the resulting SST distribution (Figure 11) is representative of

the larger population. While it is possible to generate a cumulative

intensity estimate from these 37 analyses, the error on this value is

too large to compare to observed modern values in a meaningful

way. It is regrettable that our d18O data was generated in parallel

with the development of our method, and we therefore missed an

opportunity to evaluate how the relative paucity of G. bulloides at

DSDP Site 36 would impact the accuracy of MHW reconstructions.

Fortunately, similar situations should be avoidable in the future by
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using our method to calculate the expected accuracy of a MHW

reconstruction prior to conducting geochemical analyses.

Given the sensitivity of our method to sedimentation rate, it is

not surprising that the most accurate MHW reconstructions occur

at ODP Site 887 and DSDP Site 179 where sedimentation rates are

~7 cm/kyr. At these locations, one centimeter of sediment reflects

about 150 years, or 1800 months, and measuring 200 foraminifera

would represent about 11% of all months. In these cases, the SST

distribution is less dramatically under-sampled and RMSEsamp

decreases to about ±45%. While obviously an improvement, it

seems likely that errors of this magnitude would still limit the

practical application of our approach to only major shifts in

MHW behavior.

The best path to reducing uncertainty in MHW reconstructions

when applying our approach is to minimize the degree of under-

sampling, which can be achieved in two ways. First, more

foraminifera can be measured to increase the fraction of all

months sampled. For example, we calculate that the error on

MHW cumulative intensity reconstructed from N. incompta at

DSDP Site 179 can be reduced from ±42% when 200 foraminifera

are sampled to ±21% when 800 are sampled. These sample sizes

may seem unreasonably large given that IFA studies typically

measure only 50-100 individuals (Ford et al., 2015; Koutavas

et al., 2006; Rongstad et al., 2020; Rustic et al., 2020). However,

previous studies have not rigorously evaluated the sensitivity of

their results to under-sampling and may have similar sample

requirements. The likelihood that large sample requirements will

be necessary to address many hypotheses will favor analytical

approaches that achieve high throughput measurements of
FIGURE 11

Histogram of SST estimates based on the d18O of 37 individual G. bulloides (grey) and the kernel density estimation of the population (red). Oxygen
isotopic values were converted to temperature using the calibration of Bemis et al. (1998). The Shapiro-Wilk statistic, kurtosis and skewness of the
distribution are 0.95, -1.18 and -0.075, respectively. Complete statistics are given in Supplementary Table S4.
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geochemical proxies without significantly sacrificing analytical

precision. Even with analytical advances, the degree to which

errors can be reduced by increasing sample sizes will ultimately

be determined by the number of foraminifera present in a sample,

and it may not always be possible to achieve a desired level of skill

simply by making more measurements.

A second way to decrease the errors caused by under-sampling

is to reduce the number of months recorded in a sampling interval

by targeting high sedimentation rate sites. Continental margins

sites, such as those in the Gulf of Alaska (Walczak et al., 2020) or the

Santa Barbara Basin (Hendy et al., 2002), can have sedimentation

rates in excess of 100 cm/kyr and minimal bioturbation, which

allow a 1 cm sample to achieve near decadal resolution. Application

of our method at these locations shows strong transfer functions

similar to other north Pacific sites (not shown), and can reconstruct

MHW cumulative intensity with an error below ±20% when 100

foraminifera are sampled, and below ±15% when 200 are analyzed.

In comparison to reducing errors by increasing sample sizes,

targeting high sedimentation rate sites has the advantage of

improving accuracy while also minimizing analytical time and

expense. These variables are obviously not exclusive however, and

sites with both high sedimentation rates and abundant foraminifera

are currently the best candidates for applying our method to

generate paleo-MHW reconstructions.

Such reconstructions have the potential to significantly expand

upon existingpaleo-MHWresearch,which, toour knowledge, consists

only of a single study of bi-monthly to annual coral data in western

Australia (Zinke et al., 2015). Evidence that foraminifera assemblages

varywithMHWson short timescales (Lane et al., 2023) is an important

result, but it will be difficult to attribute assemblage changes to past

MHW variability as opposed to changes in the mean state.

Additionally, it is not yet clear if changes in assemblages primarily

reflect a response to MHW duration, frequency, intensity or some

combination of these metrics. On the other hand, our transfer

functions target specific MHW metrics in a quantitative way that

facilitates statistical analyses and comparisons to independent model

simulations. While we highlight a northeast Pacific application, the

framework we describe can be applied to other foraminifera species in

other ocean domains to significantly advance knowledge of

spatiotemporal MHW variability.

Despite promise, the accuracy with which MHWs can be

reconstructed using our approach relies on a number of

assumptions that should be carefully considered when

interpreting results. In many cases these same assumptions also

apply to traditional foraminifera-based reconstructions and are an

inherent complication of paleoceanography. For example, changes

in the seasonality of G. bulloides or N. incompta growth have the

potential to alter mean SST reconstructions (Jonkers and Kučera,

2015), but would also likely change paleotemperature distributions

independently of MHW behavior. Applying our transfer functions

in the distant past would therefore require demonstrating that

seasonality had not changed significantly, or generating new

transfer functions with alternate modeled seasonalities that

account for any changes. These alternate seasonalities could be

generated for modern species by rerunning foraminifera ecology
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models (Fraile et al., 2008; Kretschmer et al., 2018; Moore et al.,

2001) under the boundary conditions of past climates, but may be

challenging for extinct species.

It may also be important that PLAFOM2.0 (Kretschmer et al.,

2018) calculates seasonal trends in foraminifera concentrations,

which could differ from trends in calcification. The rate of

planktic foraminifera chamber formation and calcification is

known to vary throughout their life (de Nooijer et al., 2014; Lea

et al., 1995; Ter Kuile and Erez, 1984), causing geochemical proxies

such as Mg/Ca or d18O to vary with shell size (Elderfield et al.,

2002). To minimize this effect, paleoceanographic reconstructions

typically target foraminifer tests within narrow size fractions.

However, seasonal biases can also differ between size fractions

(Jonkers et al., 2013; Thunell et al., 1983) and aren’t accounted

for by PLAFOM2.0. This could cause the true seasonal bias of actual

IFA data to differ from that modeled in IFA pseudoproxies when

only narrow size fractions are considered. While additional work is

necessary to characterize the scope of this potential complication,

solutions seem possible if it proves to be a concern. For example,

seasonal biases of specific size fractions could be incorporated into

proxy system models like PLAFOM2.0 or shell size could be added

as an independent variable when predicting paleotemperatures,

thereby allowing all foraminifera to be measured regardless of

size fraction.

It is also plausible that the seasonal distributions generated by

PLAFOAM2.0 (Kretschmer et al., 2018) do not account for

ecological responses that are unique to MHWs. For example,

stratification during a MHW could isolate foraminifera from the

nutrient-rich subsurface, possibly ending their growing season and

ability to record MHWs if they could not alter their habitat depth.

While this possibility will ultimately have to be evaluated on a case

by case basis, the best data available to evaluate it in the north

Pacific is the 4-year sediment trap study of Sautter and Thunell

(1989). These data overlap with multiple MHWs, with the initial 2

years being characterized by a long duration, low intensity MHW

associated with the 1982/83 El Niño, and a shorter duration MHW

occurring during the winter of 1984-85. During this interval G.

bulloides exhibited a seasonal flux from March-July, while N.

incompta was most abundant from August-November. Both

trends agree with the modeled distributions of Kretschmer et al.

(2018), but are inconsistent with the possibility that the growing

season of either species ends abruptly with the onset of a MHW.

Support for this comes from the observation that G. bulloides were

found in Santa Barbara Basin sediment traps throughout the 2014-

2016 “Blob” MHW (Cherry et al., 2023), although these organisms

may be a distinct genotype from those in more subpolar

environments and therefore may respond to MHWs differently.

Additional monitoring of how foraminifera assemblages and

abundance change across a range of MHW intensities and

durations (e.g. Lane et al., 2023) is certainly warranted since

available data are limited, but current knowledge suggests that G.

bulloides and N. incompta remain present and with similar

seasonality during many MHWs.

If future work should demonstrate that certain species exhibit

ecological biases that make them unsuitable for MHW
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reconstructions, it is encouraging that our method predicts robust

transfer functions across multiple species. The framework we

describe accommodates five different foraminifera species, and

will allow reconstructions to target only the species whose ecology

is minimally impacted by MHWs. Alternatively, if multiple species

are found to have uncorrelated ecological biases, it may be

advantageous to generate multiple independent MHW

reconstructions from different species in the same sedimentary

interval. These reconstructions could then be combined to

maximize their mutual MHW information and minimize species-

specific effects.

Moving forward, our approach could be improved by further

refining our proxy system model, which could consider

bioturbation more realistically. When calculating the fraction of

months sampled by a given number of IFA measurements, we

currently assume that sedimentation rate is the only variable

determining the amount of time represented by one centimeter of

sediment. While this assumption may be valid at sites with anoxic

bottom waters void of benthic organisms, bioturbation could

significantly increase the amount of time represented in a

sedimentary interval because of mixing over depths of 10 or more

centimeters (Dolman et al., 2021). Fortunately, tools exist to

rigorously evaluate bioturbation in sedimentary archives (Dolman

and Laepple, 2018) and can be incorporated into future versions of

our algorithm.

Species specific paleotemperature calibrations will not be a

major concern as long as they are linear, which is often true for

d18O (Bemis et al., 1998; Mulitza et al., 2003). In these cases,

transformations do not change the distribution statistics between

raw geochemical data and reconstructed temperature. The same is

not true for exponential paleotemperature calibrations (Anand

et al., 2003; Lea et al., 1999; Saenger and Evans, 2019), and Mg/

Ca data would need to be transformed to temperature to apply our

transfer functions. In either case, changes in the d18O or Mg/Ca of

seawater between time intervals would not influence distributions

as long as these values remained relatively constant within each IFA

time interval.

Finally, we stress that any paleo-MHW reconstructions based

on our approach should be interpreted only in the context within

which they are calibrated. Reconstructed MHWs will follow the

definition in Section 2.3, and will not necessarily reflect trends based

on the daily definitions commonly used when studying modern

MHWs. Furthermore, changes in one metric should not be assumed

to be representative of other metrics or MHW definitions. That is, a

reconstructed increase in MHW cumulative intensity should not be

taken to mean there were also increases in the number or duration

of events. Similarly, a transfer function based on short duration, low

intensity MHWs should not be used to suggest changes in higher

intensity or longer duration events. While there are undoubtedly

other ways to generate transfer functions between IFA distributions

and MHW metrics, reconstructions from this study should only be

interpreted for the region, metric and definition for which they are

calibrated and validated.
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5 Conclusions

We describe a framework to evaluate how well SST

distributions can predict MHW metrics, with the goal of

generating transfer functions that can be applied to monthly

paleotemperature distributions derived from IFA. Results reveal

that the cumulative intensity of short duration, low intensity

MHWs is the most promising target for reconstruction, and can

likely be calculated with an error of less than 15% at continental

margin sites with sedimentation rates in excess of 100 cm/kyr. Our

approach is a major advance in the nascent field of paleo-MHW

research that allows specific MHW metrics and their uncertainty

to be quantified from individual foraminifera in marine

sediments. While we present an example application from the

northeast Pacific, our approach is valid in other ocean domains

and for other foraminifera species. Application of our method in

broader contexts therefore has considerable potential to advance

knowledge surrounding the spatiotemporal variability of MHWs

prior to the observational era. Future paleo-MHW reconstructions

will provide valuable context for interpreting modern trends as

well as out-of-sample validation targets for climate models, both

of which should help improve forecasts of MHW behavior on

decadal-centennial timescales.
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Tolderlund, D. S., Bé, A. W. H., and Be, A. W. H. (1971). Seasonal distribution of
planktonic foraminifera in the Western North Atlantic. Micropaleontology 17, 297.
doi: 10.2307/1485143

von Biela, V. R., Arimitsu, M. L., Piatt, J. F., Heflin, B., Schoen, S. K., Trowbridge, J.
L., et al. (2019). Extreme reduction in nutritional value of a key forage fish during the
Pacific marine heatwave of 2014-2016.Mar. Ecol. Prog. Ser. 613, 171–182. doi: 10.3354/
meps12891

Walczak, M. H., Mix, A. C., Cowan, E. A., Fallon, S., Fifield, L. K., Alder, J. R., et al.
(2020). Phasing of millennial-scale climate variability in the Pacific and Atlantic
Oceans. Science 370, 716–720. doi: 10.1126/science.aba7096

White, S. M., Ravelo, A. C., and Polissar, P. J. (2018). Dampened El Niño in the early
and mid-holocene due to insolation-forced warming/deepening of the thermocline.
Geophys. Res. Lett. 45, 316–326. doi: 10.1002/2017GL075433

Xu, T., Newman, M., Capotondi, A., and Di Lorenzo, E. (2021). The continuum of
northeast pacific marine heatwaves and their relationship to the tropical pacific.
Geophys. Res. Lett. 48, 2020GL090661. doi: 10.1029/2020GL090661

Xu, T., Newman, M., Capotondi, A., Stevenson, S., Di Lorenzo, E., and Alexander, M.
A. (2022). An increase in marine heatwaves without significant changes in surface
ocean temperature variability. Nat. Commun. 13, 7396. doi: 10.1038/s41467-022-
34934-x

Yao, Y., Wang, C., and Fu, Y. (2022). Global marine heatwaves and cold-spells in
present climate to future projections. Earths Future 10, e2022EF002787. doi: 10.1029/
2022EF002787

Zinke, J., Hoell, A., Lough, J. M., Feng, M., Kuret, A. J., Clarke, H., et al. (2015). Coral
record of southeast Indian Ocean marine heatwaves with intensified Western Pacific
temperature gradient. Nat. Commun. 6, 8562. doi: 10.1038/ncomms9562
frontiersin.org

https://doi.org/10.1007/s00382-020-05529-3
https://doi.org/10.1038/nature15753
https://doi.org/10.1016/j.epsl.2017.03.007
https://doi.org/10.1029/2002JD002670
https://doi.org/10.1029/93RG03257
https://doi.org/10.1038/s41598-019-51114-y
https://doi.org/10.1038/s41598-019-51114-y
https://doi.org/10.1029/2019PA003774
https://doi.org/10.1038/s41467-020-19161-6
https://doi.org/10.1029/2018PA003507
https://doi.org/10.2113/gsjfr.19.4.253
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1146/annurev-marine-032122-121437
https://doi.org/10.1126/science.abj3593
https://doi.org/10.1175/2007JCLI2100.1
https://doi.org/10.1017/S1089332600000383
https://doi.org/10.1016/j.epsl.2014.06.026
https://doi.org/10.1016/j.quascirev.2018.05.006
https://doi.org/10.1016/j.quascirev.2018.05.006
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.2113/gsjfr.14.4.262
https://doi.org/10.1029/2019PA003669
https://doi.org/10.1016/0012-821X(83)90051-1
https://doi.org/10.1029/2019PA003744
https://doi.org/10.1126/science.aay3701
https://doi.org/10.1126/science.aay3701
https://doi.org/10.2307/1485143
https://doi.org/10.3354/meps12891
https://doi.org/10.3354/meps12891
https://doi.org/10.1126/science.aba7096
https://doi.org/10.1002/2017GL075433
https://doi.org/10.1029/2020GL090661
https://doi.org/10.1038/s41467-022-34934-x
https://doi.org/10.1038/s41467-022-34934-x
https://doi.org/10.1029/2022EF002787
https://doi.org/10.1029/2022EF002787
https://doi.org/10.1038/ncomms9562
https://doi.org/10.3389/fmars.2024.1321254
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	A framework for reconstructing marine heatwaves from individual foraminifera in sedimentary archives
	1 Introduction
	2 Methods
	2.1 Overview of the algorithm design
	2.2 Monthly SST from a linear inverse model (LIM) ensemble and observations
	2.3 MHW definitions and their detection in observations and LIMs
	2.4 Accounting for seasonality in foraminifera abundance
	2.5 Summary statistics of SST distributions
	2.6 Constructing transfer functions between pseudoproxy SST distribution statistics and MHW metrics
	2.7 Example application at northeast Pacific sites
	2.8 Stable isotope analyses of individual G. bulloides

	3 Results
	3.1 Locations and characteristics of the best transfer functions
	3.2 Individual G. bulloides stable isotopes

	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


