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El Niño-Southern Oscillation (ENSO), a cyclic climate phenomenon spanning

interannual and decadal timescales, exerts substantial impacts on the global

weather patterns and ecosystems. Recently, deep learning has brought

considerable advances in the accurate prediction of ENSO occurrence.

However, the current models are insufficient to characterize the evolutionary

behavior of the ENSO, particularly lacking comprehensive modeling of local-

range and longrange spatiotemporal interdependencies, and the incorporation

of calendar monthly and seasonal properties. To make up this gap, we propose a

Two-Stage SpatioTemporal (TSST) autoregressive model that couples the

meteorological factor prediction with ENSO indicator prediction. The first

stage predicts the meteorological time series by leveraging self-attention

ConvLSTM network which captures both the local and the global spatial-

temporal dependencies. The temporal embeddings of calendar months and

seasonal information are further incorporated to preserves repeatedly-

occurring-yet-hidden patterns in meteorological series. The second stage uses

multiple layers to extract higher level of features from predicted meteorological

factors progressively to generate ENSO indicators. The results demonstrate that

our model outperforms the state-of-the-art ENSO prediction models, effectively

predicting ENSO up to 24 months and mitigating the spring predictability barrier.
KEYWORDS

El Niño-Southern Oscillation (ENSO), deep learning for ENSO prediction, self-attention
ConvLSTM, temporal embeddings, spring prediction barrier
1 Introduction

ENSO is currently the world’s largest coupled ocean–atmosphere model, which occurs

in the equatorial central and eastern Pacific Wang and Fiedler (2006). It leads to cyclic

changes in Pacific sea surface temperatures, impacting global climate and ecosystems,

including floods Dilley and Heyman (1995), droughts Lv et al. (2022), tropical cyclones Lin
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2024.1334210/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1334210/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1334210/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1334210&domain=pdf&date_stamp=2024-02-12
mailto:zhengya.sun@ia.ac.cn
https://doi.org/10.3389/fmars.2024.1334210
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1334210
https://www.frontiersin.org/journals/marine-science


Rui et al. 10.3389/fmars.2024.1334210
et al. (2020a) and coral reefs Manzello et al. (2014). Therefore,

accurately predicting ENSO is crucial for promoting environmental,

economic, and social sustainability Fiedler (2002); Adams et al.

(1999); Tang et al. (2018).

ENSO prediction mainly relies on spatiotemporal data of

meteorological factors, like Sea Surface Temperature (SST) and

Heat Content (HC) McPhaden (2003); Cheng et al. (2019), which

possess complex spatial and temporal connections. On the one

hand, closer locations tend to exhibit stronger connections,

adhering to the First Law of Geography Tobler (2004), but due to

factors like global atmospheric circulation Alexander et al. (2002),

large-scale meteorological fluctuations McPhaden et al. (2006),

monsoonl Kumar et al. (1999) and ocean currents Cai et al.

(2015), long-distance connections can also exist, known as spatial

teleconnections Rajagopalan et al. (2000). On the other hand,

shorter time intervals result in stronger connections, but

periodicity in meteorological factors leads to significant

connections even in longer intervals Jin and Kirtman (2010).

In addition, influenced by factors like solar radiation and

Earth ’s rotation Chapanov et al. (2017), ENSOrelated

meteorological sequences often display pronounced calendar

month and seasonal characteristics, particularly in ENSO

development, prediction accuracy, and precursor signals Ham

et al. (2021). Firstly, an ENSO event typically begins to develop

during boreal spring, rapidly grows during summer and autumn,

and reaches its maximum amplitude in winter. These different

phases of ENSO events can be distinguished based on calendar

months and seasons, showing a seasonal phase-locking pattern

Dommenget and Yu (2016). This can be explained as low-order

chaotic behavior driven by the seasonal cycle Tziperman et al.

(1994); Tziperman et al., 1995). Some studies also reveal that the

seasonally modulated termination process of big El Niño events is

related to a combination mode, which originates from the

atmospheric nonlinear interaction between ENSO and the Pacific

warm pool annual cycle Stuecker et al. (2013); Ren et al. (2016).

Secondly, the predictability of ENSO events varies across months

and seasons. For instance, during boreal spring when ENSO is in its

formation phase, the ENSO signal is relatively weak and susceptible

to interference from other signals, leading to higher forecasting

challenges in spring, known as the spring prediction barrier Lopez

and Kirtman (2014). Thirdly, ENSO precursors also exhibit

seasonality. For example, the Indian Ocean Dipole (IOD) reaches

its peak strength in autumn but is negligible in other seasons Lestari

and Koh (2016).

Based on the varying utilization of temporal and spacial

characteristics, current deep learning-based models for ENSO

prediction can be categorized into three types. The first type

solely relies on temporal features. Broni-Bedaiko et al.Broni-

Bedaiko et al. (2019) and Yan et al.Yan et al. (2020) utilizing

LSTM and TCN networks, respectively, to capture the temporal

evolution of meteorological factors. The second type exclusively

leverages spatial features. Ham et al.Ham et al. (2019) employ

CNN networks to capture space interdependencies among
Frontiers in Marine Science 02
meteorological factors, achieving effective forecasting up to 16

lead months. However, due to the local connectivity and network

depth limitations of CNNs, their efficiency in modeling long-

range spatial relationships is diminished. In contrast, F. Ye et al.

Ye et al. (2021a) utilize Transformer networks to enhance long-

range spatial modeling, resulting in an improvement in predictive

performance. The third type simultaneously utilizes both spatial

and temporal features. Zhao et al. Zhao et al. (2023) employ a

combination of 1D convolutions in the temporal dimension and

2D convolutions in the spatial dimension to simultaneously

capture spatiotemporal features and directly predict future

ENSO indicators. Wang et al. Wang et al. (2023) utilized a

TCN branch to extract temporal features and a 2D CNN

branch to extract spatial features. Geng and Wang Geng and

Wang (2021) utilize a Casual-LSTM network to extract

spatiotemporal features and forecast future meteorological

factors, however, they fall short in modeling long-range

spatiotemporal dependencies. On the other hand, Zhou and

Zhang Zhou and Zhang (2023) utilize a spatiotemporal

Transformer network to extract features and predict future

meteorological factors. Although they can capture long-range

spatiotemporal dependencies, the Transformer network treats

temporal and spatial inputs equally, lacking an inductive bias

for modeling close-range spatiotemporal dependencies

efficiently. Furthermore, all three methods lack modeling of

calendar month and seasonal characteristics.

To comprehensively model the temporal and spatial

connections, as well as account for calendar monthseasonal

characteristics of meteorological factors, we propose a Two-Stage

SpatioTemporal (TSST) autoregressive method for ENSO

forecasting. In Stage 1, we employ a spatiotemporal sequence

prediction model that combines the Self-Attention ConvLSTM

(SAConvLSTM) Lin et al. (2020b) module with a temporal

embedding module. It receives the spatiotemporal sequences of

Sea Surface Temperature Anomalies (SSTA, indicating deviations

from the long-term historical average of sea surface temperature),

and Heat Content Anomalies (HCA, indicating deviations from the

long-term historical average of ocean heat content), observed over

the preceding 12 months. The model then predicts the sequences of

these anomalies for the next 26 months. The SAConvLSTMmodule

is utilized to simultaneously model both close-range and long-range

spatiotemporal dependencies. The temporal embedding module

encodes calendar month and seasonal information using two

methods: periodic functions and learnable parameters. The

periodic functions transform calendar month and seasonal

information into fixed representations, providing stable temporal

priors. The learnable parameters approach encodes calendar month

and seasonal information into adaptable representations, learning

distinct features for different calendar months and seasons from the

data, capturing finer variations in the data. In Stage 2, a CNN-based

mapping model is employed to refine the predictions from Stage 1

and address the issue of inconsistent resolutions between ENSO

prediction meteorological factors and indicators. It takes as input
frontiersin.org

https://doi.org/10.3389/fmars.2024.1334210
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Rui et al. 10.3389/fmars.2024.1334210
the spatiotemporal sequences of SSTA and HCA predicted in Stage

1 for the next 26 months, and predicts the time series of the Niño

3.4 index for the next 24 months.

The main contributions of this paper are as follows:
Fron
1. We propose a two-stage spatiotemporal method for

ENSO prediction.

2. We employ self-attention ConvLSTM to capture both short-

range and long-range spatiotemporal dependencies, and

integrate calendar month and season information into

ENSO prediction with temporal embeddings.

3. The extensive experiments indicates that our method

outperforms existing methods by a large margin,

achieving effective predictions up to 24 months ahead and

mitigating the spring predictability barrier.
2 Methodology

The task of ENSO prediction can be framed as a spatiotemporal

sequence forecasting problem, aiming to utilize historical oceanic

and atmospheric variable maps to predict future ENSO indicator

indices, including but not limited to the Niño3.4 index, Niño3

index, and Niño4 index. Given a sequence of multivariate anomalies

maps ½Xi�Ti=1,Xi ∈ RCin�H�W , the objective is to predict the K-step-

ahead future indicators ½yT + i�Ki=1, yT + i ∈ RCout denote the spatial

resolution, Cin denotes the number of measurements available at

each space-time coordinate from the input sequence, and Cout refers

to the number of indicators from the output sequence. The training

task can be formulated as Equation 1.
tiers in Marine Science 03
q̂ = arg min
q

P½(½yT+i�Ki=1j½Xi�Ti=1; q) (1)

where q i s the parameter of model and q ˆ i s the

estimated parameter.

The ENSO prediction task essentially involve two sub-tasks:

capturing the spatiotemporal evolution trends of meteorological

variables and modeling the mapping relationship between

meteorological fields and ENSO indicators. In this paper, we

decouple the ENSO prediction problem into two sub-problems.

The first sub-problem is a typical spatiotemporal sequence

prediction problem, where the input and output are sequences of

meteorological feature maps ½Xi�Ti=1and ½XT+i�K+2i=1 , respectively. This

sub-problem can be formulated as Equation 2.

q̂ 1 = arg min
q1

P ½XT+i�K+2i=1 j½Xi�Ti=1; q1
� �

(2)

The second sub-problem is a mapping problem, where the input

consists of meteorological feature map sequence and ½X̂ i�T+K+2i=T+1

predicted in the first stage, and the output corresponds to the

ENSO evaluation indicator at the corresponding time step. This

sub-problem can be formulated as Equation 3.

q̂ 2 = arg min
q2

P ½yT+i�Ki=1j½X̂ T+i�K+2i=1 ; q2
� �

(3)

Our proposed Two Stage SpatioTemporal forecasting Network

(TSST-Net) is illustrated in Figure 1. In Stage 1, we employ a

sequence-to-sequence model based on Self-Attention ConvLSTM

network. It takes T-step historical meteorological maps as input and

predicts the subsequent K+2-step meteorological maps. This stage

focuses on capturing the spatiotemporal dependency in the data. In

Stage 2, we employ a simple convolution-pooling-fully connected
FIGURE 1

Architecture of the Two-Stage SpatioTemporal (TSST) prediction model for ENSO forecasting. Stage 1 (beneath the figure) illustrates the unfolded
architecture of the autoregressive model based on the self-attention ConvLSTM network. The input comprises historical data of SSTA and HCA for T
steps, while the output includes predicted SSTA and HCA for the future K+2 steps. At each step, the input undergoes a time encoding block that
integrates the current meteorological feature with corresponding seasonal and monthly encoding features (details in the top-left corner of the
figure). Stage 2 (depicted in the top-right corner) showcases the structure of the mapping model, where the predicted SSTA and HCA for the future
K+2 steps from Stage 1 are grouped in sets of three consecutive steps and fed into the Stage 2 model. This data then undergoes convolution,
pooling, flattening, fully connected layers, and is mapped to the corresponding Niño 3.4 value for that specific time step. In this study, T is set to 12,
and K is set to 24. .
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network. The input consists of the future K+2-step meteorological

maps predicted by Stage 1, while the output corresponds to the

future K-step ENSO indicator indices. Next, we will give a detailed

description on the proposed network.
2.1 Temporal embeddings

In the context of ENSO prediction, temporal information is

comprised of seasons and calendar months information. Unified

modeling of seasons and calendar months can help to capture

different granularities of temporal information within the ENSO

spatiotemporal sequence. Seasonal modeling is employed to capture

coarse-grained temporal patterns, leveraging the distinct seasonal

characteristics inherent in ENSO. On the other hand, calendar

month modeling is introduced to capture finer-grained temporal

information. Considering that the features between three

consecutive months corresponding to the same season can vary,

individual modeling of each calendar month is necessary. Focusing

solely on modeling calendar months, without considering the

coarse-grained information of seasons, may hinder the ability to

capture similarities within the same season and differentiate

features across different seasons. On the contrary, exclusive

modeling seasons, while neglecting the fine-grained information

of calendar months, may result in the inability to model similarities

within the same calendar month and differentiate features across

different calendar months.

Effectively encoding both components can enhance the model’s

ability to capture ENSO dynamics, ultimately leading to improved

predictive performance. To harness the potential of these two

aspects, we proposes three distinct approaches for encoding

calendar month and seasonal information: a fixed encoding

method, a learnable parameter-based approach, and a hybrid

method that combines fixed encoding with learnable parameters.

2.1.1 Fixed encoding method
The fixed encoding approach involves utilizing trigonometric

functions with periods of 12 and 4 to encode the calendar months

and seasons, respectively. The periods 12 and 4 correspond to the

twelve calendar months and four distinct seasons. The specific

formulation is provided as Equation 4.

monthi = ½sin(w1i), cos(w1i)�,w1 = 2p=12

seasonj = ½sin(w2j), cos(w2j)�,w2 = 2p=4
(4)

where i and j denote the index of the i-th calendar month and j-

th season, respectively. This method can provide a stable temporal

prior without the need for learning, but it lacks flexibility. In other

words, the time embedding representation obtained from this

encoding may not be the most optimal.

2.1.2 Learnable parameter-based method
Considering that the dataset inherently contains both calendar

month and season information, we can adopt the approach of

learnable parameters. Specifically, distinct learnable parameters are

assigned to each calendar month and season, allowing us to
Frontiers in Marine Science 04
adaptively learn the feature representations of calendar months

and seasons directly from the data. However, it comes with a higher

learning difficulty and typically requires a substantial amount of

data to achieve the best time embedding representation.

2.1.3 Hybrid method
The advantage of the fixed encoding approach lies in its ability

to provide a stable prior representation, thereby reducing the risk of

model overfitting. On the other hand, the use of learnable

parameters offers the benefits of greater flexibility and

adaptability, enhancing expressive capabilities. In order to balance

both stability and flexibility, we proposes an approach combining

both encoding strategies. By using fixed periodic function encoding

to provide a stable temporal prior, it reduces the learning difficulty

associated with the parameterized encoding. This approach may

yield better temporal embedding representations in situations

where data is limited.
2.2 Stage 1 self-attention ConvLSTM
model description

Self-Attention ConvLSTM Lin et al. (2020b) excels at capturing

dependencies between distant and nearby regions simultaneously. It

is constructed using multiple Self-attention ConvLSTM cells, as

depicted in Supplementary Figure S2, where each cell combines the

self-attention mechanism with the standard ConvLSTM Shi et al.

(2015). The self-attention mechanism is a direct and efficient

approach to modeling dependencies between distant regions,

while the ConvLSTM employs convolutional operations instead

of fully connected ones, enabling it to effectively capture both spatial

and temporal dependencies. The convolutional operations, with

their local connections and weight-sharing mechanism, are

especially effective at modeling dependencies between nearby

regions. This model cell is formulated as Equation 5.

it = s (Wxi*Xt +Whi* bH t−1 + bi)

ft = s (Wxf *Xt +Whf * bH t−1 + bf )

ot = s (Wxo*Xt +Who* bH t−1 + bo)

gt = tanh (Wxg*Xt +Whg* bH t−1 + bg)

Ct = ft ☉Ct−1 + it ☉ gt

Ht = ot ☉ tanh (Ct)bH = SA(Ht),Mt = SA(Mt−1)

(5)

where SA denotes the self-attention memory module. M

denotes memory state. Details about self-attention memory

module can be found in Supplementary Figure S2. At each time

step, the current cell’s hidden state, Ht, is computed by filtering the

input information, Xt, and forgetting certain information from the

historical state, Ct−1. Initially, Ht aggregates features only from

spatially adjacent points. Ht is then combined with distant node

features using the SAM module. Additionally, during the

application of the SAM module to Ht, relevant features from the
frontiersin.org
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historical memory Mt−1 are also aggregated, resulting in a

comprehensive spatiotemporal representation
2.3 Stage 2 MAPPING
MODEL DESCRIPTION

In stage 1, we predict future meteorological maps for a specific

time horizon. However, our ultimate goal is to derive ENSO

indicators, which presents challenges due to mapping

relationships, resolution disparities, prediction errors, and the

need for comprehensive feature inclusion. To overcome these

challenges and improve the accuracy, we introduce a second-stage

mapping network comprised of convolutional, pooling, and fully

connected layers. This network bridges the gap between

meteorological predictions and ENSO indicators, enhancing

prediction accuracy and addressing the complexities of ENSO

forecasting. It takes as input the meteorological features predicted

by the first-stage model for the consecutive three months in the

future and outputs the ENSO indicators for the future

corresponding time steps. The computation formula for this

network is represented by Equation 6.

yT+i = FC(Flatten(Pooling(Convolution(½XT+i,XT+i + 1,XT+i + 2�)))) (6)
3 Experiments

3.1 Dataset and evaluation metrics

3.1.1 Dataset
Our research employs three distinct datasets: Coupled Model

Intercomparison Project phase 5 (CMIP5) Giorgetta et al. (2013)

dataset for training, Simple Ocean Data Assimilation (SODA)

Carton and Giese (2008) dataset for validation, and Global Ocean

Data Assimilation System (GODAS) Behringer and Xue (2004)

dataset for testing. Detailed information can be found in Table 1

and Supplementary Table S1. In stage 1, in order to enhance

computational efficiency and mitigate noise interference, we

exclusively utilize SSTA and HCA within the spatial range of 55°S

to 60°N and 95°E to 330°E. This region comprehensively covers the

entire Pacific area, which is crucial for the formation and evolution

of ENSO (Supplementary Figure S1).

3.1.2 Data prepocessing
We construct samples using a sliding window approach. Firstly,

we concatenate the data of each month in chronological order,

resulting in a long sequence. Then, a window of length 12 months
Frontiers in Marine Science 05
slides along this sequence from the beginning to the end with an

interval of t. Each sliding generates a sample. This approach

generates samples with a certain degree of overlap between

adjacent ones. The advantage lies in the increased sample

quantity, effective exploitation of temporal information in the

data, and enhanced data utilization. However, a drawback arises

when neighboring samples exhibit significant overlap, leading to

high redundancy between samples and potentially causing

overfitting in the model, rendering training challenging.

Therefore, the setting of t needs to strike a balance between

sample quality and correlation. Additionally, the choice of

sampling interval t must also balance the number of samples

forecasted from different calendar months and the associated

prediction difficulty.

3.1.3 Evaluation metrics
In this study, the performance of the model is evaluated from

the perspectives of correlation and accuracy between predicted and

actual values. The evaluation metrics employed include Pearson

Correlation Coefficient (PCC), Root Mean Squared Error (RMSE),

and Mean Absolute Error (MAE). The calculation formulas for

these metrics are represented by Equation 7.

PCCl = o
12

m=1

oe
y=s(Yy,m − Ym)(Py,m,l − Pm,l)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

oe
y=s(Yy,m − Ym)

2oe
y=s(Py,m,l − Pm,l)

2
q

RMSEl = o
12

m=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oe

y=s(Yy,m − Py,m,l)
2

e − sj j

s

MAEl = o
12

m=1

oe
y=s Yy,m − Py,m,l

�� ��
e − sj j

(7)

where Y and �Y denote the actual values and its respective

means, while P and �P denote the predicted values and its

corresponding means. The index l takes values from 1 to 24,

indicating the number of lead months, and s and e are the start

and end years of the data, respectively.

3.1.4 Implementation details
All experiments were conducted using the PyTorch deep

learning framework. The models were trained on an NVIDIA

A40 GPU using the Adam optimizer. The learning rate is set to

0.001, with a batch size of 2. The sliding window sampling interval t
is chosen as 5, and the maximum number of epochs is set at 40. In

stage 1, the SAConvLSTM model consisted of 4 layers, with each

layer having a feature dimension of 128, accompanied by 64

attention heads. The dimensions of the learnable embeddings for

calendar months and seasons are (12, 24, 48) and (4, 24, 48)

respectively. These embeddings are integrated by directly
TABLE 1 Details of the training, validation and testing dataset for Niño 3.4 prediction.

Data T-span Models Type Var S-span T-res S-res

Training
Validation
Testing

CMIP5
SODA
GODAS

1861-2003
1871-1972
1980-2017

21
1
1

Historical run
Reanalysis
Reanalysis

SSTA/
HCA

55°S -60°N 0°-360°E 1 month 5°×5°
fro
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concatenating them with the original features. In Stage 2, the

convolutional kernel size is set to 3 × 3, the number of nodes in

the fully connected layer is 128, and a dropout rate of 0.1 is applied.
3.2 Comparison with previous methods

To demonstrate the effectiveness of our proposed TSST model

in ENSO prediction, we conducted a comprehensive comparison

with several representative benchmark methods, including

numerical prediction approaches such as SINTEX-TEX Luo et al.

(2008), CanCM3, CanCM4 (NMME Kirtman et al. (2014)),

CCSM3, GFDL-are04, and GFDL-FLOR-A06, as well as deep

learning methods like MSCNN Ye et al. (2021b), CNN Ham et al.

(2019), ENSOTR Ye et al. (2021a) and Res-CNN Hu et al. (2021).

The evaluation results are presented in Figure 2A, which depicts the

correlation coefficients varying with lead months on the test dataset.

The figure reveals declining correlation coefficients as lead months

increase for all methods.

3.2.1 Numerical prediction vs. deep learning
Traditional numerical prediction approaches perform well for

the initial 10 lead months (correlation > 0.5), but their accuracy

degrades more rapidly, limiting long-term predictions. In contrast,

deep learning methods outperform traditional techniques by

maintaining effective predictions for about 16-19 lead months,

ensuring better long-term predictive outcomes.

3.2.2 Deep learning vs. our method
Our proposed TSST method belongs to the category of deep

learning-based approaches. However, it outperforms previous deep

learning methods. Specifically, our method achieves significantly

higher correlation coefficient values than previous deep learning-

based methods across all 24 lead months. On average, there is an

enhancement of 0.04 in the correlation coefficient. Notably, the

improvements are even more significant for long-term forecasting.

For instance, at the 22nd lead month, the correlation coefficient

increases from 0.40 to 0.52. This could stem from the effective

utilization of temporal information and evolving information
Frontiers in Marine Science 06
embedded in HCA (Supplementary Figure S3). Furthermore, our

approach consistently achieves correlation coefficients exceeding

0.5 across all 24 lead months. During the span of lead months from

19 to 24, the correlation coefficient is consistently maintained at

approximately 0.52, with a slight upward trend. These findings

collectively indicate that our model has the capability to capture the

long-term evolutionary trends of ENSO, enabling an effective long-

term forecasting. Moreover, these results demonstrate the model’s

capacity to extend its forecasting horizon beyond the initial 24 lead

months, encompassing even longer lead months with efficacy.

3.2.3 Prediction of each calendar month and
each lead month

Figure 2B illustrates the correlation coefficients of our model’s

predictions for each calendar month across lead months ranging

from 1 to 24 on the test dataset. Generally, when the lead months

are shorter, the prediction task is less challenging, leading to

favorable prediction outcomes. On the contrary, as the lead

months increase, the prediction difficulty escalates, resulting in

less accurate predictions. Additionally, the difficulty of ENSO

forecasting varies across different calendar months and is closely

linked to the developmental stages of ENSO events. Starting from

January and extending to April, ENSO is in its early developmental

stage, resulting in relatively lower predictability. This might be

attributed to the intricate interaction between sea surface

temperatures and atmospheric circulation during this period,

leading to the influence of multiple climatic variables on ENSO

signals and subsequently weaker correlations. From May to August,

ENSO reaches its mature phase, showing higher predictability. This

is likely due to the gradual clarification of the relationship between

sea surface temperature anomalies and atmospheric circulation,

resulting in more pronounced event signals and stronger

correlations. Moving on to September through December,

corresponding to the middle-to-late declining phase of ENSO

events, predictability remains relatively high. This could be

attributed to the weaker interaction between sea surface

temperatures and atmospheric circulation, diminishing

interference in ENSO signals, a decreased impact of other climatic

patterns on predictions, and reduced noise levels. Similar
BA

FIGURE 2

ENSO correlation skill TSST model. (A)The all-season correlation skill of Niño 3.4 as a function of forecast lead month in TSST model (red), Res-CNN
model (dogerblue), ENSOTR model (blue), CNN model (darkseagreen) and other methods (the other colors). The validation period is between 1984
and 2017. Solid lines represent deep learning models, and dashed lines represent dynamical forecast systems. (B) The seasonality of correlation skills
is further assessed as a function of lead time and calendar month for Niño 3.4, with contours of correlation skills exceeding the highlighted
0.5 value.
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observations were also made in the predictions for Niño 3 and Niño

4 (Supplementary Figures S6, S7).

3.2.4 Shapley additive explanations
To analysis the contributions of different regions of distinct

variables to the final prediction, we employ Shapley Additive

Explanations (SHAP) Lundberg and Lee (2017). SHAP calculates

the marginal contribution of adding a specific feature to a model

and then considers the average marginal contributions of that

feature across all possible feature permutations. This average is

referred to as the SHAP value, representing the contribution of the

feature to the final prediction. In comparison to typical

interpretability methods, SHAP offers greater flexibility and

produces more stable results. The findings related to SSTA are

shown in Figure 3. Similar results about HCA and fixed temporal

embeddings are displayed in Supplementary Figures S10 and S11.

When the lead month is small, the contribution near the Niño 3.4

region is significant, while contributions from other regions are

minimal. However, with larger lead months, the contribution near

the Niño 3.4 region diminishes, and contributions from other
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regions increase, especially in the vicinity of points including

(305°E, 50°N), (275°E, 0°), and (100°E, 0°), which become

particularly significant.

The contributions at ( 275°E, 0°) and ( 100°E, 0°) are likely

associated with the Pacific Meridional Mode (PMM) Fan et al.

(2021) and the Indian Ocean Dipole (IOD), both of which are

signals correlated with ENSO. However, there is limited evidence

supporting a relationship between the North Atlantic and ENSO.

The contribution at ( 305°E, 50°N) appears challenging to explain.

Below, we attempt a brief explanation. Firstly, it’s important to note

that our model predicts the Niño 3.4 index, not ENSO events. The

occurrence of ENSO events in the testing set is relatively low.

Therefore, the contribution analysis results indicate the average

contribution of the predicted Niño 3.4 index in the testing set. This

is different from directly analyzing the contribution of predicting

ENSO events. Secondly, in long-term forecasts, our model tends to

underestimate the intensity of ENSO events compared to their

actual strength. This suggests that our model finds it challenging to

predict the occurrence of ENSO events in the long term. Hence, the

contribution analysis here is more inclined towards the
FIGURE 3

The absolute SHAP value distribution of SSTA from different locations for various lead months in predicting the Niño3.4 results. A higher SHAP value
indicates a more significant contribution of that location to the final prediction. The red box indicates the Niño3.4 region.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1334210
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Rui et al. 10.3389/fmars.2024.1334210
contribution to the normal variation of the Niño 3.4 index, rather

than the contribution during abnormal periods, i.e., the occurrence

of ENSO events. PMM or IOD generally has a significant impact on

the occurrence of ENSO events, but the contributions to the

changes in the Niño 3.4 index may differ. Moreover,

contributions may include causal and non-causal components.

For instance, there might be a strong causal relationship between

PMM and ENSO, leading to a larger contribution from the eastern

equatorial Pacific’s sea surface temperature and heat content

characteristics. On the other hand, contributions from the North

Atlantic region in long-term predictions might stem from non-

causal relationships, where both factors change simultaneously to

some extent but lack a causal connection. This could explain why, in

long-term predictions, the contribution from the North Atlantic

region might be greater than that of the PMM or IOD.
3.3 Ablation studies

In order to evaluate the importance of different components in

ENSO prediction, we performed ablation experiments for each

component. To keep fair, all the comparison experimental data,

including parameters setting, training set and test set are the same

as TSST-based ENSO prediction.

3.3.1 Input Variables
To investigate the impact of different variables, we compares the

performance of a model using solely SSTA (Stage 1 (SSTA)) with a

model employing both SSTA and HCA (Stage 1 (SSTA+HCA)).

The experimental results is depicted in Figure 4. From the

outcomes, it is evident that in short-term forecasting, the two

models exhibit comparable performance, with the model

employing both SSTA and HCA slightly outperforming the model

using solely SSTA. However, in long-term forecasting, the model

incorporating both SSTA and HCA demonstrates markedly better

performance than the model solely utilizing SSTA. This discrepancy

could be attributed to the fact that, in the short term, the influence

of SSTA on ENSO is more direct, whereas the impact of heat

content is relatively minimal. The utilization of solely SSTA might

already capture short-term ENSO variations effectively. In contrast,

during long-term forecasting, the development of ENSO may be

influenced by multiple factors, and the information encapsulated
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within SSTAmight be limited and prone to disturbances from other

climatic patterns. Thus, it may fall short in supporting ENSO’s

long-term forecasting. HCA, as a reflection of the ocean’s energy

reserves, can better depict the ocean’s response over large time

scales, offering more stable meteorological information over the

long term. Furthermore, HCA could also play a role in delayed

response Huang and Kinter (2002), implying that changes in

oceanic heat content might manifest in sea surface temperature

after a certain period. This delayed response might be more

dominate in long-term forecasting, thereby enhancing the

performance of models utilizing HCA in such scenarios.

3.3.2 Temporal embeddings
In order to further investigate the specific roles of calendar

month and season information in ENSO prediction, we conducted

experiments in stage 1 using several different embedding

approaches for calendar months and seasons, as outlined earlier.

The experimental outcomes, illustrated in Figure 5, portray the

performance of the aforementioned models on the testing dataset

across different lead months. From the figure, it can be observed

that the performance of all four models generally decreases as the

lead months increase. However, the rate of performance decay

varies across different stages. Short-term predictions may rely more

on the inherent features of the input SSTA and HCA, with weaker

dependence on seasonal and calendar month features. In short-term

predictions, the stage1(no-time) model performs the best, followed

by the stage1(fixed-time) and stage1(learn-time) models. The stage1

(hybrid) model performs the worst, possibly due to the stronger

influence of meteorological factors on short-term ENSO variations.

This trend may be attributed to the fact that short-term variations in

ENSO are more directly influenced by meteorological factors, with a

relatively weaker relationship to changes in calendar months and

seasons. Omitting calendar month and season information might

assist the model in capturing short-term changes more effectively.

Integrating additional information into short-term predictions

might disturb the model’s focus on primary meteorological

variations, leading to poorer performance.

Long-term predictions may rely more on seasonal and calendar

month features, with weaker dependence on the features of the

input SSTA and HCA. In long-term predictions, the stage1(hybrid)

model performs the best, followed by the stage1(fixed-time) and

stage1(learn-time) models. It seems that models utilizing calendar
B CA

FIGURE 4

Comparison of ENSO prediction skills between the control and sensitivity experiments regarding meteorological variables. The all-season correlation
(A), root mean square error (B) and mean absolute error (C) of Niño 3.4 as a function of forecast lead month in stage 1 using only SSTA and using
both SSTA and HCA. The validation period is between 1984 and 2017.
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month and season embedding representations consistently

outperform those that do not incorporate this information. This

phenomenon could be attributed to the fact that, in long-term

predictions, the direct influence of meteorological factors on ENSO

variations diminishes, while the relationship with changes in

calendar months and seasons becomes relatively stronger. Not

incorporating calendar month and season embedding

representations might result in the model’s inability to capture

these critical temporal dependencies, leading to poorer long-term

predictive performance.

Furthermore, models using fixed and learnable embeddings

show comparable performance, slightly exceeding fixed

embeddings. This might stem from the dataset’s size constraining

learnable parameters’ ability to capture strong calendar month and

season embeddings. With a larger dataset, the advantage of

learnable parameters could become more clear. Moreover, the

hybrid embedding outperforms fixed and learnable embeddings.

Fixed embeddings offer a stable temporal prior but struggle with

dynamic data. Learnable embeddings can adapt to dynamic changes

but require more data for reliable learning. The hybrid method

combines both strengths, using fixed embeddings for stability and

learnable parameters for data-specific variations. This strategy

captures ENSO’s long-term patterns and enhances predictions

even with limited data. Embeddings of calendar months and

seasons by the stage 1 (hybrid) model are shown in

Supplementary Figures S4 and S5, effectively highlighting distinct

patterns for each month and season.

The performance enhancement from hybrid is more

remarkable than that from HCA. As indicated by the red curves

in Figures 4 and 5, our Stage1(SSTA+HCA, Hybrid) model has

shown excellent performance in long-term predictions. To further

analysis whether the improvement in performance is more

significant due to HCA or the Hybrid method, we conducted

experiments by separately removing HCA and Hybrid

components. The experimental results are illustrated by the green

curve in Figure 4 and the cyan curve in Figure 5. From the results, in

long-term predictions, the Stage1(SSTA, Hybrid) model

outperforms the Stage1(SSTA+HCA) model. Also, observing the

shaded areas in Figures 4 and 5, it’s evident that the performance
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improvement from Stage1(SSTA+HCA) to Stage1(SSTA+HC,

Hybrid) is more remarkable than the improvement from Stage1

(SSTA,Hybrid) to Stage1(SSTA+HCA,Hybrid). These observations

suggest that the performance enhancement from the Hybrid

method is more significant than that from HCA, further affirming

the effectiveness of the Hybrid approach.
3.3.3 Different stages
In our approach, the first stage employs a spatiotemporal

sequence prediction model based on SAConvLSTM, utilizing

historical meteorological spatiotemporal factors to predict future

ones. The second stage utilizes a mapping network based on

convolution, pooling, and fully connected layers to map the

predicted future meteorological spatiotemporal factors from Stage

1 to the corresponding future ENSO indicator at each time step. It is

important to note that in Stage 1, to leverage the short-term

predictive advantage of SAConvLSTM (no-time) and the long-

term predictive advantage of SAConvLSTM (hybrid), we employ

the outputs of both models as inputs to the Stage 2 model, resulting

in the final TSST model.

To validate the contributions of each stage in our two-stage

model, we conducted an ablation experiment about each stage on

the TSST model. The results, depicted in Figure 6, illustrate the

variation of correlation coefficients, root mean squared errors, and

mean absolute errors of the stage1(hybrid) model, stage1(notime)

model, and the Stage 2 model (TSST) over different lead months.

Table 2 provides detailed experimental results for these models at

lead times of 3, 6, 9, 12, 15, 18, 21, and 24 months.

The experimental outcomes indicate that the Stage 2 model

slightly outperforms the two models from Stage 1 in both short-

term and long-term predictions, combining the strengths of short-

term and long-term predictions from the Stage 1 models.

Furthermore, the Stage 2 model demonstrates substantial

performance improvement in mid-term predictions compared to

the Stage 1 models. This suggests that the two Stage 1 models

possess complementary predictive characteristics in the middle

term, and the Stage 2 model effectively extracts and utilizes this

complementary information to achieve superior prediction results.
B CA

FIGURE 5

Comparison of ENSO prediction skills between the control and sensitivity experiments regarding temporal embedding. The all-season correlation
(A), root mean square error (B) and mean absolute error (C) of Niño 3.4 as a function of forecast lead month in stage 1 for four temporal embedding
strategies: no temporal embedding, fixed temporal embedding, learnable temporal embedding, and a hybrid approach combining fixed and
learnable temporal embedding. The validation period is between 1984 and 2017. In the ultimate TSST model, during stage 2, inputs comprise
combined predictions from Stage 1 (no-time) and Stage 1 (hybrid). SSTA and HCA are both used in these four models.
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3.4 Case studies

In ENSO prediction, our primary purpose lies in predicting

whether an ENSO event will occur and assessing its intensity.

Therefore, it’s necessary to further analyze the prediction results

of typical ENSO events. Additionally, the spring prediction barrier

have a significant impact on ENSO prediction. Hence, it is essential

to delve deeper into the analysis of how these springtime affect

the model.

3.4.1 Predictions of different lead months
Figure 7 depicts the comparison between our model’s predicted

outcomes and the actual results for lead times of 1, 3, 6, 9, 12, 15, 18,

and 21 months on the test dataset. From the observations, it is

evident that the predicted Niño 3.4 curves for all lead times exhibit

similar inflection points as the actual curves. This indicates that our

model effectively captures the changing trends of the Niño 3.4

index. For lead times within 3 months, the predicted Niño 3.4

curves closely match the fluctuations of the actual curves. However,

for lead times beyond 9 months, the amplitude offluctuations in the

predicted curves is smaller than that in the actual curves, indicating

a convergence of extreme values. Additionally, the convergence

increases with longer lead times. Similar phenomenon is also

observed in other methods. This could be attributed to the

relatively lower proportion of extreme values in real data, causing

the model’s predictions to incline toward the sample mean when

faced with greater prediction difficulty at longer lead times. To
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mitigate this convergence at longer lead times, possible strategies

include adjusting the weights of the loss function or implementing a

loss function that is sensitive to outliers. Addressing this issue holds

particular significance for enhancing the accuracy of ENSO event

prediction. We leave this as a topic for future research.
3.4.2 Spring prediction barrier
In order to investigate the seasonal impacts, we conduct a study

on the performance of the model when starting predictions from 12

different calendar months. The Niño 3.4 results are presented in

Figure 8. Notably, the analysis involves two independent variables:

the lead months and the position of the spring months within the

preceding 24 months. The dependent variable is a singular

correlation coefficient. Then, our analysis will primarily focus on

addressing two key questions. By the way, similar observations were

also made in the predictions for Niño 3 and Niño 4 (Supplementary

Figures S8, S9).
3.4.2.1 Does the model exhibit a spring prediction
barrier issue?

As evident from Figure 8, regardless of the starting calendar

month for predictions, the model consistently exhibits lower

prediction results at spring months within the leading 24 months

(as indicated by the shaded region in the figure) compared to the

predictions at adjacent lead months. This phenomenon confirms

the presence of the spring predictability barrier.
TABLE 2 Comparison among predictions made using only Stage1, only Stage2 and TSST models; here prediction validations are performed using
GODAS dataset for 3, 6, 9, 12, 15, 18, 21 and 24 month lead times.

Model Metric lead=3 lead=6 lead=9 lead=12 lead=15 lead=18 lead=21 lead=24

Stage1 (hybrid)
PCC
RMSE
MAE

0.8464
0.5388
0.4188

0.7363
0.6632
0.5124

0.6551
0.7211
0.5516

0.6148
0.7437
0.5750

0.6206
0.7410
0.5897

0.5443
0.7820
0.6149

0.5110
0.7952
0.6252

0.5156
0.7863
0.6123

Stage1 (no-time)
PCC
RMSE
MAE

0.8810
0.4607
0.3637

0.8081
0.5745
0.4486

0.7560
0.6455
0.5040

0.6852
0.7059
0.5476

0.5798
0.7663
0.5969

0.3864
0.8509
0.6558

0.2377
0.9043
0.6966

0.1873
0.9142
0.7069

TSST
PCC
RMSE
MAE

0.8916
0.4437
0.3505

0.8166
0.5621
0.4311

0.7808
0.6179
0.4674

0.7097
0.6755
0.5171

0.6628
0.7033
0.5559

0.5571
0.7641
0.5982

0.5245
0.7795
0.6117

0.5330
0.7689
0.6007
fr
The best results are in bold.
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FIGURE 6

Comparisons of ENSO prediction skills between the control and sensitivity experiments regarding model stage. The all-season correlation (A), root
mean square error (B) and mean absolute error (C) of Niño 3.4 as a function of forecast lead month for three different models: the stage 1 model
without temporal embedding, the stage 1 model with hybrid temporal embedding, and the stage 2 model. The validation period is between 1984
and 2017. Description of the figure.
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FIGURE 8

ENSO correlation skill in the TSST model when starting predictions from different calendar months. The correlation skill of Niño 3.4 as a function of
the forecast lead month (red line). The first spring calendar month within the lead 24 months (blue shade). The second spring calendar month within
the lead 24 months (red shade). (A–L) correspond to January through December.
FIGURE 7

Niño 3.4 prediction by TSST model and observation from 1982 to 2017 at a lead time of 1, 3, 6, 9, 12, 15, 18, 21 months. Cor means correlation skill.
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3.4.2.2 How does the spring prediction barrier affect the
model’s performance?

From Figure 8, variations in prediction outcomes are evident

when starting predictions from different calendar months,

particularly related to the spring months within the leading 24

months. Within this period, there are two instances of spring

months. To elucidate, let’s first consider the impact of the first

occurrence of spring, denoted by the blue-shaded region in the

figure. Regardless of the calendar month chosen as the starting

point for predictions, the correlation coefficient curve experiences

accelerated decay as it approaches the first spring month. Notably,

within this month, the curve descends most rapidly. Once past the

first spring month, the correlation coefficient curve essentially

stabilizes, exhibiting either sluggish decline or, in some instances,

a slight improvement in performance for certain starting months.

However, the correlation coefficients following the spring month

are notably lower than those preceding it. In essence, the first

occurrence of the spring month rapidly diminishes the model’s

predictive performance, and this diminishing effect continues to

influence predictions across subsequent lead months.

To analyze this, we will provide an explanation from the model’s

perspective. We employed an autoregressive predictive model, which

entails feeding the model with the meteorological factors (specifically

SSTA and HCA) of the preceding month, enabling it to predict the

subsequent month’s meteorological factors. During optimization, the

process involves computing a loss between the predicted and actual

meteorological factors for the current month, followed by gradient

backpropagation for continual refinement of the model’s parameters.

For regular calendar months (non-spring months), this approach

performs well, enabling the model to learn the temporal evolution of

ENSO phenomena. However, the scenario changes when it comes to

spring months. Notably, in comparison to other months, the true

meteorological factors at spring months exhibit significant noise,

yielding a low signal-to-noise ratio concerning ENSO signals. In our

model, the noise exists in both input and label. This introduces two

challenges. Firstly, noise of considerable magnitude infiltrates the

process of loss computation, gradient backpropagation, and

parameter updates. Secondly, the accuracy of predicting

meteorological factors for the current time step diminishes,

contributing to substantial noise. As a result, when these noisy
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predicted meteorological factors for the present time step are

utilized as inputs for subsequent time steps, the noise persists and

propagates, leading to inaccuracies in subsequent predictions. This

elucidates why the diminishing effect persists throughout subsequent

lead months. Furthermore, there’s a minor improvement in model

performance following the first springmonth, which may relate to the

model’s inherent bias correction capabilities.

As for the second spring, marked by the red-shaded area in the

figure, a similar trend can be observed. However, there is a

noticeable difference. After the second spring, the correlation

coefficient curve experiences relatively substantial improvements

when predictions commence from certain months, such as August,

September, October, November, and so on. This suggests that when

initiating predictions from these months, the model is more robust

after the second spring. Accounting for the feature of the model,

during the second spring month, despite the presence of noise in

both input and label, the model maybe has learned some crucial

spatiotemporal patterns of ENSO evolution. Consequently, the

model has developed a degree of bias correction ability, which

mitigates the impact of noise, leading to enhanced predictions for

the subsequent lead months.

3.4.3 Predictions of typical ENSO events
In order to analyze the performance of our model in predicting

typical El Niño and La Niña events, we present the results in Figure 9,

where our model’s predictions for the La Niña event in 1988, El Niño

events in 1997 and 2015 are depicted. All three predictions were

initiated from August of the preceding year. From the figure, it is

evident that our model successfully captures the ENSO phenomena

corresponding to the respective years, although the predicted

intensities appear to be lower than the actual ENSO intensities.

Furthermore, for the El Niño event in 1998, Figure 10 illustrates

the comparison between our Stage 1 model’s predicted sea surface

temperatures in the Pacific region at lead times of 3, 12, and 18

months, against the actual observed sea surface temperatures. The

results demonstrate that our model indeed captures the evolving

patterns of sea surface temperatures in the Pacific region. However,

as the lead time increases, the predicted sea surface temperature

fluctuations exhibit smaller amplitudes compared to the observed

sea surface temperature fluctuations.
B CA

FIGURE 9

Prediction examples made for typical ENSO events. Analyzed (orange), TSST-stage1 model predicted (green) and TSST model predicted (blue) Niño
3.4 for the 1988-1989 La Niña event (A), 19971998 El Niño event (B) and 2015-2016 El Niño event (C). All three start predictions from the calendar
month of August.
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4 Discussion

The aim of incorporating time modeling in deep learning is

generally to enhance the model’s perception to temporal features in

the data. One potential way of deep learning methods to

accommodate various seasonal and the quasi-periodic nature is to

automatically encode the time features and regularize the learned

representations in the frequency domain to preserve certain

consistency observed in the spectrum. In this paper, we model the

calendar month-seasonal characteristics of ENSO instead of directly

addressing its quasi-periodic features. We outline the differences

between these two aspects, providing a detailed explanation.
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Additionally, we briefly discuss challenges associated with directly

modeling the quasi-periodic nature of ENSO.
4.1 Differences between modeling the
calendar month and seasonal
characteristics of ENSO and modeling its
quasi-periodicity

In the third paragraph of the Introduction, we theoretically

elaborate on the calendar month and seasonality of ENSO.

Corresponding to real-world data, as depicted in Figure 11 for the
FIGURE 11

Niño 3.4 index values of the spring, summer, fall, and winter seasons spanning from 1982 to spring 2017. The red shaded intervals denote the
monthly periods corresponding to respective season. The first row corresponds to the spring and summer seasons, while the second row
corresponds to the fall and winter seasons.
FIGURE 10

Prediction example for spatiotemporal evolutions over the Pacific region (55°S to 60°N and 95°E to 330°E). The first row depicts SSTA heatmaps for
the months of November 1997, March 1998, July 1998, and November 1998. The second, third, and fourth rows illustrate corresponding SSTA
heatmaps predicted by TSST model for lead times of 3, 12, and 18 months, respectively. The red box indicates the Niño3.4 region.
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Niño 3.4 index spanning from 1982 to 2017, we illustrate the

variations during spring, summer, autumn, and winter. The

overall trend observed from the figure indicates that, generally,

during the spring season, ENSO events tend to be in their initial

phase with relatively weak signals, as evidenced by smaller values of

the Niño 3.4 index. In contrast, during autumn, ENSO events are in

their mature phase, characterized by stronger signals and larger

values of the Niño 3.4 index. Notably, strong El Niño events

occurring at distant intervals in 1983, 1998, and 2016 all

commenced in spring, developed in summer, matured in autumn,

and declined in winter, concluding in the following spring. This

season-specific pattern is referred to as seasonal characteristics.

However, periodic modeling of ENSO focuses on the time intervals

between occurrences, such as the temporal gaps between these three

strong El Niño events. There exists differences between these two

features, and the seasonal features do not necessarily manifest solely

in the annual periodic components.
4.2 Challenges in directly modeling the
quasi-periodicity of ENSO

The short-term periodicity of ENSO events is non-constant,

typically ranging between 2 to 7 years Timmermann et al. (2018).

Some studies, conducted through dominant frequency state

analysis, have confirmed the existence of long-term climate cycles

in the ENSO process Bruun et al. (2017). Employing Morlet wavelet

transformation on the Niño 3.4 index to shift to the frequency

domain, as depicted in Figure 12, allows for the analysis of various

frequency components and their intensities of the ENSO signal.

Subsequently, encoding is considered for frequency components

with relatively high intensities. Although this approach effectively

addresses the issue of variable periodicity, an inherent challenge

remains - the need to determine an additional starting point. For

example, for a two-year periodic component, encoding initialized
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from the first year versus the second year may yield significantly

divergent results. To the best of our knowledge, there is currently no

effective means of directly modeling the quasi-periodicity of ENSO

in deep learning, presenting an intriguing and worthwhile subject

for further exploration.
5 Conclusions

The spatiotemporal evolution patterns of ENSO are often

embedded in meteorological spatiotemporal sequence data, which

possess complex spatial and temporal characteristics. These

attributes include local range, long-range spatiotemporal

correlations, calendar month patterns, and seasonal patterns. An

efficient ENSO prediction model needs to effectively extract

spatiotemporal features from the meteorological data to capture

the evolution patterns of ENSO. To achieve this goal, we proposes a

Two-Stage SpatioTemporal (TSST) autoregressive model for ENSO

prediction. In Stage 1, the SAConvLSTM model is used to capture

both short-range and long-range spatiotemporal dependencies.

Additionally, two methods, namely periodic function encoding

and learnable parameter encoding, are used to model calendar

month and seasonal information. In Stage 2, a CNN-based model is

employed to map the meteorological factors predicted in Stage 1 to

indicator factors. Experiments demonstrate that our model can

effectively predict ENSO on a lead time of 24 months and partially

alleviate the spring prediction barrier issue.

While the proposed method in this study has achieved

promising ENSO prediction performance, there are still aspects

that require further investigation and enhancement.
1. Firstly, how to alleviate the issue of model contraction?

When the forecast horizon is extensive, the model tends to

underestimate the intensity of ENSO events. This could be

attributed to the scarcity of samples corresponding to
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FIGURE 12

(A) Niño 3.4 index series (blue solid line) and the wavelet inverse transform time series (gray solid line)from 1982 to 2017. (B) Normalized wavelet
power spectrum analysis of the Niño 3.4 index is conducted using the Morlet wavelet (w0 = 6) as a function of time and Fourier equivalent wave
periods (years). The contour lines in black, relative to a red noise stochastic process (a = 0.77), indicate regions with a confidence level exceeding
95%. The shaded region with left-sloping lines represents the Cone of Influence (COI) for the wavelet transform. (C) Global wavelet power spectrum
(black solid line) and Fourier power spectrum (gray solid line). Dashed lines denote the 95% confidence level.
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Fron
ENSO events in real scenarios. Adjusting the weights of the

loss function or incorporating a loss function sensitive to

outlier values could potentially mitigate the issue of model

contraction when dealing with larger lead months. Such

adjustments hold significant implications for enhancing the

predictive accuracy of ENSO events.

2. Secondly, how to further alleviate the spring prediction barrier?

From the data perspective, the most direct approach is to

apply denoising techniques to the spring meteorological

factors, such as using predictions from a trained model to

replace actual observations. From the model perspective, a

preliminary idea is to explore methods for designing a model

with enhanced bias correction capabilities, such as

incorporating learnable parameters.

3. Lastly, extending the model’s applicability to other

meteorological issues is vital. The spatiotemporal

dependencies at both short and long distances, as well as

the attributes related to calendar months and seasons, are

prevalent in various meteorological problems, such as the

Indian Ocean Dipole (IOD) phenomenon Ling et al. (2022).

Exploring how to apply our method to other domains of

meteorological problems is an area that merits further

research consideration.
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