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Tropical cyclone wave data
assimilation impact on air-
ocean-wave coupled Hurricane
Harvey (2017) forecast
Sue Chen1*, James A. Cummings2, Jayaram Veeramony3

and Justin S. Tsu1

1Naval Research Laboratory, Marine Meteorology Division, Monterey, CA, United States, 2Science
Applications International Corporation, Monterey, CA, United States, 3Naval Research Laboratory,
Ocean Sciences Division, Stennis Space Center, MS, United States
The impact of surface wave assimilation on hurricane track and intensity

forecasts has been investigated using a fully coupled air-ocean-wave tropical

cyclone data assimilation and forecast modeling system. A new 3DVAR wave

assimilation method in the Navy Coupled Ocean Data Assimilation system

(NCODA) maps the 1D wave energy spectra from buoys to 2D directional wave

energy spectra using the maximum likelihood method (MLM) and corrects the

wave model forecast component directional wave energy spectra. The Coupled

Ocean/Atmosphere Mesoscale Prediction System for Tropical Cyclone

Prediction (COAMPS-TC) is used to conduct three Hurricane Harvey (2017) air-

ocean-wave coupled data assimilation and forecasting experiments with and

without the wave data assimilation. Hurricane Harvey traversed through the

Western Gulf of Mexico from 24 August to 1 September, 2017 and made landfall

in the Texas and Louisiana coast. Validation of track, maximum wind speed,

significant wave height, and mean absolute wave periods show wave assimilation

of the 1D wave energy spectra from 13 National Data Buoy Center (NDBC) buoys

reduced the forecast errors of these parameters compared to experiments

without the wave assimilation. In spite of this positive outcome, the wave

assimilation is unable to reduce Harvey’s 0-120 h forecast mean wave

direction errors and correlation compared to the NDBC buoy time series
KEYWORDS

tropical cyclone, hurricane, wave data assimilation, coupled model prediction,
air-sea interaction
1 Introduction

Tropical Cyclones (TC) are one of the most severe natural disasters that cause

devastating damage on societies worldwide from the combination of winds, tornados,

flood, and storm surge in both coastal and inland regions. The advancements of TC

dynamic models in recent decade have made steady inroads to improve deterministic and
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probability forecasts of TC track, intensity, winds, and waves

(Heming et al., 2019; Cangialosi et al., 2020). In particular,

increased capabilities to observe the ocean wave energy spectra

routinely by operational buoy observing system or by targeted

sampling of TC provide an opportunity to investigate the wave

spectra data assimilation impact on TC prediction. Inclusion of

wave observations to improve operational forecasting of wave

conditions has high impact in the coastal zones where a large

population lives.

The fundamental concept underpinning spectral wave

modeling is the energy balance equation. This states that the

evolution of the wave spectrum is the sum of three source terms

describing the input of energy from the wind, the nonlinear transfer

of energy within the wave variance spectrum, and the dissipation of

energy from wave breaking or shallow water processes (Komen

et al., 1994). Wave models compute an explicit representation of all

three source terms and the evolution of the wave spectrum, without

a priori assumptions about the spectral shape. Even though various

data assimilation techniques have been used to improve model

predictions (see Bannister, 2017 for a review) in an operational

environment, these techniques have been applied largely to the

atmospheric and ocean circulation models. Wave model runs with

assimilated data have been shown to significantly reduce errors in

modeled wave parameters. Lionello et al. (1992) used an optimal

interpolation technique (OI) to assimilate significant wave heights

derived from satellite altimeter data to correct the total energy in the

wave spectrum. A similar technique was used by Voorrips et al.

(1997) to assimilate significant wave height data from wave buoys.

Smit et al. (2021) took the OI technique further by assimilating bulk

wave parameters including significant wave height and wave period

from a large distributed buoy network, 129 free-drifting Sofar

Spotters buoys, to analyze the potential impact on the total

energy. They reported the forecast improvement from wave

assimilation extends to 4 days. In all these cases, the aim was to

improve the wave energy in the modeled domain. Veeramony et al.

(2010) and Orzech et al. (2014) showed that for smaller domains

focused on the nearshore region, a 4D variational assimilation

(4DVar) system assimilating the wave spectrum to correct the

wave boundary conditions provided significant improvements in

reproducing the directional wave spectra in the domain. Compared

to the 3DVAR data assimilation system, the added computation

cost of using 4DVAR may not be feasible for operational

implementation because of wall time constrain. Conversely,

recent studies using a 3DVAR significant wave height

assimilation show improvement of wave forecast up to 24 h

(Saulter et al., 2020; Byrne et al., 2023). Using the most

computational expansive ensemble-based assimilation of

significant wave height method can further extend the wave

forecast improvement out to 2.5 days (Houghton et al., 2023).

The success of data assimilation in atmospheric and

oceanographic forecast systems is made possible by a considerable

amount of routine observational data from a variety of sources.

Data assimilation in atmospheric forecasts indirectly improve ocean

and wave models through improved estimates of surface wind

stresses, surface pressure, and air-sea fluxes (Sanabia et al., 2013;

Chen et al., 2017). For wave models, specifically, improvements in
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the surface wind and pressure field will generally result in higher

skill in the wave forecasts. However, direct improvement of wave

forecasts using data assimilation is also possible, but the sparsity of

real-time wave data is a core issue for wave assimilation systems,

especially under tropical cyclone (TC) conditions. Buoy networks

provide highly accurate estimates of wave spectrum statistics, but

these data are sparse due to the cost of deployment and

maintenance of the buoys. In the U.S., the National Buoy Data

Center (NDBC) deploys fixed buoys near the coast that collect a

variety of observations useful in the monitoring of Hurricane wave

conditions. These measurements include accelerometers or

inclinometers on board the buoys that measure the heave,

acceleration, and the vertical displacement of the buoy hull

(NDBC, 2009; Hall et al., 2022), as well as winds and ocean

temperatures. The in situ wave observations complement the

satellite remote sensing of surface waves from altimeters, which

has been available since the 1980s and assimilated by many

operational centers worldwide. The altimeter wave estimates are

valuable but they carry considerable uncertainty and the spatial and

temporal sampling characteristics of the altimeters limit their

effectiveness (Wittmann and Cummings, 2004; Tran et al., 2010;

Fan et al., 2012; Seemanth et al., 2021).

More fundamentally, wave forecasting is a forcing problem

while numerical weather prediction is an initial value problem. A

considerable part of the ocean wave field is formed directly by

surface winds and near-surface pressure fluctuations in the

atmosphere (i.e., wind sea components). As a result, errors in the

forecasting of wind-sea wave conditions are reduced when the skill

of the weather models is improved with data assimilation. The

assimilation of wave observations correct wave model errors, but if

the wave field is corrected without also correcting the atmospheric

forcing field to match, the wave field will rapidly return to the state

dictated by the forcing. In this regard, a coupled ocean, atmosphere,

wave modeling system that includes data assimilation in all of the

coupled system components would be expected to maintain forecast

skill for much longer than an uncoupled system.

Building upon the previous aforementioned studies, this study

investigates a wave model assimilation methodology that assimilate

both routinely available observations of wave energy spectra from

13 NDBC buoys (Table 1; Kuik et al., 1988; Riley et al., 2019) and

satellite altimeter derived altimeter significant wave height

measurements in a fully coupled air-ocean-wave tropical cyclone

data assimilation and forecast modeling system. Because there are

many NDBC buoys in the Gulf of Mexico (GOM) region, the

Hurricane Harvey (2017) case is ideally used to study the impact of

the directional wave spectra assimilation.

Hurricane Harvey entered the Gulf of Mexico on 23 August,

rapidly intensified and made landfall near Port Aransas, Texas

around 10 p.m. on 25 August (03 UTC 26 August) as a devastating

Saffir-Simpson category (CAT) 4 TC (Saffir 1973; Simpson, 1974).

Hurricane Harvey’s rapid intensification near landfall was due to a

pre-existing very warm (~ 31°C), and well-mixed ocean

temperature along the Texas Bight (Potter et al., 2019). They

attributed the absence of cold ocean water in the shallow Texas

Bight shelf enabled Hurricane Harvey to draw from this warm

ocean energy source and rapidly intensified from CAT3 to CAT4
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before landfall. The Harvey track moved back offshore on 29

August, and subsequently made a final landfall west of Cameron,

Louisiana on 30 August while maintaining tropical storm strength

(Figure 1). Harvey’s heavy precipitation caused wide spread severe

flooding, especially in the Huston, Texas area. The extreme flooding

was compounded by heavy precipitation, river overflow, and

onshore ocean water surge (Valle-Levinson et al., 2020). In

combination with Hurricane Harvey’s high winds and tornadoes

(Wurman and Kosiba, 2018; Nowotarski et al., 2021), Harvey

resulted in ~125 billion U.S. dollars of damage along the Texas

and Louisiana coastal zone (National Hurricane Center, 2017).
2 Materials and methods

2.1 Coupled model configuration

The coupled air-ocean-wave model used in this study is the

Coupled Ocean/Atmosphere Mesoscale Prediction System

(COAMPS, Chen et al., 2003; Chen et al., 2015; Allard et al.,

2010). The coupled model configuration used in this study

consists of the COAMPS atmospheric model for tropical cyclone

(COAMPS-TC, Doyle et al., 2012), the Navy Coastal Ocean Model
Frontiers in Marine Science 03
(NCOM, Martin et al., 2013), and the WAVEWATCH III (WW3)

wave model (WW3DG, T.W.I.D.G, 2019). The coupling between

the atmospheric model, NCOM, and WW3 is through the Earth

SystemModeling Framework NUOPC (Theurich et al., 2016) with a

12-minute coupling frequency.

COAMPS domains are configured focusing on the GOM region

and the exchange of forcing and feedback are three-way, i.e.,

between air-ocean, air-wave, and ocean-wave, using exchange

grids between each pair of component models (Campbell et al.,

2010). The atmospheric model uses the COAMPS-TC physics suite

but with three fixed domains with 36, 12, and 4 km horizontal grid

spacing. The model forecast Harvey track and maximum wind

speed (intensity) every 6 hours is determined by running a NOAA

Geophysical Fluid Dynamics Laboratory (GFDL) tracker (Marchok,

2021). As for the ocean and wave forecast component models,

NCOM is configured to use one domain with 6 km horizontal grid

spacing and WW3 is also one domain with 12 km horizontal

spacing. The WW3 model is setup to run with 34 frequencies

from 0.0418 Hz with interval of 1.1 Hz and 48 directions.

Wave forcing to the atmospheric component model is by a sea-

state dependent Charnock parameter (Charnock, 1955) which is

computed in WW3 based on the Janssen (1991) wind-wave

generation. Wave forcing to NCOM ocean model turbulent kinetic

energy (TKE) includes, (a) in the coastal and offshore ocean region:

Stokes drift currents fromwaves and the wave orbital motion near the

ocean bottom (Allard et al., 2012; Smith et al., 2013), and (b) in the

surf zone: the additional depth-dependent wave radiation stress to

transfer the wave momentum from breaking waves to the ocean

circulation (Martin et al., 2020). The atmospheric forcing in WW3

uses the 10 m wind speed, and NCOM forcing in WW3 are the sea

surface height and surface currents (Allard et al., 2012; Chen et al.,

2015). Atmospheric forcing to the ocean includes sea level pressure,

10 m wind stress, surface heat and moisture fluxes, and shortwave

radiation. NCOM forcing to the atmosphere is by the sea surface

temperature (Campbell et al., 2010).
FIGURE 1

Hurricane Harvey’s best track from 00 UTC 24 August to 00 UTC 2
September 2017. The colors are Harvey’s intensities shown on the
legend. Diamonds and 5-digit numbers are the NDBC buoy stations.
The best track is from IBTrACS.
TABLE 1 A list of 13 NDBC SCOOP payload buoy attribute used in the
COAMPS WW3 Hurricane Harvey wave assimilation experiment.

NDBC
Buoy ID

Size/type Location Buoy
Water depth

42001 3-meter foam buoy 25.926 N
89.662 W

3200 m

42002 3-meter foam buoy 26.055 N
93.646 W

3088 m

42020 3-meter foam buoy 26.955 N
96.687 W

84 m

42019 2.1-meter ionomer
foam buoy

27.910 N
95.345 W

83.5 m

42035 3-meter foam buoy 29.237 N
94.404 W

15 m

42036 3-meter discus buoy 28.501 N
84.508 W

50.9 m

42039 3-meter foam buoy 28.787 N
86.007 W

281 m

42040 3-meter foam buoy 29.207 N
88.237 W

192 m

42055 3-meter foam buoy
SCOOP payload

22.140 N
94.112 W

3508 m

42056 3-meter foam buoy 19.820 N
84.945 W

4554 m

42057 3-meter discus buoy 16.973 N
81.575 W

412 m

42058 3-meter discus buoy 14.844 N
75.061 W

4131 m

42059 3-meter foam buoy 15.300 N
67.483 W

4761 m
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Global model forecasts from the NOAA Global Forecasting

System (GFS), NRL Global Ocean Forecasting System (GOFS 3.1;

Metzger et al., 2010), and global WW3 provide the initial and lateral

boundary conditions for COAMPS simulations. Additional to the

GFS initial condition, a TC bogus is used to replace the GFS

circulation in TC areas based on the JTWC warning message

(Komaromi et al., 2021). Procedures to insert a TC bogus vortex

into COAMPS-TC consist of several steps. Step 1 removes the GFS

TC vortex winds. This is accomplished by removing the vorticity

and divergence component of the GFS winds. Step 2 performs direct

solver iteration to balance the pressure, non-divergent winds, and

thermodynamics variables using a non-linear balancing equation

and variational adjustment method (Barker, 1980). Step 3 computes

a Rankin vortex (Holland et al., 2010) that uses the radius of

maximum wind radius to build a sloping eyewall wind structure at

the TC location from the JTWC warning message. The bogus vortex

depth and structure of the secondary circulation are set empirically.

Step 4 blends large-scale winds with the Rankin vortex. The final

step 5 inserts the TC bogus vortex in nest 3 using a Barnes analysis

scheme (Barnes, 1964).

Eight 5-day coupled COAMPS simulations for Hurricane

Harvey are carried out from 12 UTC 24 to 00 UTC 30 August,

2017 cycling every 12-h using the Navy Coupled Ocean Data

Assimilation (NCODA) for the ocean (Cummings and Smedstad,

2013) and wave component. NCODA assimilates ocean and wave

observations from both satellite and in situ data sources.

Previous studies have shown assimilation of ocean observation

improved air-ocean coupled COAMPS-TC intensity forecast

(Sanabia et al., 2013; Chen et al., 2017). The current study uses a

new wave assimilation method in NCODA. Three fully coupled air-

ocean-wave COAMPS experiments are used to quantify wave

assimilation impact on Harvey ’s forecast. They include

experiments without the ocean and wave assimilation (NDA),

with the ocean assimilation only (ODA), and with the wave

assimilation only (WDA). Experiment ODA assimilates surface

and subsurface ocean temperature and salinity from buoys, floats,

drifters, and satellite. The ODA also assimilates the Altimeter sea

surface height observations. Experiment WDA only assimilates the

2D directional wave spectrum derived from buoys and altimeter

significant wave height.
2.2 Assimilation method and wave data

Two sources of wave field observations are assimilated in the

COAMPS WW3 model and are described here:

2.2.1 Significant wave height
Significant wave height (SWH) is defined as the average wave

height (from trough to crest) of the highest third of the waves in a

given sampling period. Satellite altimeters are the primary means of

providing near-global measurements of SWH. The measurements

are made at nadir along the satellite tracks with resolutions of 5 to 7

km. The standard algorithm for retrieving SWH from satellite

altimeters fits a modeled shape to the radar echo waveforms from
Frontiers in Marine Science 04
the sea surface and infers SWH from the shape and position of the

leading edge of the waveform data. The altimeter SWH retrieval

algorithms have difficulty deriving SWH in very low wave height

environments and also near shore where radar reflections from land

contaminate the signal. SWH is an integral wave parameter and can

be derived from 2D directional wave spectra obtained

from observations.

2.2.2 Spectral wave data
Spectral wave data are obtained from fixed buoys. For fixed

buoys the wave measurements are inferred from the accelerometers

or inclinometers on board the buoys that measure the heave

acceleration or the vertical displacement of the buoy hull during

the wave acquisition time. A Fast Fourier Transform (FFT) is

applied to the data by the processor on board the buoy to

transform the data from the temporal domain into the frequency

domain. From this transformation wave energies with their

associated frequencies are derived. A limitation of the fixed buoy

network is that the buoys are primarily positioned in shelf and

coastal areas and do not provide open-ocean directional wave

observations. However, they provide valuable in situ observations

to monitor and improve model initial ocean and wave conditions

ahead and underneath the hurricanes. For the study, 13 NDBC

buoys that observed sea surface temperature and wave spectrum are

assimilated into NCODA (Figure 1).

2.2.3 Ocean and wave model data
assimilation method

NCODA uses a 3DVAR scheme to initialize the ocean model

and a 2DVAR scheme to initialize the wave model. The

implementation is based on a “weakly” coupled data assimilation

approach whereby the coupled model is used to provide

background information for separate ocean, atmosphere, and

wave model analyses. The analysis increments generated from

these separate analyses are then added back into the next cycle of

coupled model background fields. The mismatch in time scales

among the atmosphere, ocean, and wave models is a major difficulty

as each of the models must use the same time window in the weakly

coupled assimilation. We have taken the approach of using an

appropriately short time window of 12 hours for all of the

model components.

NCODA is an oceanographic implementation of the Navy

Variational Atmospheric Data Assimilation System (NAVDAS), a

3DVAR technique developed for Navy numerical weather

prediction systems (Daley and Barker, 2001). The 3DVAR

analysis variables are temperature, salinity, geopotential (dynamic

height), and u, v vector velocity components. All ocean variables are

analyzed simultaneously in three dimensions. The horizontal

correlations are multivariate in geopotential and velocity, thereby

permitting adjustments to the mass fields to be correlated with

adjustments to the flow fields. The velocity adjustments (or

increments) are in geostrophic balance with the geopotential

increments, which, in turn, are in hydrostatic agreement with the

temperature and salinity increments. The NCODA 3DVAR

problem is formulated in observation space as:
frontiersin.org

https://doi.org/10.3389/fmars.2024.1332883
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chen et al. 10.3389/fmars.2024.1332883
xa = xb + PbH
T (HPbH

T + R)−1½y −H(xb)�
where xa is the analysis vector, xb is the background vector, Pb is

the background error covariance matrix, H is the forward operator,

R is the observation error covariance matrix, and y is the

observation vector. HPbH
T is approximated directly by the

background error covariance between observation locations, and

PbH
T directly by the error covariance between observation and grid

locations. The quantity [y-H(xb)] is referred to as the innovation

vector, [y-H(xa)] is the residual vector, and xa-xb is the increment

(or correction) vector.

The oceanographic error covariances in the 3DVAR are

separated into a background error variance and a correlation. The

correlation is further separated into a horizontal and a vertical

component. Horizontal correlation length scales vary with location

and vertical correlation length scales vary with location and depth.

Flow-dependence is introduced by modifying the horizontal

correlations with a tensor obtained from a model forecast

background field that is used as a proxy for the circulation field.

Example flow fields include sea surface height, sea surface

temperature, and potential vorticity. The flow-dependent tensor

spreads innovations along rather than across the flow field

gradients, which is a desirable outcome in the analysis. The

discontinuous and non-homogeneous influence of coastlines in

the analysis uses a second tensor based on distance to land. Near

the coast the tensor rotates and stretches the horizontal correlations

along the coast while minimizing or removing correlations into the

land. Error correlations are expected to be anisotropic near

coastlines due to horizontal advection from coastal currents that

flow parallel to the coast.

Assimilation of wave observations into the wave model

component of the coupled system required several modifications

to the 3DVAR. First, the wave model prognostic variable is wave

energy as a function of location, direction, and frequency. As such,

all analysis updates or corrections to the wave model must be done

to the model forecast directional wave spectra at each model grid

point. Second, the error covariances were modified to include not

only correlations between observations and grid points but also

correlations within wave spectra in terms of frequency and

direction. Assimilation of integral measures of wave energy, such

as altimeter SWH, is achieved in two steps. First, an analyzed SWH

increment field is added to the WW3 SWH forecast (Hf) to produce

a corrected SWH analysis field (Ha). The analyzed wave model

spectrum (Fa) as a function of frequency (f) and direction (Q) is
then obtained from the ratio of analyzed and forecast SWH fields to

produce an updated forecast spectrum (Ff) using a simple scaling

strategy,

a = (Ha=Hf )2

Fa(f ,Q) = aFf (f ,Q)

Assimilation of the NDBC buoy spectral wave data is more

straightforward in that the observations measure the directional

wave spectrum. However, the 2D wave data provided by the NDBC

are in the form of the non-directional spectral wave density as a

function of the frequency along with the normalized directional
Frontiers in Marine Science 05
Fourier coefficients (r1, r2), the mean wave direction (alpha1) and

the principal wave direction (alpha2) based on the Fourier series

expansion originally developed by Longuet-Higgins et al. (1963).

This required a modification to the H forward operator in the

3DVAR. For other data types, the forward operator is spatial

interpolation performed in two or three dimensions by fitting a

surface to a 4x4 or a 4x4x4 grid point target and evaluating the

surface at the observation location.

Benoit (1992), (1994) describes the methods commonly used to

reconstitute the directional wave spectra from the reported values.

Of these, there are two main methods that are widely used: The

maximum likelyhood method (MLM), which was developed and

presented in detail by Oltman-Shay and Guza (1984), and the

maximum entropy method (MEM) developed and presented in

detail by Lygre and Krogstad (1986). Earle et al. (1999) show that

while MEM provides better resolution, it produces artificially

narrow directional spreading. For the purposes of this study, it

was determined that the accuracy in directional spreading provided

by MLM is more important than the resolution since the model

resolution used is 7.5°, which is reasonable for this application, but

not high enough to necessitate using MEL. Once the 2D spectral

density is obtained from the values reported by the buoys, the

observed spectra are compared to the model spectra using nearest

neighbor. The differences in wave energy as a function of frequency

and direction are computed which form the (y –H(xb)) innovations

in the 3DVAR.
3 Results

3.1 Buoy observations

Buoys 42002, 42019, 42020, and 42035 have a minimum

distance to Harvey’s track in GOM about 74, 57, 37, and 37 nm

respectively during Harvey’s traverse toward Texas coast. Buoy

42002 and 42019 are located to the right of Harvey’s track and buoy

42020 is located to the left of the Harvey’s track (Figure 1).

Interestingly because Harvey’s track moved back out to sea after

the first landfall on 26 August, this movement put buoy 42035 to the

right of Harvey’s track at this time before the first landfall, then

switched to the left of the track after Harvey’s final landfall on 30

August. Buoys 42002, 42019, and 42020 all have high values of

spectral wave density > 50 m2 Hz-1 around 25-26 August when

these buoys were closest to the Harvey track. During this period, all

three buoys exhibit a dominant wind-sea wave with range of wind

speed (ms-1) of 10-27 ms-1 (1 ms-1 = 1.943844492 kt) mean wave

period of 10-14s, and significant wave height of 3-7 m (top panel of

Figures 2A–C). A research mooring south of Port Aransas at 20 m

water depth recorded a 10 m significant wave height on 26 August,

2017 (Romero-Arteaga et al., 2022).

The significant wave height from buoy 42002 relaxes back down

to around 5 m after the passage of Harvey between 27-28 August

and has the signature of swell with mean wave period< 5 s. During

this time, buoys 42019 and 42020 mean wave period are ~ 6-8 s,

indicating a mixed wind and swell sea. All three buoys’ significant
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wave height and mean wave period increase again after Harvey’s

track moved back out to the sea on 28 August. Compared to these

three buoys, buoy 42035 experiences a lower wind speed range of 8-

16 m s-1, mean wave period of 6-10 s, and 2-3 m significant wave

height during 26-29 August (top panel of Figure 2D). The wind

speed increases to 19 m s-1 but with receding significant wave height

to 2 m and mean wave period ~ 7 s when Harvey’s track moved

back out to sea. Buoy 42035 is located on the shallow Texas–

Louisiana continental shelf and because the wind direction (middle

panel of Figure 2D) during this time is northerly, prevents the high

wave surge at this location. Buoy 42035 also has the lowest spectral

wave density compared to the other three buoys (bottom panel

of Figure 2D).

Figure 3 shows two 2D wave density spectra using MLM from

buoys 42002 (3a) and 42020 (3b) at 05 UTC (mid night Texaslocal

time) 25 August when Harvey reached a CAT 4 intensity. The

maximum 2D wave spectra density are 0.36 and 0.68 m2 Hz-1,

respectively and located on the front-right quadrant (0° points to

north). The time series of mean 2D wave density spectra for all

frequencies from these four buoys show four separate periods of 2D

wave spectra density (m2 Hz-1 degree-1) on 25-26 August, 27-28

August, 28-29 August, and 30 August–1 September (Figure 4). All

four buoys show a fully developed sea from all directions after 30

August and maximum 2D directional wave spectra density

magnitudes at this time. They exhibit 1-3 2D directional wave
Frontiers in Marine Science 06
spectra density maxima on the two front quadrants of Harvey

before Harvey’s final landfall. The slow-down of Harvey’s track that

turned back out to sea after the first landfall and subsequent

landfalls reduced the wind intensity, hence the weaker 2D

directional wave spectral density over two closest distance buoys

42019 and 42035. The furthest buoy from Harvey’s track is 42002,

which has the largest 2D directional wave spectral density. For the

earlier three time periods, waves from all four buoys show their

maximum 2D directional wave spectral density rotate from

Harvey’s front left quadrant to rear-right quadrant. Additionally,

buoy 42035 (Figure 4D) has the smallest 2D directional wave

spectral density compared to the other three buoys (Figures 4A–C).
3.2 Wave data assimilation impact on
COAMPS TC track and intensity forecast

Three fully coupled air-ocean-wave COAMPS experiments are

experiments without the ocean and wave assimilation (NDA), with

the ocean assimilation only (ODA), and with wave assimilation only

(WDA). Comparison of COAMPS forecast track from each

experiment shows all three COAMPS experiments have a smaller

track error over the ocean than after landfall (Figure 5). The best

track is from the International Best Track Archive for Climate

Stewardship (IBTrACS) version 4 (Knapp et al., 2018) which shows
A

B D

C

FIGURE 2

NDBC buoy observations from buoy (A) 42002, (B) 42019, (C) 42020, and (D) 42035. Top panel is the time series of buoy observed wind speed (m
s-1, blue line), mean wave period (s-1, orange line), and significant wave height (m, black line). Bottom panel is the time series of spectra wave density
(m2 Hz-1).
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Harvey degraded to tropical storm after the last landfall and moved

rapidly northeastward after 31 August. In contrast, the last 00 UTC

28 August COAMPS runs for all three experiments have a

northward track and move much slower than the observation.

The time series of mean absolute track error shows WDA (red

line in Figure 6) is smaller for most of the forecast lead times. The 5-

day mean absolute track error for experiments NDA, ODA, and

WDA are 72.9, 73.2, and 69.1 nm, respectively. Assimilating wave

data clearly improves COAMPS Harvey track forecast by a mean of
Frontiers in Marine Science 07
~ 3-4 nm compared to the no ocean and wave DA experiments

(Table 2). The maximum reduction of absolute mean track error

from WDA experiment is about ~ 9 nm (1 nm = 1.852 km), i.e., 50

nm compared to the NDA experiment’s 59 nm, at 66 h

forecast time.

Figure 7A is a spaghetti plot of forecast maximum wind speed

(kt) that show all COAMPS experiments have a small low intensity

bias compared to IBTrACS. The homogenous time series of mean

intensity bias of WDA experiment is better than the NDA and ODA
A

B D

C

FIGURE 4

Time series of mean spectral wave density (m2 Hz-1 degree-1) from buoy (A) 42002, (B) 42019), (C) 42020, and (D) 42035.
FIGURE 3

Buoy 42002 and 42020 2D directional wave spectral density (m2 Hz-1 degree-1) in polar coordinate on 05 UTC 25 August, 2017. At this time
Hurricane Harvey reached a CAT 4 intensity. The 2D directional wave spectral density is derived from the buoy 1D spectral wave density using the
MLM method.
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experiments except at the 20 h forecast lead time (Figure 7B). The

WDA experiment also has the smallest mean 5-day intensity error

of -5.4 kt compared to NDA and ODA experiments’ -5.5 and -8.6

kt, respectively (Table 2). Notably, the ODA experiment has the

largest mean -18 kt low intensity bias for forecast lead time > 60 h

after Harvey’s final landfall than the other two experiments.

Assimilating the wave observations clearly improves the intensity

forecast from assimilating ocean only observations for COAMPS

Harvey forecast.

Aside from the track position and intensity differences, the

WDA minus NDA 10 m wind speed differences valid at Harvey’s

first landfall on 03 UTC 26 August from four forecast cycles reveal

alternate positive and negative difference patterns along forecast
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Harvey track (Figure 8 green and brown color shadings). These

patterns are due to WDA having a slower translation speed than the

NDA experiment. The significant wave height forecast differences

show WDA with a persistently ~ 0.2 m higher wave height than

NDA along the Mississippi Alabama coastal region. For longer lead

time forecast cycles, WDA shows a larger/smaller wave height on

the right/left of forecast track than NDA (Figures 8A–C). These

along track forecast wave height difference patterns are due to

slightly track differences and WDA possessing a larger right-

asymmetry wind than NDA. However, for shorter forecast lead

times (Figure 8D), the along track significant wave height

is negligible.
3.3 Wave data assimilation impact on
COAMPS wave forecast

The validation of COAMPS WW3 forecasts uses NDBC buoy

observation of wave parameters that are not assimilated by

NCODA. These are the significant wave height (m), mean wave

direction (°) and absolute mean wave period (s). Note that NCODA

uses buoy’s 2D directional wave spectral density to derive

significant wave height for assimilation (see section 2.1).

COAMPS WW3 0–120-hour forecasts of these three variables

from each forecast cycle are first interpolated to the buoys 42002,

42019, 42020, and 42035 locations, then forecast bias error (forecast

minus observation) and root mean square error (RMSE) are

computed. COAMPS forecast time is valid at the observation

time. The correlation is evaluated using each pair of forecast and

observation time series at each buoy location. And lastly, The mean

of the last 5 forecast cycles is computed to account for two

DA cycling adjustment times for the NDA, ODA, and

WDA experiments.

For the wave parameters evaluated, all experiments have a

similar mean error trend and magnitude. The mean significant

wave height bias for forecast lead times under 60 h is about -0.5 m

and reduces to near 0 for longer lead forecast time greater than 60 h.

By the end of 120 h, the mean bias becomes positive at about 0.2 m.

The RMSE is less than 0.6 m for all forecast lead times (Figure 9).

The mean wave direction bias oscillates between -20° to 20° with

minimum and maximum RMSE of 10° and 90° (Figure 10). The

mean absolute wave period bias is less than 0.5 s with RMSE

between ~ 0.5-1.0 s (Figure 11). The mean absolute error difference
FIGURE 6

The 0-120 h time series of COAMPS forecast mean absolute track
error (nm) from the NDA (blue line), ODA (cyan line), and WDA (red
line) experiments. NDA is experiment without the ocean and wave
assimilation, ODA is with the ocean assimilation only, and WDA is
with the wave assimilation only.
TABLE 2 COAMPS 0-5 day forecast mean track and intensity errors for
each experiments.

Experiment 0-5-day mean
track error (nm)

0-5-day mean
intensity error (kt)

No DA (NDA) 72.9 -5.5

Ocean
DA (ODA)

73.2 -8.6

Wave
DA (WDA)

69.1 -5.4
The forecast period is from 12UTC 24 August - 00 UTC 30 August, 2017. The sample size for
each experiment is 184, i.e. 8 forecast cycles times 23 of 6 hourly data.
FIGURE 5

A spegettii plot of COAMPS Harvey forecast tracks from the NDA
(blue lines), ODA (cyane lines), and OWDA (red lines) experiments.
Harvey’s best track is shown in black line. The squares are the
Harvey’s best track from IBTrACS maked at every 6 h interval.
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between WDA minus NDA and WDA minus ODA experiments

show the ODA experiment is as good as or better than the WDA

assimilation. They both reduced the forecast error for all three wave

variables evaluated here compared to the NDA experiment.

However, the mean correlation of WDA is higher than ODA for

significant wave height and absolute wave period but not for the

wave direction (Figure 12). The mean correlation of significant
Frontiers in Marine Science 09
wave height and mean wave period from all three experiments are

larger than 0.5. But the mean wave direction correlation for all 3

experiments is lower than 0.5 with correlation of 0.34, 0.39, and 0.35

for the NDA, ODA, and WDA, respectively, A plausible cause of

lower wave direction correlation of WDA than ODA may be due to

MLM tendency to over broaden the 2D wave direction (Donelan

et al., 2015).
A B

FIGURE 7

(A) A speghettii plot of COAMPS forecast maximum wind speed (kt) and (B) COAMPS forecast maximum wind speed bias compared to IBTtraACS.
A B

DC

FIGURE 8

Maximum differences of COAMPS WDA minus NDA forecast validate at the Harvey’s first landfall time on 03 UTC 26 August, 2017. (A) 39 h forecast
from the 12 UTC 24 August cycle, (B) 27 h forecast from the 00 UTC 25 August cycle, (C) 15 h forecast from the 12 UTC 25 August cycle, and (D) 3
h forecast from the 00 UTC 26 August cycle. Color shadings are the wind speed (WSPD) differences. Blue contours represent significant wave height
(SIGH) differences with contour interval of 0.1 m. Solid blue lines are positive differences and dashed blue lines are negative differences. Black and
magenta arrowers depict the maximum differences of COAMPS WDA minus NDA forecast wind speed and direction, and current speed (CURR) and
direction, respectively. The maximum differences of wind & current vectors are shown on the title of each panel. Black-square line depicts Havey’s
best track from IBTrACS and gray- dot line is the WDA forecast track.
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A

B

FIGURE 9

Time series of forecast mean (A) significant wave height (m) bias (dash lines) and RMSE (solid lines), and (B) mean absolute error differences between
the WDA minus NDA (red line) and WDA minus ODA (cyne line) experiments. The blue, cyane, and red lines in (A) are from the NDA, ODA, and WDA
experiments, respectively. The station and forecast cycles mean is computed at buoys 40002, 42019, 42020, and 42035 locations.
A

B

FIGURE 10

Time series of forecast mean (A) wave directional (°) bias (dash lines) and RMSE (solid lines), and (B) mean absolute error differences between the
WDA minus NDA (red line) and WDA minus ODA (cyne line) experiments. The blue, cyane, and red lines in (A) are from the NDA, ODA, and WDA
experiments, respectively. The station and forecast cycles mean is computed at buoys 40002, 42019, 42020, and 42035 locations.
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A

B

FIGURE 11

Time series of forecast mean (A) absolute wave period (s) (dash lines) and RMSE (solid lines), and (B) mean absolute error differences between the
WDA minus NDA (red line) and WDA minus ODA (cyne line) experiments. The blue, cyane, and red lines in (A) are from the NDA, ODA, and WDA
experiments, respectively. The station and forecast cycles mean is computed at buoys 40002, 42019, 42020, and 42035 locations.
A B

C

FIGURE 12

The mean correlation of forecast and buoy observed time series for (A) significant wave height (m), (B) mean wave direction (°), and (C) mean
absolute wave period (s). The forecast cycle is from 12 UTC 25 August to 00 UTC 28 August, 2017.
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4 Summary

The impact of 2D directional wave spectral density assimilation

for Hurricane Harvey forecasts is quantified using a fully coupled

air-ocean-wave tropical cyclone model COAMPS. A 3DVAR wave

assimilation method is developed in COAMPS ocean data

assimilation component NCODA that uses 1D wave spectral

density observations from NOAA NDBC wave buoys and satellite

altimeter significant wave height observation over GOM. The

conversion from 1D to 2D directional wave spectral density is

achieved using the MLM method. The NDBC buoy wave

assimilation impact on the COAMPS Hurricane Harvey intensity,

track, and wave forecasts sensitivity are quantified and validated

using the IBTrACS and NDBC wave data for three air-ocean-wave

coupled experiments with and without ocean or wave

data assimilation.

Results show that over the ocean both the ocean only (ODA)

and wave only (WDA) DA experiments improve the track forecast

error for forecast lead times up to 4 days, compared to the no wave

or ocean DA (NDA) experiment,. The 0-4 day mean absolute track

error for NDA, ODA and WDA experiments are 56.1, 52.7, and

51.0 nm, respectively. The ocean DA or wave DA reduced the

Harvey forecast absolute track bias by 3.4 and 5.1 nm, respectively.

All three experiments have a low mean 0-120 h forecast lead time

maximum wind speed errors ranging from ~ -2 to -18 m s-1. The

ODA experiment has the highest mean maximum wind intensity

error over land. Compared to NDA and ODA experiments, WDA

experiment’s wave data assimilation has the smallest mean 0-5 day

intensity bias of -5.4 kts but has the highest mean intensity bias

while Harvey’s eye is over ocean. Between time periods of 12 UTC

24 August- 06 UTC 26 August and between 00 UTC 29 - 00UTC 30

August, the mean intensity errors from NDA, ODA, and OWDA

experiments are -9.0, -9.3, and -15.3 kts respectively.

As for the mean wave forecast error validations at four NDBC

buoy locations that are closest to the Harvey track, the mean

significant wave height RMSE differences between ODA and

WDA are less than 0.1 m. Compared to the 0-120 h COAMPS

forecast time series with buoys, the mean 5-day forecast cycle

correlations between forecast and buoy observations show that

the ODA experiment has a slightly higher (0.01) correlation than

the WDA experiment. All three experiments have significant wave

height correlations greater than 0.5 with mean values of 0.62, 0.64,

and 0.63 for the NDA, ODA, and WDA experiments, respectively.

These COAMPS experiments also have mean correlations greater

than 0.5 for the mean absolute wave period. The mean absolute

wave period correlations for the NDA, ODA, and WDA

experiments are 0.65, 0.66, and 0.67, respectively. However

COAMPS forecast correlations of mean wave direction are low (<

0.5) for all three experiments. The mean wave direction correlations

for the NDA, ODA, and WDA experiments are 0.34, 0.39, and

0.35, respectively.

Overall evaluation of wave DA impact on the fully air-ocean-

wave coupled COAMPS Hurricane Harvey forecasts show that

wave assimilation improved Harvey’s track and wind intensity

forecasts compared to the NDA and ODA experiments. However,

the wave DA experiment does not improve the correlation of mean
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wave direction suggesting possible limitation of using the MLM

method to convert 1D wave spectral density observation from

NDBC buoys to 2D directional wave spectral density. Donelan

et al. (2015) shows MLM tends to broaden the wind direction

compared to a wavelet method. To obtain a statistically significant

evaluation of wave buoy assimilation impact on Hurricane track

and intensity forecasts will require additional case studies to

increase the sample size. However, it remains unclear how large a

sample size is needed given fewer major hurricanes have made

landfall along the U.S. Gulf coastal zone.

Recent advancements in Hurricane airborne targeted 2D

directional wave spectral density observations such as from the

Wide Swath Altimeter Radar (WSRA; Walsh et al., 2021),

Directional Wave Spectra Drifter (DWSD; Centurioni et al.,

2017), Surface Wave Instrument Float with Tracking (SWIFT;

Thomson et al., 2019), and Air-Launched Autonomous Micro

Observer (ALAMO; Sanabia and Jayne, 2020) float or satellite

Synthetic Aperture Radar (SAR; Schuler et al., 2004) provide a

new opportunity to directly assimilate the 2D directional wave

spectral density and use a shorter wave data assimilation window

for future hurricane wave research.

Improving the coastal landfall hurricane observation and

forecast continue to be the forefront of several U.S. community

efforts to strengthen the conduit between research and operation.

These include the Coastal and Ocean Modeling Testbed program

from the Integrated Ocean Observing System (IOOS; Joyce et al.,

2019), the Southeastern Universities Research Association Coastal

Ocean Observing and Predicting program (SCOOP; Nichols and

Wright, 2020), NOAA Forecast Improvement Program

(Gopalakishnan et al., 2021), and in situ observation of the

tropical cyclone from the partnership of NOAA Advancing the

Prediction of Hurricanes Experiment (APHEX) program and Office

of the Naval Research Hurricane Rapid Intensification

Departmental Research Initiative (Holbach et al., 2023). Further

research on wave assimilation methods of 2D directional spectral

wave density observations as well as forecast validation using a fully

coupled air-ocean-wave tropical cyclone model such as COAMPS

presented in this study are warranted to continue improving the

coastal storm surge forecasts worldwide.
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