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Introduction

Coastal lagoons are the most productive systems in the world because these environments

are susceptible to significant nutrient influxes via runoff and direct human waste, which give

rise to intricate and unpredictable variations in both spatial and temporal biogeochemical

dynamics (Roselli et al., 2009; Tagliapietra et al., 2009). These variations are caused by

fluctuations in salinity and temperature gradients, shallow depth, benthic–pelagic interface

processes, and restricted connections with the adjacent sea (Torréton et al., 2007). Conversely,

shallow-water lagoons exhibit significantly higher ecological diversity than fully marine water

bodies due to their diverse biological communities that include freshwater, brackish water,

and marine water (Dube et al., 2010). Given these factors, a quantitative mathematical

methodology is essential for determining impacts developing solutions to improve water

quality, and predicting potential nutrient loads (Jayaraman et al., 2007). This method allows

for the assessment of primary, secondary, and tertiary production by anticipating potential

outcomes and understanding the impact of local management strategies (Giusti et al., 2010).

Understanding ecologically significant processes requires comprehending transformative

mechanisms, which necessitate modeling and describing altered biogeochemical cycles.

Previous studies used coefficients derived from field experiments in temperate regions,

which have distinct water quality and ecological characteristics compared to tropical areas, such

as higher annual solar irradiation, water temperatures exceeding 18°C, and increased primary

production (Lewis, 1987; Prasad et al., 2014; Panda et al., 2015). Therefore, the mathematical
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models employed to predict water quality in tropical water bodies

cannot directly adopt the chemical and biological parameters linked to

climatic zones (Lin et al., 2001). This limitation stems from variations

in local physicochemical properties, diverse tropical biological

processes, and models calibrated to specific environmental regimes

(Dunlop et al., 2008). Given this context, it becomes imperative to

establish a comprehensive modeling framework tailored to tropical

coastal water systems.

The present study embodies the culmination of the “Chilika

Lake Ecosystem Modeling” project, which provides crucial insights

into the prediction of biogeochemical events. In the realm of

tropical ecosystems, it is worth noting that there is a significant

dearth of research in this area, especially when it comes to the

Indian sub-continent. Considering this, a set of objectives has been

devised to confront this deficiency in understanding.
Fron
i. The determination of rate constants in Chilika Lake holds

significant value in terms of predicting and understanding

its sustainable biogeochemical processes.

ii. Validation of predictions from a mathematical model on

primary and secondary production, which strongly correlate

with ecosystem water quality, using in situ monitored data.
Sampling and analysis

Study area

Chilika Lagoon, a designated Ramsar site in India, features a

distinctive pear-shaped, shallow water body with a longitudinal

stretch of 64.3 km and an average width of 20.1 km (Pattnaik, 1998)

(Figure 1A). Its seasonal variability in total area, ranging from

approximately 704 km² in summer to 1,020 km² during the
tiers in Marine Science 02
monsoon, is influenced by the confluence of three key tributaries of

the Mahanadi River, namely, Daya, Bhargavi, and Nuna. These

tributaries play a crucial role in regulating the lagoon’s hydrography,

along with the 52 streams from the western catchment regions

contributing a substantial volume of freshwater (3.1 × 106 m3 d−1 and

166.8 × 106 m3 d−1 during pre-monsoon and monsoon, respectively)

(Gupta et al., 2008). A significant hydrological intervention in

September 2000, involving the creation of a new mouth, successfully

addressed ecological challenges such as low salinity and macrophyte

overgrowth observed in 1996–1997 (Satyanarayana, 1999). Seawater

exchange primarily occurs through the Outer channel, supplemented

by a discreet connection via the Palur canal in Rambha Bay, resulting in

a dynamic interplay of marine water, brackish water, and freshwater

ecosystems. Hydrographically, the lagoon is classified into four sectors:

the Southern sector, connected to the sea through the Palur canal; the

Northern sector, receiving the maximum discharge through rivers; the

Outer channel, connected directly to the sea; and the Central sector,

serving as the mixing zone of the Northern sector and the Outer

channel. The present study was conducted during January 2009 and

December 2011 in the lagoon’s southern and central sectors,

characterized by minimal salinity changes, aimed to derive major

coefficients for a comprehensive understanding of its ecological

dynamics (Gupta et al., 2008; Muduli et al., 2013) (Figure 1B).
Biogeochemical parameters and
experimental methods

Dissolved inorganic nutrients (NH4, NO2, NO3, and PO4) were

estimated using protocols from Grasshoff et al. (1999). The

determination of carbonaceous biological oxygen demand

(CBOD) was conducted by employing the dissolved oxygen (DO)

method with a 5-day incubation period (APHA, 23rd Edition). The

MIKE-21 Manual was used to calculate the first-order decay rate at
A B

FIGURE 1

(A) Map of Chilika lagoon with study locations. The black solid square near station (St.) 2 shows the benthic chamber experiment location. Southern
sector: St. no. 1–14; Central sector: St. no. 15–23; Northern sector: St. no. 24–32; and Outer channel: St. no. 34–36. (B) Salinity variations across the
sampling locations and four sectors of Chilika Lake during the study periods from 2009 to 2011.
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20°C, temperature coefficient for decay rate, and half-saturation

oxygen concentration. Moreover, the concentrations of ammonia

and phosphorus were estimated from the BOD incubated bottles to

assess the production of ammonia and phosphorus during the

organic matter degradation (i.e., carbonaceous BOD) and their

content was calculated following the DHI Manual for WQ-2003.

The ammonia in sediments was extracted using the potassium

chloride technique (Riley and Vitousek, 1995) and analyzed using

the hypochlorite method (Grasshoff et al., 1999). The H14CO3
2

incorporation method was used to measure nitrification rates

(Brion and Billen, 1998, 2000), while oxygen demand during

nitrification was determined using conversation factors from NH4

to NO2 and NO3 to NO2 (Wezernak and Gannon, 1967).

For new carbon production estimation, the Chlorophyll-a

(Chl-a) measurement before and after 12 h, along with the

radioactive carbon (C14) technique, is used under in situ incubation

conditions. Microzooplankton (MZP) grazing experiments were

conducted to analyze grazing rates, phytoplankton growth rate, and

daily turnover using the dilution technique (Landry and Hassett,

1982). The mass of zooplankton was measured in carbon (C) by

filtering 20ml of culture using a pre-combusted (at 450°C for 4H) 25-

mm Whatman GF/F filter (0.7 mm). Similarly, phytoplankton

samples were oven dried at 60°C and their organic carbon (de-

carbonated by HCl fumes) content was measured using an elemental

analyzer on alternate days (Thermo Finnigan, Flash EA1112)

(Redalje, 1983). L-Cystine was used as standard and precision of

analysis was checked against NIST 1941b and found to be at ±0.1%.

Sediment oxygen demand (SOD) was measured using laboratory-

based and in situ field methods, using sediment core samples and a

submersible benthic chamber where the depth is ~1.5 m, to minimize

sediment manipulation and reflect ambient field conditions. The

benthic chamber used in this experiment is made up of a height of

30 cm and a diameter of 29 cm, with indigenous fabrication

employing a translucent acrylic sheet of 1.3 cm thickness (Abhilash

et al., 2012; Muduli et al., 2013). The chamber was equipped with a

leakproof design and provisions to replace withdrawn sample volume

through side ports. To prevent excessive penetration into sediment,

emplacement flanges were attached to two opposite outer walls, with a

maximum depth of 15 cm. The chamber was incubated with an

artificial bottom current created by generating a mechanical stirring

every 10 min to simulate natural processes. DO samples from the

chamber water were collected at 3-h intervals for 24 h via Tygon

tubing, using a peristaltic pump. Care was taken in avoiding air

bubbles and entrapped water in Tygon tube before sampling. For

further experiment details, refer to Muduli et al. (2013).

The experiments were conducted during the stable post-

monsoon (November to January) and pre-monsoon (March to

June) seasons covering all the 3 years (January 2009 and

December 2011), and the mean results were used to calculate

coefficient derivations, with each experiment performed five times.
Model formulations

All the model equations, units, and nomenclatures for hydro-

chemical, biological, and sediment processes for model
Frontiers in Marine Science 03
requirements were adopted from MIKE 21 Water Quality

Temples 2003 in tandem with Hang et al. (2009).
Results and discussion

BOD is a crucial factor in the aerobic metabolism of various

organisms, including pelagic and benthic ones (APHA, 1992;

Bhateria and Jain, 2016). In Chilika Lake, the CBOD decay rate

constant was measured as 0.24 d−1. In general, temperature,

hydraulic parameters, and in situ processes significantly influence

BOD decay rate, with micro-/macro-organisms playing a direct role

in governing overall BOD rates within the water column. Despite

this, the BOD sources include mass debris, decreased flora and

fauna, and mass zooplankton detritus. The dynamics of water

quality are exemplified by the difference between clean waters

with low BOD values and high organic content with elevated

BOD values, which can lead to severe DO depletion and potential

fish kills (Penn et al., 2003). This study investigates various BOD

processes, the CBOD decay temperature correction factor (1.048 q),
the ratio of ammonium released by BOD decay (0.28 g NH4-N/g

BOD), half-saturation concentrations of DO for organic matter

degradation (0.38 mg O2/L), and phosphorus content in dissolved

BOD (0.6 ± 0.035 g P/g BOD) (Table 1).

In riverine systems, the decomposition of organic matter often

hinges on the bacterial populations. For example, in Malaysian river

water, CBOD decay rates were found to be higher than BOD decay

rates observed during different seawater dilutions, attributed to the

suppression of nitrifying bacteria, resulting in reduced oxygen

consumption (Nuruzzaman et al., 2018). Our study found that

CBOD decay rates in experimental sites were comparable to those

in San Francisco Bay Estuary (Chen, 1970), James River (O’Connor,

1981), and Patuxent River Estuary (Lung and Bai, 2003), indicating

distinctly brackish waters. The study found that the NH4 release ratio

during BOD decay was consistent with Venice Lagoon (Melaku Canu

et al., 2001) and Chesapeake Bay (Cerco and Cole, 1994) studies, and

the phosphate content in dissolved BOD was lower than Savannah

Harbor (NATIONAL BOARD OF WATERS, 1982), indicating that

algal growth played a significant role as a regulating factor.

Estimating DO concentrations is crucial for understanding

oxidation and reduction processes, nutrient release, and gas

production. Oxygen enters water through direct absorption from

the atmosphere and photosynthesis, which consumes carbon from

the atmosphere by phytoplankton and submerged aquatic

vegetation (e.g., Potamogeton pectinatus, Halophila sp., and

Vallinaria sp.). This understanding is essential for considerate

nutrient release and gas production. Consequently, DO is a

helpful indicator of environmental health due to its correlation

with phytoplankton biomass (Bhateria and Jain, 2016). DO is also

linked to the nutrient cycle through microbial mineralization and

demineralization mechanisms. In Chilika Lake, maximum oxygen

production at noon was 7.99 ± 0.011m2/d, with submerged plants

acting as a major sink for DO at 191.6 m2/d.

Carbon-based primary production measures can be compared to

oxygen-based measures, with adjustments based on the

photosynthetic quotient (PQ), which represents the molar ratio of
frontiersin.org

https://doi.org/10.3389/fmars.2024.1323229
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Patra et al. 10.3389/fmars.2024.1323229
TABLE 1 Comparison of biogeochemical rate constants of Chilika Lagoon with other areas.

BOD processes Value Study area Rate constant
derivation method

References

1 CBOD decay rate constants (day−1) 0.2 San Francisco
Bay Estuary

Experimental Chen, 1970

0.1 New York Bight Model O’Connor, 1981

0.2 James River Model O’Connor, 1981

0.2 Patuxent
River Estuary

Field measurements CercoLung and
Bai, 2003

0.01 Chesapeake Bay Field measurements/model Cerco and Cole, 1994

0.007 Maryland
coastal waters

Model Lung and Hwang, 1994

0.24 Chilika Lagoon This study

2 CBOD decay temperature correction factor (q) 1.047 San Francisco
Bay Estuary

Experimental Chen, 1970

1.047 Venice Lagoon Model Melaku Canu
et al., 2001

1.05 Maryland
coastal waters

Model Lung and Hwang, 1994

1.048 Chilika Lagoon This study

3 Ratio of ammonium released by BOD decay (g NH4-N/
g BOD)

0.02–0.29 In Savannah Harbor Model USACE, 2006

1.7–3.2 Upper Klamath River Experimental/field Sullivan et al., 2010

0.28 Chilika Lagoon This study

4 Half-saturation concentrations of dissolved oxygen for organic
matter degradation (mg O2/L)

0.1 Venice Lagoon Model Melaku Canu
et al., 2001

0.5 Chesapeake Bay Field measurements/model Cerco and Cole, 1994

0.38 Chilika Lagoon This study

5 Phosphorus content in dissolved BOD (g P/g BOD) 0–0.1 In Savannah Harbor Model USACE, 2006

0.06 ± 0.035 Chilika Lagoon This study

Dissolved oxygen (DO) process

1 Maximum oxygen production at noon (g O2/m
2/d) 2–7 Dwaraka Model Rohit Goyal, 2011

7.99 ± 0.011 Chilika Lagoon This study

2 Carbon-to-oxygen ratio at primary production (mg C/mg O) 0.2–0.4 Nova scotia Field measurements/model Irwin, 1991

0.31 ± 0.006 Chilika Lagoon This study

3 DO-to-Chl-a ratio (g DO/mg Chl) 0.035 Ariake Sea, Japan Field measurements/model Hang et al., 2009

5.9 Culture experiment Experimental Kitajima and
Hogan, 2003

1.3691
± 0.202

Chilika Lagoon This study

4 DO-to-mass detritus ratio (mg DO/mg D) 0.35 Ariake Sea, Japan Field measurements/model Minh Hang et al., 2009

0.0174
± 0.004

Chilika Lagoon This study

5 DO-to-mass zooplankton ratio (mg DO/mg Z) 0.35 Ariake Sea, Japan Field measurements/model Hang et al., 2009

0.2708 ± 0.11 Chilika Lagoon This study

6 Flux rate of DO (kfluxDO) (m/d) 0.03 Ariake Sea, Japan Field measurements/model Hang et al., 2009

(Continued)
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TABLE 1 Continued

BOD processes Value Study area Rate constant
derivation method

References

Dissolved oxygen (DO) process

0.922 ± 0.023 Chilika Lagoon This study

Ammonia processes

1 NH4–N in sediment (mg/m3) 10–400 Ariake Sea, Japan Field measurements/model Hang et al., 2009

2,756 River Seine Field
measurements/
experimental

Brion and Billen, 2000

70–12,400 Nhue River model Model Reichert et al., 2001

284.8 Chilika Lagoon This study

2 Nitrification rate of NH4–N (μmol N/L/d) 0.011 Mediterranean
Lagoon

Model Chapelle et al., 2000

0–5.4 Pearl River Estuary Field
measurements/
experimental

Dai et al., 2008

0.05 at 20°C Temperate lagoon,
Ria de Aveiro

Field measurements/model Lopes et al., 2010

3.001 Chilika Lagoon This study

Nitrification processes

1 N-to-mass detritus ratio (yN/D) 0.15 Ariake Sea, Japan Field measurements/model Hang et al., 2009

0.043 Westerschelde estuary Field measurements/model Soetaert and
Herman, 1995

0.12 Chilika Lagoon This study

2 N-to-Chl-a ratio (yN/Chl) 0.014 na Field measurements/model Aminot et al., 1997

0.012 English Channel Model Cugier et al., 2005

0.0033 Experimental data Experimental data Geider et al., 1998

0.019 Chilika Lagoon This study

Phosphorus process

1 P-to-Chl-a ratio (g P/mg Chl) 0.0012 Ariake Sea, Japan Field measurements/model Hang et al., 2009

0.0025–0.002 Mesotrophic waters Field measurements/model Jørgensen and
Bendoricchio, 2001

0.0036
± 0.001

Chilika Lagoon This study

2 P-to-mass detritus ratio (mg P/mg D) 0.012 Ariake Sea, Japan Field measurements/model Hang et al., 2009

0.0074 Coastal zone in China Model Nobre et al., 2010

0.000321
± 0.00001

Chilika Lagoon This study

3 P-to-mass zooplankton ratio (mg P/mg Z) 0.012 Ariake Sea, Japan Field measurements/model Hang et al., 2009

0.02 Lake Michigan Field measurements/model Chen et al., 2002

50 Kjelsasputten,
Norway

Experimental Hessen and Lyche, 1991

50 Oslo Fjord Experimental Sterner et al., 1992

100.9 ± 52.7 Chilika Lagoon This study

(Continued)
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oxygen and carbon production. PQ can vary depending on inorganic

nitrogen source, with higher values used for nitrate utilization.

The carbon-to-oxygen ratio at primary production in the lagoon

was 0.31 ± 0.006 mgC/mgO. The study determined the DO-to-Chl-a

ratio, DO-to-mass detritus ratio, and DO-to-mass zooplankton ratios

in all lagoon sectors and mean values are 0.1391 ± 0.202 g DO/mg

Chl, 0.0174 ± 0.004 mg DO/mg D, and 0.2708 ± 0.11 mg DO/mg Z,

respectively (Table 1). The mean water to air oxygen flux rate was

calculated as 0.0008 mM/m2/d. These results indicate that the

fluctuations in water quality are linked to algal growth. For

instance, during peak photosynthetic production, Chl-a

concentrations coincide with DO and pH values (Lindenberg et al.,

2008), making the DO-to-Chl-a ratio crucial for estimating

ecosystem health. DO-to-detritus and mass zooplankton ratios

indicate the lagoon’s biological stability.

The non-humic dissolved organic matter production can be

related to chlorophyll-a as well as bacteria–chlorophyll

concentrations (Khan and McKnight, 2010; Harvey et al., 2015; del

Giorgio and Peters, 1993). The bacterial degradation of organic

matter results in the production of inorganic molecules, including

NH4 in sediment, which is an important indicator of organic load and

its conversion into an inorganic state. The NH4 concentration in

lagoon sediment was quantified as 284.6 mg/m3, providing valuable

insights into nutrient regeneration from the bottom sediment. The

study measured the increase in dissolved NH4 concentration in a

lagoon using benthic chamber experiments, which revealed a mean

value of 0.0041 mM/m2/d (Table 1), where the variations in
Frontiers in Marine Science 06
chlorophyll content were linked to the dissolved organic nitrogen

and NH4, especially in the northern part, due to active in situ

mineralization of POC-rich SPM (Patra et al., 2016). Additionally,

the re-suspension of bottom sediment during the pre-monsoon

period due to high wind action increased SPM levels, which could

also affect the lagoon’s NH4 concentration (Ganguly et al., 2015).

The nitrification process involves the microbial transformation

of NH4 to NO2 and NO3 is important in the nitrogen (N) cycle. The

nitrification rate was observed as 3.001 (k Ni NH) and is

comparable to the South China Sea (0–5.2 kNiNH) (Dai et al.,

2008). In the Mediterranean Lagoon and Ria de Aveiro (temperate

lagoon), the nitrification rates were reported as 0.011 kNiNH and

0.05 kNiNH (at 20°C) (Chapelle et al., 2000; Lopes et al., 2010), and

the nitrification and de-nitrification processes are subject to the

distinctive environmental parameters prevailing in the local

context. The N-to-mass detritus ratio and N-to-Chl-a ratio were

shown as 0.12 yN/D and 0.019 yN/Chl, respectively, which are in

agreement with other studies (Cugier et al., 2005; Hang et al., 2009).

Phosphorus is a key nutrient in ecosystem dynamics, limiting

algal development. Sediment in shallow water systems regulates P

levels in the water column. The complex processes of P

transformation, preservation, and recycling at the sediment–water

interface are influenced by the reactivity of P forms and diverse

biological, physical, and geochemical factors, with estuarine and

coastal environments serving as vital P sinks and filters (Liu et al.,

2016). Furthermore, previous studies suggested that the

mineralization of organic matter and the reduction of iron oxide
TABLE 1 Continued

BOD processes Value Study area Rate constant
derivation method

References

Chlorophyll to carbon processes

1 Chl-a-to-carbon ratio (g/g) 0.03 Laboratory
experiment

Experimental Cloern et al., 1995

40 Créteil Lake Field measurements Gamier et al., 1989

0.005–0.065 California
coastal water

Field measurements/model Qian et al., 2010

0–0.03 California
coastal water

Experimental Qian et al., 2011

0.007–0.02
(± 0.004)

Chilika Lagoon This study

Sediment processes

1 Sediment oxygen demand (SOD) (mmol/m2/h) 0–30 Hiroshima bay Experimental Seiki et al., 1994

0.549–0.986 Cochin Backwater Field and Laboratory Abhilash et al., 2012

5.01 Chilika
Lagoon, India

This study

2 Temperature coefficient for SOD (SODT) (g O2/m
2/d) 1–1.2 Semariang Batu River Field and Laboratory Ling et al., 2009

1.024 Lake Vegoritis Model Antonopoulos and
Gianniou, 2003

0.87 Chilika
Lagoon, India

This study
Bold values means present study.
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affect P release into the water column (Ruttenberg, 1992). The P cycle

in turbid waters is still unknown due to its reliance on other elements.

Studies using spatiotemporal data from lagoon ecosystems aim to

understand phosphate involvement and its relationship with primary

producers, consumers, and detritus. The estimated mean sediment to

water of PO4-P flux rate was recorded as 0.00437 mM/m2/d. The

mean ratios of P to Chl-a, mass detritus, and mass zooplankton in

Chilika Lake were measured as 0.0036 ± 0.001 g P/mg Chl, 0.000321

± 0.00001 mg P/mg D, and 100.94 ± 52.7 mg P/mg Z, respectively.

These results are comparable (Table 1) with the previous studies

conducted elsewhere (Chen et al., 2002; Nobre et al., 2010); however,

the P-to-mass zooplankton ratio showed a high value, which may be

due to the high productivity nature of Chilika Lake.

The complex and non-linear relationship between phytoplankton

carbon biomass and chlorophyll concentration is influenced by light,

nutrients, and temperature within the euphotic zone, as documented

in various studies (Brown et al., 2003; Le Bouteiller et al., 2003;

Armstrong, 2006). Under nutrient-rich conditions, the

phytoplankton carbon-to-chlorophyll (C:Chl) ratio decreases as

light levels decrease, a phenomenon known as “photoacclimation”

(Dubinsky and Stambler, 2009). The natural death rate of Chl-a in

laboratory conditions is 0.7 d−1 (Table 1), indicating that chlorophyll

concentrations, which are indicators of phytoplankton populations,

are influenced by nutrient availability. In general, nitrogenous

nutrients enter through oxygen-demanding processes like

nitrification, while phosphorus is released through cellular

processes, excretions, and river runoff. Conversely, total suspended

matter (TSM) includes all living, non-living, organic, and inorganic

materials, including chlorophylls and suspended planktons, and is

significantly related to chlorophyll concentrations, highlighting the

interconnectedness of environmental factors.

MZP are primarily composed of ciliates, are the primary

consumer of nanoplankton, and serve as an important link

between small primary producers and larger consumers in aquatic

feed webs (Burkill et al., 1993). The lagoon has a mean grazing rate of

0.305 d−1, and the mean mass of zooplankton to Chl-a was calculated

to be 0.341g Z/mg Chl, based on extensive spatiotemporal data

collection. The decline in phytoplankton biomass is influenced by

factors like water quality, zooplankton grazing, and their life cycle,

while zooplankton abundance is regulated through secondary grazing

and natural mortality mechanisms (Ger et al., 2014). Greater grazing

values indicate higher rates of zooplankton domination, possibly

measured by zooplankton-to-chlorophyll ratios.

Oxygen depletion in aquatic ecosystems is primarily caused by

sediment organic material oxidation and invertebrate anaerobic

respiration, affecting a significant portion of water column oxygen

consumption, thus making measuring the rate of change in DO

concentration essential for understanding oxygen flux changes

(Akomeah and Lindenschmidt, 2017). Consequently, the study

estimated the change in column DO concentration in a chamber-

entrapped water volume and analyzed the SOD, revealing that

temperature, water flow velocity, residence time, and sediment

composition are key factors influencing SOD (Zeledon-Kelly, 2009).

The designed experiment calculated the temperature coefficient

for SOD, the half-saturation concentration for SOD, and the DO

sediment exchange rates. The results showed a temperature
Frontiers in Marine Science 07
coefficient of 0.87 g O2/m
2/d and a half-saturation concentration

of 0.46 mg/L, with a mean SOD of 1.45 mg/m2/d (Table 1). The

mean DO exchange rate between water column and sediment is

1.082 mg/L, which controls the benthic community and nutrient

leaching from sedimentary pore water, but has a significant impact

on shallow-water aquatic bodies. The high SOD of 5.01 mmol/m2/h

in Chilika Lake may be attributed to the high benthic primary

production resulting in increased benthic oxygen demand. Algae

usually consume oxygen during nighttime respiration, while during

daylight photosynthesis, they generate and release oxygen

(Akomeah and Lindenschmidt, 2017).
Conclusion

The findings from this study indicate that the lagoonal

ecosystem possesses a noteworthy level of resilience in the face of

environmental fluctuations, comparable to other tropical shallow

ecosystems worldwide. These determined rate constants mark a

significant step towards establishing an ecosystem model tailored to

the lagoon. Such a model would be instrumental in forecasting

ecosystem alterations in response to variations in chemical and

biological elements. In the northern part of the lagoon, where

nutrient, SPM (suspended particulate matter), and chlorophyll-a

levels are notably high, it is apparent that this region exerts a

dominant influence over the entire lagoon. Further investigations

into this northern region are necessary. It is worth noting that the

derived rate constants may exhibit variations contingent upon

species composition, abundance, decomposition processes, and

evolving environmental conditions. It is important to note that

although this study was conducted in saline to semi-saline

conditions, the insights obtained may be applicable to the vast

majority of tropical brackish water lagoons.
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