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In general, CNN gives the same weight to all position information, which will limit

the expression ability of the model. Distinguishing modulation types that are

significantly affected by the underwater environment becomes nearly

impossible. The transformer attention mechanism is used for the feature

aggregation, which can adaptively adjust the weight of feature aggregation

according to the relationship between the underwater acoustic signal

sequence and the location information. In this paper, a novel aggregation

network is designed for the task of automatic modulation identification (AMI) in

underwater acoustic communication. It is feasible to integrate the advantages of

both CNN and transformer into a single streamlined network, which is productive

and fast for signal feature extraction. The transformer overcomes the constraints

of sequential signal input, establishing parallel connections between different

modulations. Its attention mechanism enhances the modulation recognition by

prioritizing the key information. Within the transformer network, the proposed

network is strategically incorporated to form a spatial–temporal structure. This

structure contributes to improved classification results, and it can obtain more

deep features of underwater acoustic signals, particularly at lower signal-to-

noise ratios (SNRs). The experiment results achieve an average of 89.4% at −4 dB

≤ SNR ≤ 0 dB, which exceeds other state-of-the-art neural networks.
KEYWORDS

underwater acoustic communication, modulation identification, signal recognition,
deep learning, neural network
1 Introduction

With the development of wireless communication, certain emission parameters

identified at the employed transmitter have been a hot topic in the field of

telecommunication. Normally, the time–frequency information of signals is derived from

unknown or partially known sources. Signal classification plays a crucial role in both
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military and civilian wireless communication systems, serving as an

integral component of intelligent radios (Demirors et al., 2015).

One of the key challenges in signal classification is to automatically

identify the modulation scheme of an unknown signal, which is

known as automatic modulation identification (AMI). AMI is

essential for intelligent radios to be able to adaptively select the

best modulation scheme for the current environment, and to detect

and mitigate interference from other signals.

AMI plays an important role in the military (Eldemerdash et al.,

2016). Modern electronic warfare (EW) comprises three major aspects:

electronic support (ES), electronic attack (EA), and electronic protect

(EP) (Poisel, 2008). The ES goal is to obtain information from radio

signal emissions. The successful signal detection is determined by AMI.

The modulation classification results could provide EA with the

valuable support, which can extend into all modules in EW. With

the crowded communication resources and the emerging number of

consumers, the problem of the spectrum scarcity becomes more severe

in civilian wireless settings (Miao et al., 2010). Nevertheless, the actual

requirements for the largest capacity and the best quality of service face

a substantial difficulty of multiple interferences in the communication

process. With the advent of cognitive radio (CR), the signal

classification system in the civilian sector is garnering increasing

attention as it leverages the flexible capabilities of transceivers to

reconstruct transmission parameters. What sets the CR transceiver

apart from a traditional transceiver is its ability to perceive and adapt to

the transmission source’s environment (Gorcin and Arslan, 2014).

Therefore, CR has been interpreted as the essential part and the most

attractive research field of the signal classification system in the civilian

area. In the two areas mentioned above, AMI serves as the basis for the

intelligent radio implementation.

One of the most challenging communication conduits is the

underwater acoustic channel. In view of the low signal attenuation,

sound is the most universal transmission method in underwater

communications, which is regarded as a broadband system at a very

low frequency, such as a few kHz (Singer et al., 2009). With this

method, the center frequency is significant in the case of the

bandwidth. The multipath interference has a significant impact

on acoustic propagation, and it is worth noting that sound travels at

a relatively slow speed, approximately 1,500 m/s. Excessive Doppler

effects are induced by the movement of underwater equipment,

resulting in delay extensions of tens or even hundreds of

milliseconds, which lead to signal frequency-selective fading. It is

a prominent restriction for underwater wireless communication,

particularly when compared to the properties of light waves and

electromagnetic waves (Stojanovic and Preisig, 2009).

The modulation classification algorithm is primarily composed

of both likelihood-based (LB) methods (Panagiotou et al., 2000;

Abdi et al., 2004; Chavali and Da Silva, 2011; Shi and Karasawa,

2011) and feature-based (FB) methods (Boudreau et al., 2000;

Dobre et al., 2012; Mihandoost and Amirani, 2016). When

classifiers require knowledge of the perfect channel parameters,

LB achieves the highest performance in terms of classification

accuracy. LB methods mainly include two steps. First, each

modulation hypothesis appraises the likelihood with the received

signals. The chosen channel model originates from the probability

functions that can accommodate to satisfy the low-complexity
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requirements or be adaptable to suit the non-cooperative

environment. Then, the probabilities associated with different

modulation assumptions are compared with the determined

classification result.

In reality, the most critical objective is to achieve

multifunctionality in non-cooperative strategies and make

advancements in computational complexity. It is largely

constitutive of average likelihood ratio test (ALRT), generalized

likelihood ratio test (GLRT), and hybrid likelihood ratio test

(HLRT). The ALRT, GLRT, and HLRT classifiers hypothetically

possess perfect channel information, or there may be one or two

unknown channel parameters under certain circumstances. Among

these classifiers, the most complex is the likelihood function of

ALRT, which involves exponential operations and multi-integral

calculations. The GLRT likelihood function, while simpler in

expression, may result in classification deviations. The HLRT

combines the advantages of both ALRT and GLRT, striking a

balance between complexity and classification performance. These

methods aim to reduce the complexity of the maximum likelihood

classifier, which remains a key challenge. LB offers excellent

classification accuracy, grounded in decision theory. The high

complexity of the LB algorithm presents an opportunity for FB

classifiers. While FB demonstrates suboptimal performance, it

comes with lower computational demands compared to LB. FB

investigates the spectral characteristics of signals and utilizes

various spectral properties as factors for modulation classification.

The usual structure of FB classifiers involves the wavelet-based traits

captured by the wavelet functions, the high-order statistic traits

examining the types and orders of signals, and the cyclic traits based

on the cyclostationary analysis.

Machine learning algorithms (MLAs), as part of the FB

methods, are widely used for AMI. Some of the reaching

classification judgments specify an underlying type for the multi-

stage decision trees, where each stage trades on the distinguished

signal traits. However, there are some inconveniences for the

optimization of various judgment thresholds and the design of

the decision tree. To strengthen the algorithms on the basis of

MLA, all types of methods have been adopted to complete two

principal propositions in the modulation classification. First, MLAs

make the classification decision thresholds more convenient to

achieve. Second, MLA can be a tool to alter the data dimension on

the signal pattern, which is accomplished by the auto-generated and

auto-chosen traits. There are varying traits to be found for

satisfying the computational demand of the classifier. The MLA

classifier, such as a support vector machine, is generally in

association with signal traits to advance to a higher dimension.

Moreover, MLA implements the reduced-order dimension in the

signal trait space, which selects k-nearest neighbor, genetic

algorithm, and linear regression.

Deep learning methods have achieved great success in computer

vision, natural language processing, and speech recognition. However,

in underwater environments, deep learning methods face a number of

challenges, including large attenuation, noise interference, and data

scarcity. To address these challenges, researchers have proposed a

variety of methods. In Liu et al. (2017), the redesigned ResNet in the

lightweight state has better classification results, which embraces the
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shallower layer without the larger receptive field in the network

structure. In Yang (2017), the network possesses an expansive

structure with multiple layers, enabling it to effectively capture a

broader range of signal characteristics, thereby enhancing the effects

of AMC. In Lee et al. (2017), the fading communication environment is

analyzed, and the AMI obstacle is properly dealt with the whole

conjunction neural network. In Zhang et al. (2018), a long short-

term memory (LSTM) network is combined with a CNN to create a

new network with two streams. This design accommodates a wide

range of distinctive signal features, contributing to improved

identification performance. In Yu et al. (2019), by contrasting the

conventional network structure, a remarkable improvement in AMI is

produced by the structural adjustment of CNN. In Yang et al. (2016),

with reference to the stochastic interference of the underwater signals,

the eligible results can be carried out by the exiguous deep encoder

running in the automatic mode. In Li et al. (2017), the innovative DLA

is compared with the traditional statistical technique, which has the

evident asset in the AMI task. In Li-Da et al. (2018), a similar network

structure with the alliance of LSTM and CNN is forwarded in the

underwater AMI, and gives the method versatility to a certain degree in

the underwater and terrestrial communication system. In Li et al.

(2020), a fusion neural network, comprising an attention-enhanced

CNN and a sparse autoencoder, is introduced for the AMI of short

burst underwater acoustic signals. This approach demonstrates

robustness against channel conditions and noise In Wang et al.

(2022), IAFNet integrating impulsive noise preprocessing, attention

network, and few-shot learning is proposed for underwater acoustic

modulation recognition with few labeled samples under impulsive

noise, improving classification accuracy by 7% compared to other

methods by effectively extracting features through denoising and task-

driven attention. In Zhang et al. (2022), a recurrent and convolutional

neural network is proposed for underwater acoustic modulation

recognition, combining RNN and CNN for automatic feature

extraction. It achieves a higher accuracy of 98.21% on Trestle and

99.38% on South China Sea datasets, which has a faster recognition

time of 7.164 ms compared to conventional deep learning methods. In

Yao et al. (2023), deep complex networks with proposed deep complex

matched filter and deep complex channel equalizer layers are explored

for underwater acoustic modulation classification, which shows

improved performance over real-valued DNNs (deep neural

networks) by reducing multipath fading and noise influences.

In the field of underwater acoustic communications, various deep

learning networks commonly exhibit direct stacking or simple

combination without considering the architecture design of task-

specific optimizations. Compared to terrestrial wired communications,

underwater acoustic communications face more severe multipath

effects, Doppler shifts, and ocean ambient noise interference. This

requires a perspective tailored for underwater acoustics to

comprehensively consider the characteristics of underwater sound

propagation and design more optimized, dedicated deep neural

networks. More precisely, the chosen techniques should be integrated

to model the multidimensional characteristics of underwater acoustic

signals. Diversity-aware signal selection modules, enhanced attention

mechanisms, and hierarchical feature extraction structures serve as the

primary implementation methods. Meanwhile, adaptively designed

regularization terms and well-configured loss functions are also
Frontiers in Marine Science 03
necessary to adapt to the highly dynamic and stochastic underwater

environment during network training. These methods can genuinely

unlock robust feature extraction and modeling capabilities, enhancing

the interpretability of AMI and communications. The contributions of

this paper are mainly as follows:
(1) The network unit is structured with distinct branches.

While the primary branch remains consistent, the auxiliary

branch can assume one of three optional orientations. This

enhances the classification capability of the network by

facilitating the exchange of learned advanced signal features

between different branches. It broadens the range of

extracted signal characteristics while maintaining a lower

number of parameters.

(2) The hybrid routing network structure invests a simplistic

format for the complex routing logic network. After several

network units are overlaid structurally, the used network

can generate the multiple routing modes, which enhances

the performance of the extracted signal traits and has the

faster training speed.

(3) The transformer network is introduced to handle long

temporal signal series, and the high-dimensional features of

temporal domain signals are dynamically acquired in the

multi-head attention mechanism, which enhances the

recognition ability at lower SNRs.
2 Signal model

The AMI task effectively constitutes a multi-classification

problem, exhibiting a strong resemblance to other conventional

tasks within the field of deep learning. The received signals take on a

complex representation in the temporal domain, encompassing

various modulation styles. The channel can be expressed as

Figure 1, and the underwater received acoustic signals can be

represented as in Equation (1):

g(t) = h(t, d )⊗ s(t) + n(t) =o
I

i=1
ei(t)k(t − di(t)) + n(t) (1)

where s(t) is the sending signal; h(t, d) is the channel impulse

response withmultipath, Doppler effect, and time delay; n(t) is AWGN;

ei(t) is the attenuation at the ith path; and ⊗ denotes the signal

convolution. di(t) is the ith path time delay, I is the total number of

multipath signals, and a similar Doppler scaling factor b is set in all

paths, di(t) ≈ di − bt (Li et al., 2008). The sending signals can be analog

(e.g., single-sideband modulation) or digital (e.g., phase-shift keying).
3 The proposed method

3.1 Signal preprocessing

The input signal count is determined by a constant value in the

standardDLA, but this approachmay not yield optimal results in AMI.
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To capture the underlying signal characteristics and improve AMI

accuracy, the signal constellation pixels can be grouped in various

ways. The proposed network takes variable-sized pixel groups as input.

This approach enables the extraction of diverse signal modulation

traits, thereby significantly enhancing classification accuracy.

The various numbers of the signal pixel groups are shown as in

Equation (2):

Rf0 (k) = ch(F − o
M−1

m=1
f(m)) (2)

whereM is the grouped total number,m is the group number. f(·)
is the signal pixel sequence corresponding to the group number, andF
is the total number of signals. The signal pixel c(·) is the current

retrieval group, and h is the signal pixel number obtained. Rf′(·) is
served as the input sequence of the modulation signals in the used

network, and f′ is the current pixel sequence. The proposed network

produces the classification results using the various input pixel groups.
3.2 Proposed network structure

The aggregated multipath network achieves a similar effect to

the low-density scattered network in extracting diverse signal

features, but it does not increase the number of model

parameters. Moreover, it avoids the intricate structure of the low-

density scattered network, which employs numerous small

convolutions and pooling operations within its layer structure.
Frontiers in Marine Science 04
The high complexity, apart from affecting model efficiency and

training speed, can also diminish the network’s ability to extract

features from weak signals in varying underwater conditions,

potentially resulting in reduced recognition performance.

To address this limitation, a new network, called the

aggregation multipath network, is proposed in Figure 2. This

approach significantly improves the network’s capacity to capture

in-depth contextual information from signals and provides an

effective solution for creating a compact neural network model

capable of handling diverse input signal data. The aggregation

multipath network solves these problems by keeping the

unchanged structure in routes. The key to realizing the ideal

model capacity and efficiency is to maintain a large number of

routes with the same width. In this way, there are neither dense

convolutions nor too many Add operations.

The aggregation multipath network is composed of the

following main components. The preprocessed underwater

acoustic signal (preprocessed signals) is passed to the input

module, which contains the 2D convolution and MaxPooling

layer, with the 3 × 3 convolution kernel. To complete these

operations, these attributes are connected into the next main

network structure unit (cyan dashed border), which is constructed

by superimposing a multipath unit (MulPU), an attribute

rearrangement unit (AttRU), and a panoramic feature reification

unit (PanFRU), and transmitted to a deep and wide network for

further learning. The multipath unit and PanFRU can be iterated

multiple times, effectively extracting distinctive features from weak

underwater acoustic signals. When the above stage is completed, the

global average pooling (GAP) is intended to reduce the attribute

map size to 1×1, and finally the fully connected layer (dense) outputs

the modulation prediction value.

This architecture is carefully structured to ensure that the

features utilized after the AttRU are not only valid but also

relevant and representative of the underlying signal characteristics.

By iteratively refining and focusing on key attributes, the network

minimizes the risk of incorporating irrelevant or misleading

features. Moreover, the GAP and dense layers at the end of the

network serve to further validate and consolidate these features

before the final modulation classification.

Regarding potential performance degradation across different

modulation classes, the network is designed to be robust and

adaptive to various signal types. The iterative feature extraction

process, coupled with the network’s ability to handle multiple signal

paths and attributes, ensures that the system remains effective

across a range of modulation classes. This design approach helps

mitigate the risk of significant performance drops for certain

modulation types, thereby maintaining consistent and reliable

identification accuracy across different scenarios.

At the beginning of each unit, the proposed network is divided

into different routes. The corresponding formula is as follows in

Equation (3):

M = o
P

p=1
½m0 +o

V

v=1
y (mv) +mP� (3)
FIGURE 1

The underwater acoustic channel model.
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where p represents the superimposed units, p = 1,2,···,P, and P

represents the maximum number of superimposed units. m0

represents the main route, y(m(·)) represents a selection function

to the supplementary routes, v represents the alternative mode of

different supplementary routes, v = 1,···,V, and V represents the total

number of supplementary routes. mP represents the panoramic

feature reification unit in Figure 3. The ith layer can choose any

optional supplementary route required from 1 to V, and M
represents the final network structure.

The main route m0 consists of four basic modules: group

convolution (GrCon) with a 1 × 1 convolution kernel; the batch

normalization (BaNor) module, the ReLU activation function (ReLU)

module, and 2D convolution (Con) with a 2 × 2 convolution kernel.

The three routes that can be selected on the supplementary path

correspond to m1, m2, and m3, respectively. The supplementary route

m1 is a directly connected link. The supplementary route m2 includes

average pooling (AveragePooling). The supplementary route m3

consists of three basic modules: Depthwise convolution (DeCon)

with a 2 × 2 convolution kernel, BaNor, and ReLU. DeCon is a

special convolution that operates on each input attribute map

independently, which reduces the computational amount by

removing unnecessary data.

AttRU is the attribute exchange operation between the different

routes in Figure 4. The boxes serve as representations of signal

attributes. The process of box reconstruction is a specialized
Frontiers in Marine Science 05
technique employed to overcome the inherent limitations of

diverse pathways and to harness the full potential of the

abundant signal attributes. This method entails the rotation and

exchange of a specific proportion of attributes among different

pathways, culminating in the provision of results to the subsequent

unit for enhanced learning. The general convolution operates

comprehensively across all input attribute maps, a technique

referred to as full-attribute convolution, emphasizing an attribute-

dense connection where convolution is applied to all attributes.

Notably, information within distinct routes may exhibit similarities

within the same box. Without attribute exchange, the learned

attributes are inherently limited. Conversely, when attributes are

exchanged between different routes, information learned can also be

exchanged. This exchange augments the information within each

box, enabling the extraction of more features. This approach

ultimately fosters the acquisition of attributes from all other boxes

within each route, contributing to more favorable outcomes.

The 2D attribute matrix corresponding to each route vector is

x1, x2,···,xq, and the selected attribute range percentage is l. The
attributes involved in the exchange in Equation (4) are:

tlq = ℑl(xq) (4)

where ℑl( · ) represents selecting l percentage of the route

features for rotation exchange. The symbol tlq represents the vector

representation after alteration based on the l ratio, equivalent to the
FIGURE 3

Panoramic feature reification unit.
FIGURE 2

The aggregation multipath network structure.
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output of ℑl( · ). After the first network unit learns, the

proportionally selected initial matrix in Equation (5) is:

x1

x2

⋮

xq

2
666664

3
777775
=

x11 x12 … x1q

x21 x22 … x2q

⋮ ⋱ ⋮

xq1 xq2 … xqq

2
666664

3
777775

(5)

the rotating and changing operation starts at 1 and ends at q. At
l = 10%, the corresponding matrix transformation becomes in

Equation (6):

tl1

tl2

⋮

tlq

2
666664

3
777775
=

xq1 x12 … x1q

x11 x22 … x2q

⋮ ⋱ ⋮

x(q−1)1 xq2 … xqq

2
666664

3
777775

(6)

Attribute exchange is a key technique used in the aggregation

multipath network to overcome the limitations of the sparse

fragmented network and achieve better classification results. It

involves rotating and changing a certain proportion of attributes

between different routes, which allows the network to learn more

diverse features.

PanFRU consists of a scale-invariant feature convert, transformer

comprehensive depiction as convolution (TransCDC), and the reverse

process, shown in Figure 3. The upper layer input A ∈AH × W × P, and

H, W, and P represent the height, width, and passages of the input

tensor, respectively. PanFRU utilizes a convolutional layer with an n ×

n kernel size, followed by another convolutional layer with a 1 × 1

kernel to generate a feature map AD of size H ×W × ℓ. The n × n

convolution captures local spatial information in the input. The 1 × 1

convolution then projects each spatial location to an ℓ-dimensional

space, where ℓ is twice than the number of input passages P. This allows

the 1 × 1 convolution to learn new representations by taking linear

combinations of the input high-level abstract underwater signal data.

TransCDC unfolds the feature map AE of size K × B × ℓ into

linear projection of flattened patches. At position 0, non-
Frontiers in Marine Science 06
overlapping flattened patches and position embeddings are added,

just like a standard vision transformer. Relative positional

information pertains to the specific distribution of signals and

serves as a discriminative factor in identifying modulation

categories within the underwater acoustic signal modulation

constellation. The original underwater acoustic data do not

contain the relative position information of modulations, and it

leads to the same effect in the different position vector. Each distinct

position vector corresponds to the positional information

embedded within the input underwater acoustic signal sequence,

and these vectors are subsequently fed into the transformer

network. K = w ∗ h is the flattened patch size, and w = W/n and

h = H/n are patch height and width. B = (H ∗ W)/K is the number

of patches.

For each patch j, transformers are applied to AE(j) to encode

inter-patch relationships, 1 ⩽ j ⩽ J, producing a global feature map

AF of size K × ℓ × B in Equation (7):

AF(j) = ℧ (AE(j)) (7)

TransCDC retains both patch order and signal constellation

pixel order within each patch. In contrast to the standard vision

transformer, TransCDC does not suffer from the loss of spatial

ordering. AF can be folded back to spatial dimensions H × W × ℓ,

which is projected to P dimensions via 1 × 1 convolution and

concatenated with A. These concatenated features are fused by

another n × n convolution. ℧(·) is the standard vision transformer

operation. Since AE(j) encodes local n × n spatial information and

AF(j) encodes global relationships across all K patches for each

location, TransCDC allows each signal constellation pixel to

incorporate global context from the entire input. It is difficult to

distinguish the modulation types in the spatial dimension. The

discrimination ability of transformer can be effectively improved by

the position information. The attention mechanism of the

transformer can remember the key distinguishing information

like the human visual attention mechanism. The model is

improved to alleviate the signal fading, which enhances the

modulation recognition ability.
FIGURE 4

Attribute rearrangement operation (l = 10%).
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After the learned features are processed by the AttRU and

PanFRU modules, they undergo a crucial transformation via GAP.

GAP serves to distill the features into a more manageable and

representative form. This is mathematically represented as follows

in Equation (8):

Y = GAP(X) =
1

HWo
H

i=1
o
W

j=1
Xij (8)

Here, X represents the feature matrix post-AttRU and PanFRU

processing, and Y denotes the final output feature vector. H and W

are the height and width of the feature map, respectively. The GAP

operation averages the features spatially, reducing each channel to a

single scalar value. This simplified representation is crucial for the

final classification or recognition task, enabling the network to

output concise and effective recognition results.
4 Experiment

In the underwater acoustic wireless channel (Wang et al., 2022),

the generated signals are more approximate to the realistic situation

of disturbances. The dataset involves 10 types of modulation signals,

namely, BPSK, QPSK, 8PSK, 4PAM, 16QAM, 64QAM, FM, DSB,

CPFSK, and 4FSK. The signal is transmitted at a carrier frequency

of 10 kHz with a symbol transmission rate of 1,000 symbols/s. The

channel is modeled as a Rayleigh fading channel with 20 cosines to

represent frequency selective fading. The receiver has a standard

offset drift process in the sample rate and a maximum deviation of

15 Hz in the random mode. The raised cosine pulse-shaping filter

used at the transmitter has a 0.25 roll-off factor. The additive noise is

added in the communication process, which is Gaussian white, zero

mean, and bandlimited noise. The random seed number generated

is 0x1999 in the noise source. The deviation of the maximum

sample rate is set to 25 Hz, and the drift process standard offset is

0.1 Hz per sample in the sample rate. The cosine number is set to 10

in the frequency selective fading simulation. A total of 2,000,000

modulation data are included in the dataset, and SNRs are in the

range of −20 dB to +18 dB. The dataset is divided into a training set,

a validation set, and a testing set (60%, 20%, and 20%, respectively).

There is a complex floating point I/Q value in each signal data, and

the pixel groups are 32, 64, 128, and 256 in Figures 5, 6.

The training setting of the used network is that the batch size is

chosen as 128, and the optimizer selects the stochastic gradient

descent (SGD) with momentum = 0.85, decay = 5×e−4, and learning

rate = 0.01. To elevate the extension ability of the trained network,

the early stopping technique is applied with five patience epochs.

Figure 5 visually represents the convergence performance of

the proposed network throughout both the training and

validation phases. In Figure 5A, the training signal dataset is

transmitted through the network in use, resulting in training loss

values computed using the categorical cross-entropy loss

function. In Figure 5B, the validation signal dataset is employed

to assess the trained network, yielding validation loss values
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computed using the same loss function as in the training phase.

In the horizontal axis, “Epoch” signifies the number of complete

cycles in which the entire training or validation dataset is

processed by the network and returns once. At the beginning,

the four kinds of pixel groups show a rapid convergence in the

iterative procedure of the top five. At pixel groups = 32, the

training loss has a longer epoch number, which is higher than the

other three by an average of more than 0.25. There is a similar

convergence performance for the pixel groups of 64 and 128. At

pixel groups = 256, the training loss gets the best results. As the

pixel groups increase, the epoch number declines. The training

process shows that the used network can work effectively to learn

the signal data’s traits. Comparing the training and validating

process, there is an approximate convergence tendency. The

validating process has a smooth course like the training

process, which can productively fulfill the validation of the

trained network. In the validating process, the epoch number

also reduces as the pixel groups increase, which is similar to the

training process. It shows that the various pixel groups can be

effectively handled by the used method.

Figure 6 shows the modulation classification performance in

various pixel groups with different routing forms. The
A

B

FIGURE 5

(A, B) Training and validating process in the hybrid route network.
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superposition of three units in the network structure is shown. (X,

X) represents the auxiliary selection corresponding to the

intermediate overlay units. Other forms of (X, X, X) have similar

meanings, and X is the different choice of m1, m2, or m3. l is the

percentage of the selected packet range as a track for the exchange

between auxiliary branches. In the 12 different hybrid routing

forms, 10 modulation types with pixel groups of 32, 64, 128, and

256 can be effectively identified. When pixel groups = 32, there are

similar modulation classification results in the different routing

forms at the low SNRs between −20 dB and −16 dB. When SNRs >

−16 dB, (l1, l2, l3), l = 100% is better at approximately 1.2%, 3.2%

than (l1, l2, l3), l = 60%, (l1, l2, l3), l = 20% from −16 dB to 0 dB,

which is more effective by 4.8%, 8.2%, and 13.6% than l = 100%, l
= 60%, and l = 20% of other routing forms on average. There is a

similar trend at pixel groups = 64. Further adding routing branches

did not improve the classification accuracy. It is due to the fact that

the hybrid routing network can better extract the numerous signal

traits by the full exchange of tracks, and the advantageous

classification effect can be achieved under the (l1, l2, l3), l = 100%

form. As the pixel groups increase to 128, almost the same

classification results are achieved with different hybrid routing

networks during SNRs< −16 dB. With the increase of SNRs, the

classification ability differs from the selection mode of auxiliary

branches. When −16 dB< SNRs< 5 dB, the pixel groups of 128 in

the form of (l1, l2, l3), l = 100% is increased by approximately 6.9%

and 10.5% in the form of (l1, l2, l3), l = 60% and (l1, l2, l3), l = 20%,

which has a distinct advantage over other routing forms. When the

pixel groups are 256, the presence of different routing forms results

in sheep herd performance when the SNR is less than a specified dB

level. When l is 100%, (l1, l2, l3) has the best effects at SNRs > −15

dB, and slightly improves to 1.3%, 0.7%, and 1.1% compared to the

other three routing forms of (l1, l2), (l1, l3), and (l2, l3), which have a

mean increase of 2.5% compared to the other two trait exchange

percentages in the different routing forms. When the sufficient pixel

groups of signal data are provided to the used network, more signal

high-dimensional traits are extracted, which helps to promote the

ability to identify the modulation types. It explains that the hybrid

routing network is an efficient method for AMI with various

pixel groups.

Figure 7 shows the classification of various modulation styles at

different SNRs. At SNR ≤ −14 dB, the classification rate of SSB is higher.

This occurs because other modulation styles are often misidentified as

SSB modulation. There is a marked classification improvement of

64QAM from −8 dB to −6 dB. The main reason is that the

constellations of underwater acoustic signals between 16QAM and

64QAM have distinguishable high-dimensional features, which can be

discovered by the proposed network. As SNR increases, the proposed

method can clearly differentiate between the two modulations, and

other modulations have been correctly classified for each of the

categories. The classification rate of 10 modulation styles has

exceeded 85% at SNR = −2 dB. The proposed method can overcome

the influence of the underwater acoustic signal interferences, which

achieves high recognition accuracies at lower SNRs.
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In Figure 8, the efficacy of recognizing various modulation styles

is displayed at typical SNRs of 256 pixel groups. Notably, 4FSK and

8FSK exhibit substantial recognition accuracy at an SNR of −4 dB.

Similarly, SSB and FM are identified as prevalent analog modulation

styles. In underwater acoustic settings, characterized by poor

communication quality due to low SNR, analog signal waveforms

suffer from significant distortion. The distortion often leads to

misinterpretations resembling those seen in underperforming

systems. Despite these challenges, the proposed method

successfully differentiates between analog modulations that are
A

B

D

C

FIGURE 6

(A–D) Modulation classification accuracy with the various pixel
groups in the different route forms.
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typically prone to confusion. Additionally, the proposed method

demonstrates precise recognition of 16QAM and 32QAM. It is

common for the signal constellations to exhibit a degree of

similarity, which could lead to inferior performance. At the

specified SNR levels, the proposed method distinguishes

effectively between 16QAM and 32QAM. This proficiency extends

to other modulation styles as well, yielding enhanced recognition

capabilities. The proposed method progressively assimilates more

signal traits, culminating in optimal recognition outcomes.

The proposed method is compared with ablation methods and

other latest methods, including Proposed Method (without PanFRU),

which is the proposed method without PanFRU; Proposed Method

(withoutMAU), which is the proposedmethod withoutMAU (MulPU

and AttRU); CLDNN (West and O’shea, 2017), which integrates

convolutional and LSTM layers for spatial and temporal feature

capture; LSTM (Chen et al., 2020), a recurrent network adept at
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learning long-term dependencies in time-series data; Transformer

network (Dosovitskiy et al., 2020), known for its attention

mechanisms and global dependency handling; ResNet (O’shea et al.,

2018), employing skip connections for training deeper networks;

Squeeze-and-Excitation Network (Wei et al., 2020), emphasizing

informative features through channel-wise relationships;

HybridCRNN (Zhang et al., 2022), a fusion of convolutional and

recurrent layers for local and temporal feature extraction; and

RanForest (random forest) (Fang et al., 2022), an ensemble method

using multiple decision trees for improved classification, especially in

non-linear contexts. These methods represent a broad spectrum of

modern approaches in AMI, each with distinct advantages in

processing and analyzing complex signals. As shown in Figure 9, the

proposed method outperforms ablation methods and other network

methods at all SNRs, except at an SNR of −20dB. The classification rate

of all network methods is very low, and various modulation styles

cannot be recognized. When SNRs are greater than −18 dB, the

proposed method demonstrates a recognition advantage over the

ablation methods, namely, the Proposed Method without PanFRU

and the ProposedMethod withoutMAU. This clearly indicates that the

Proposed Method employing PanFRU and MAU has a superior

capability in extracting hidden classification information from

underwater acoustic signals. Compared with other network methods,

the proposed method has always maintained the advantage of the

classification rate at SNRs ≥ −15 dB. It is due to the fact that the

proposed method mines more deep representations of underwater

acoustic signals, and its attention mechanism and multipath structure

plays a crucial role for a good recognition effect.

The Proposed Method’s epoch time cost is compared with

various other networks in Table 1. These results were obtained by

a CPU i7, GPU 3090, Ubuntu 22.04, and TensorFlow version 2.10.

The term “epoch time” denotes the duration required for each

epoch of training. Among the methods evaluated, the Proposed

Method emerges as the most time-efficient. A comparative analysis

of the Proposed Method with its ablation variants, including both

the Proposed Method (without PanFRU) and Proposed Method

(without MAU), further elucidates its efficiency. In comparison, the

Transformer, LSTM, ResNet, CLDNN, SENet, and HybridCRNN
FIGURE 8

Modulation classification results at SNR = 0 dB.

FIGURE 9

Modulation classification results in different networks.
FIGURE 7

Each modulation classification results in different SNRs.
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exhibit epoch times, which are approximately 1.6, 2.0, 4.8, 1.5, 3.2,

and 3.1 times longer than that of the Proposed Method, respectively.

It is important to note that the epoch time for the RanForest

method is not applicable in this context. A critical aspect

contributing to the efficiency of the Proposed Method is its CNN

structure coupled with an optimized transformer architecture. This

configuration facilitates parallel processing, which is notably more

efficient than the sequential processing required by the Transformer

and LSTM architectures, as these necessitate the preservation of

intermediate states. The streamlined and potent network design of

the Proposed Method surpasses the performance of more intricate

architectures such as ResNet, CLDNN, SENet, and HybridCRNN.
5 Conclusion

The paper analyzed the modulation identification of the hybrid

network in the underwater acoustic environment. The complexity of

underwater communication makes it difficult to achieve a high

identification accuracy. The proposed network can obtain the effective

signal traits of modulation signals with various signal pixel groups. The

proposed network, featuring multiple routing forms and optional

auxiliary exchange branches, enhances the extraction of numerous

signal characteristics, thereby significantly improving identification

performance. Remarkably, this network not only maintains a compact

parameter size but also shortens the training duration. Enhancing the

efficiency of underwater non-cooperative communication under

constrained conditions holds considerable practical significance. The

proposed network method can also be extended to the other signal

classification scenes for underwater communication. In the future, we

will study the hybrid routing method for the low SNR modulation

identification in an underwater acoustic environment.

Building upon the insights from current research on modulation

identification in hybrid networks within underwater acoustic

environments, it is recognized that addressing the challenges posed by

non-Gaussian noise types, such as alpha noise and Middleton Class A

and Class B noise, especially prevalent in shallow water conditions, is a
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significant consideration for future studies. Upcoming research

endeavors plan to specifically target the impact of non-Gaussian noise

on modulation identification in underwater acoustic communication.

Recognizing that such noise types can substantially affect the

performance of communication systems, particularly in shallow water

environments, there is an aim to develop and integrate methodologies in

the network that can effectively handle and adapt to these complex noise

scenarios. This will include expanding the scope of the algorithmic

framework to better accommodate the distinct characteristics of non-

Gaussian noise, ensuring that the approach remains robust and effective

under a wider range of environmental conditions. Thus, the exploration

and incorporation of strategies to address non-Gaussian noise types will

be a key focus in future work, enhancing the applicability and reliability

of the network in diverse underwater communication settings.
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TABLE 1 The time cost of different networks.

Network method Epoch time (s)

Proposed method 38

Proposed method (without PanFRU) 36

Proposed method (without MAU) 35

Transformer 62

LSTM 75

ResNet 184

CLDNN 58

SENet 122

HybridCRNN 117

RanForest –
frontiersin.org

https://doi.org/10.3389/fmars.2024.1334134
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Lyu et al. 10.3389/fmars.2024.1334134
References
Abdi, A., Dobre, O. A., Choudhry, R., Bar-Ness, Y., and Su, W. (2004). “Modulation
classification in fading channels using antenna arrays,” in IEEE MILCOM 2004.
Military Communications Conference, Monterey, CA, USA 1, 211–217. doi: 10.1109/
MILCOM.2004.1493271

Boudreau, D., Dubuc, C., Patenaude, F., Dufour, M., Lodge, J., and Inkol, R. (2000).
“A fast automatic modulation recognition algorithm and its implementation in a
spectrum monitoring application,” in MILCOM 2000 Proceedings. 21st Century
Military Communications. Architectures and Technologies for Information Superiority
(Cat. No.00CH37155), Los Angeles, CA, USA. 2, 732–736. doi: 10.1109/
MILCOM.2000.904026

Chavali, V. G., and Da Silva, C. R. (2011). Maximum-likelihood classification of
digital amplitude-phase modulated signals in flat fading non-gaussian channels. IEEE
Trans. Commun. 59, 2051–2056. doi: 10.1109/TCOMM.2011.051711.100184

Chen, Y., Shao, W., Liu, J., Yu, L., and Qian, Z. (2020). Automatic modulation
classification scheme based on lstm with random erasing and attention mechanism.
IEEE Access 8, 154290–154300. doi: 10.1109/Access.6287639

Demirors, E., Sklivanitis, G., Melodia, T., Batalama, S. N., and Pados, D. A. (2015).
Software-defined underwater acoustic networks: Toward a high-rate real-time
reconfigurable modem. IEEE Commun. Magazine 53, 64–71. doi: 10.1109/
MCOM.2015.7321973

Dobre, O. A., Oner, M., Rajan, S., and Inkol, R. (2012). Cyclostationarity-based
robust algorithms for QAM signal identification. IEEE Commun. Lett. 16, 12–15.
doi: 10.1109/LCOMM.2011.112311.112006

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
et al. (2020). An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929.

Eldemerdash, Y. A., Dobre, O. A., and Öner, M. (2016). Signal identification for
multiple-antenna wireless systems: Achievements and challenges. IEEE Commun.
Surveys Tutorials 18, 1524–1551. doi: 10.1109/COMST.2016.2519148

Fang, T., Wang, Q., Zhang, L., and Liu, S. (2022). Modulation mode recognition
method of non-cooperative underwater acoustic communication signal based on
spectral peak feature extraction and random forest. Remote Sens. 14, 1603.
doi: 10.3390/rs14071603

Gorcin, A., and Arslan, H. (2014). Signal identification for adaptive spectrum
hyperspace access in wireless communications systems. IEEE Commun. Magazine
52, 134–145. doi: 10.1109/MCOM.2014.6917415

Lee, J., Kim, J., Kim, B., Yoon, D., and Choi, J. (2017). Robust automatic modulation
classification technique for fading channels via deep neural network. Entropy 19, 454.
doi: 10.3390/e19090454

Li, Y., Wang, B., Shao, G., and Shao, S. (2020). Automatic modulation classification
for short burst underwater acoustic communication signals based on hybrid neural
networks. IEEE Access 8, 227793–227809. doi: 10.1109/Access.6287639

Li, C., Zhou, Q., Han, X., Yin, J., and Shao, M. (2017). Underwater non-cooperative
communication signal recognition with deep learning. J. Acoustical Soc. America 142,
2732–2732. doi: 10.1121/1.5014979

Li, B., Zhou, S., Stojanovic, M., Freitag, L., and Willett, P. (2008). Multicarrier
communication over underwater acoustic channels with nonuniform doppler shifts.
IEEE J. Oceanic Eng. 33, 198–209. doi: 10.1109/JOE.2008.920471

Li-Da, D., Shi-Lian, W., and Wei, Z. (2018). “Modulation classification of underwater
acoustic communication signals based on deep learning,” in 2018 OCEANS - MTS/IEEE
Kobe Techno-Oceans (OTO), Kobe, Japan, 1–4. doi: 10.1109/OCEANSKOBE.2018.8559101

Liu, X., Yang, D., and Gamal, A. E. (2017). Deep neural network architectures for
modulation classification. arXiv preprint arXiv:1207.0580.
Frontiers in Marine Science 11
Miao, G., Himayat, N., and Li, G. Y. (2010). Energy-efficient link adaptation in
frequency-selective channels. IEEE Trans. Commun. 58, 545–554. doi: 10.1109/
TCOMM.26

Mihandoost, S., and Amirani, M. C. (2016). “Automatic modulation classification
using combination of wavelet transform and GARCHmodel,” in 2016 8th International
Symposium on Telecommunications (IST), Tehran, Iran, 484–488. doi: 10.1109/
ISTEL.2016.7881868

O’shea, T. J., Roy, T., and Clancy, T. C. (2018). Over-the-air deep learning based
radio signal classification. IEEE J. Selected Topics Signal Process. 12, 168–179.
doi: 10.1109/JSTSP.2018.2797022

Panagiotou, P., Anastasopoulos, A., and Polydoros, A. (2000). “Likelihood ratio tests for
modulation classification,” MILCOM 2000 Proceedings. 21st Century Military
Communications. Architectures and Technologies for Information Superiority (Cat.
No.00CH37155), Los Angeles, CA, USA, 2, 670–674. doi: 10.1109/MILCOM.2000.904013

Poisel, R. A. (2008). Introduction to communication electronic warfare systems
(Norwood, MA, USA: Artech House, Inc).

Shi, Q., and Karasawa, Y. (2011). Noncoherent maximum likelihood classification of
quadrature amplitude modulation constellations: Simplification, analysis, and extension.
IEEE Trans. Wireless Commun. 10, 1312–1322. doi: 10.1109/TWC.2011.030311.101490

Singer, A. C., Nelson, J. K., and Kozat, S. S. (2009). Signal processing for underwater
acoustic communications. IEEE Commun. Magazine 47, 90–96. doi: 10.1109/
MCOM.2009.4752683

Stojanovic, M., and Preisig, J. (2009). Underwater acoustic communication channels:
Propagation models and statistical characterization. IEEE Commun. Magazine 47, 84–
89. doi: 10.1109/MCOM.2009.4752682

Wang, H., Wang, B., and Li, Y. (2022). Iafnet: Few-shot learning for modulation
recognition in underwater impulsive noise. IEEE Commun. Lett. 26, 1047–1051.
doi: 10.1109/LCOMM.2022.3151790

Wei, S., Qu, Q., Wu, Y., Wang, M., and Shi, J. (2020). Pri modulation recognition
based on squeeze-and-excitation networks. IEEE Commun. Lett. 24, 1047–1051.
doi: 10.1109/COML.4234

West, N. E., and O’shea, T. (2017). “Deep architectures for modulation recognition,”
2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)
Baltimore, MD, USA, 2017, 1–6. doi: 10.1109/DySPAN.2017.7920754

Yang, G. Q. (2017). Modulation classification based on extensible neural networks.
Math. Problems Eng. 2017, 1–10. doi: 10.1155/2017/6416019

Yang, H., Shen, S., Xiong, J., and Zhang, X. (2016). “Modulation recognition of
underwater acoustic communication signals based on denoting & deep sparse
autoencoder,” in INTER-NOISE and NOISE-CON Congress and Conference
Proceedings (Institute of Noise Control Engineering), Vol. 253. 5506–5511.

Yao, X., Yang, H., and Sheng, M. (2023). Automatic modulation classification for
underwater acoustic communication signals based on deep complex networks. Entropy
25, 318. doi: 10.3390/e25020318

Yu, X., Li, D., Wang, Z., Guo, Q., and Wei, X. (2019). A deep learning method based
on convolutional neural network for automatic modulation classification of wireless
signals. Wireless Networks 25, 3735–3746. doi: 10.1007/s11276-018-1667-6

Zhang, D., Ding, W., Zhang, B., Xie, C., Li, H., Liu, C., et al. (2018). Automatic
modulation classification based on deep learning for unmanned aerial vehicles. Sensors
18, 924. doi: 10.3390/s18030924

Zhang, W., Yang, X., Leng, C., Wang, J., and Mao, S. (2022). Modulation recognition
of underwater acoustic signals using deep hybrid neural networks. in IEEE Transactions
on Wireless Communications 21(8), 5977–5988. doi: 10.1109/TWC.2022.3144608
frontiersin.org

https://doi.org/10.1109/MILCOM.2004.1493271
https://doi.org/10.1109/MILCOM.2004.1493271
https://doi.org/10.1109/MILCOM.2000.904026
https://doi.org/10.1109/MILCOM.2000.904026
https://doi.org/10.1109/TCOMM.2011.051711.100184
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1109/MCOM.2015.7321973
https://doi.org/10.1109/MCOM.2015.7321973
https://doi.org/10.1109/LCOMM.2011.112311.112006
https://doi.org/10.1109/COMST.2016.2519148
https://doi.org/10.3390/rs14071603
https://doi.org/10.1109/MCOM.2014.6917415
https://doi.org/10.3390/e19090454
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1121/1.5014979
https://doi.org/10.1109/JOE.2008.920471
https://doi.org/10.1109/OCEANSKOBE.2018.8559101
https://doi.org/10.1109/TCOMM.26
https://doi.org/10.1109/TCOMM.26
https://doi.org/10.1109/ISTEL.2016.7881868
https://doi.org/10.1109/ISTEL.2016.7881868
https://doi.org/10.1109/JSTSP.2018.2797022
https://doi.org/10.1109/MILCOM.2000.904013
https://doi.org/10.1109/TWC.2011.030311.101490
https://doi.org/10.1109/MCOM.2009.4752683
https://doi.org/10.1109/MCOM.2009.4752683
https://doi.org/10.1109/MCOM.2009.4752682
https://doi.org/10.1109/LCOMM.2022.3151790
https://doi.org/10.1109/COML.4234
https://doi.org/10.1109/DySPAN.2017.7920754
https://doi.org/10.1155/2017/6416019
https://doi.org/10.3390/e25020318
https://doi.org/10.1007/s11276-018-1667-6
https://doi.org/10.3390/s18030924
https://doi.org/10.1109/TWC.2022.3144608
https://doi.org/10.3389/fmars.2024.1334134
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

	Automatic modulation identification for underwater acoustic signals based on the space–time neural network
	1 Introduction
	2 Signal model
	3 The proposed method
	3.1 Signal preprocessing
	3.2 Proposed network structure

	4 Experiment
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


