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Fang Su1,2,3, Wei Cui1,2,3 and Chunxi Jiang1,2,3
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Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China, 2Chinese Academy of
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Sea cucumber (Apostichopus japonicus) is one of the cultured species with the

highest production value to a single species in China’s marine agricultural

industry with high nutritional and medicinal value. Body color influences

numerous biological functions in sea cucumbers, and it has become a key trait

in selective breeding. It is found that a cultivation environment with strong light

intensity leads to a lighter body color of A. japonicus compared to dark

conditions. However, little research has been conducted on the molecular

mechanisms regulating body color in different breeding environments. In this

study, we used Illumina sequencing to examine gene expression patterns in

green and purple A. japonicus exposed to different culture conditions. Overall,

the genes in the body wall of purple individuals were more affected by the

environment. We also identified pathways that were potentially influenced by the

breeding environment, such as “Drug metabolism - cytochrome P450”,

“Porphyrin and chlorophyll metabolism”, “Phosphatidylinositol signaling

system”, “TGF-beta signaling”, and “mTOR signaling”. The aim of this study was

to determine the light conditions and breeding environment that are more

favorable to the requirements of body color in A. japonicus and apply them to

the selection of high-quality breeds. The results obtained will support the

breeding of A. japonicus with specific traits and the production of seedlings to

promote the development of this maricultural industry.
KEYWORDS

Apostichopus japonicus, transcriptome, body color, breeding environment,
differentially expressed genes
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1 Introduction

Factors associated with the breeding environment, such as light,

water temperature, water depth, salinity, dissolved oxygen, pH, and

culture cycle, significantly affect sea cucumbers (Jiang et al., 2016).

Light in particular is essential for various biological activities and is an

important environmental factor for the survival and proliferation of

sea cucumbers (Yaguchi and Yaguchi, 2021). Moreover, light

intensity, as an important environmental factor for the growth of

aquatic organisms, can directly or indirectly affect animal feeding,

phototaxis, clustering and diurnal activity rhythms (Li et al., 2020).

Light intensity (lx) refers to the luminous flux of visible light received

per unit area. It has been shown that Tridacna crocea, which is

characterized by blue outer coat membranes, exhibits different color

changes at different light intensities, with the color variation

produced at 15,000 lx. being more significant than that at 5,000 lx

and 10,000 lx. (Liu et al., 2021). Graham and Hutchison (1979)

investigated diurnal activity rhythms in three freshwater turtle species

(Chrysemys picta, Clemmys guttata, and Sternotherus odoratus) under

different light cycles and showed that they became diurnal under long

photoperiods (16L:8D) and nocturnal under short photoperiods

(8L:16D). Luo et al. (2022) showed that shortening the photoperiod

reduced the magnitude of circadian activity rhythms in water snakes.

Animals in nature exhibit circadian rhythms that are related not only

to their organism, but also to the photoperiod in the breeding

environment. Overall, light is an important factor influencing

circadian rhythms, and many freshwater and marine species are

exposed to optimal light conditions.

Light is an important factor in the development, survival, growth,

and reproduction of animals. Numerous studies, conducted both in

China and internationally, have investigated the responses of fish,

shrimp, and sea cucumber larvae in light fields as well as their

characteristics and body color (Wurts and Stickney, 1984; Primavera

and Caballero, 1992; Wang et al., 2003; Moller and Naylor, 2009).

However, only a few studies have been conducted on the influence of

different light environments on body color formation in sea cucumbers,

and they mostly consisted in exposing individuals to different

artificially simulated light conditions to observe variations in their

body color. Some investigations have shown that light affects body

color in fish; for example, light was revealed as one of the most

important causes of induced whitening in Paralichthys olivaceus (Guan

et al., 2008; Wang et al., 2008a; Wang et al., 2008b; Wang, 2017). In

Siniperca scherzeri, body color change was also shown to be related to

light: the stronger the light intensity, the darker the black of the body

surface, but when light intensity was weak, the black color faded and

yellow emerged, and under dark conditions, both black and yellow

disappeared (Wang, 2003;Miao et al., 2013). Black-eyed goldfish reared

in dark conditions was shown to exhibit the slowest growth rate along

with a non-obvious body color change, while they grew fastest and had

significant body color change under natural light conditions (Wang

et al., 2002). The body color of A. japonicus was shown to be directly

dependent on the growing environment and to be specifically affected

by light intensity and duration of light exposure in different regions and
Frontiers in Marine Science 02
seasons (Xue et al., 2007; Jiang, 2011; Wang et al., 2012; Wang et al.,

2016). At present, sea cucumbers inhabiting natural environments are

mainly distributed in dark or light reef sides or other types of cover. In

contrast, indoor reared environments are mainly dominated by less

intense light or dark conditions. However, there is no literature to

clarify the optimal light intensity for sea cucumber. Throughout

evolution, sea cucumbers have developed a series of adaptive

characteristics to variations in light. Studying the response

mechanism of these organisms to light is of great scientific value for

further research on breeding.

The key genes regulating the response of A. japonicus to light

have not yet been examined. In the present study, we carried out the

transcriptome analysis of RNA obtained from the body wall tissues

of green and purple A. japonicus cultured under different breeding

environments, and analyzed and verified the differentially expressed

genes. The aim was to determine which breeding conditions are

more favorable to the growth and development of A. japonicus and

changes in body color so that they can be applied in the selection of

high-quality breeds. The results of this study to the selection and

breeding of good varieties of A. japonicus will contribute to

promoting the development of the A. japonicus industry.
2 Materials and methods

2.1 Experimental animals and
tissue collection

The experiment was carried out in the Rushan Branch of

Shandong Orient Ocean Co., Ltd., using a total of four A. japonicus

specimens with different colors. Two of them, one green (G) and one

purple (P), were obtained from dark conditions and cultured on pellet

feed mixed with seaweed and sea mud, while the other two, one light

green (LG) and one light purple (LP), were obtained from natural

environment. and fed on fermented pellet feed for sea cucumbers

during the culture period. The experimental body wall was frozen in

liquid nitrogen and stored at −80°C.
2.2 RNA extraction, cDNA preparation, and
illumina sequencing

Total RNA was extracted using the Trizol kit (Invitrogen,

Carlsbad, CA, USA) according to the manufacturer’s protocol.

RNA quality was assessed on an Agilent 2100 bioanalyzer

(Agilent, Palo Alto, CA, USA) and verified via agarose gel

electrophoresis without RNase. After extraction, eukaryotic

mRNA was enriched by Oligo (dT) magnetic beads, while

prokaryotic mRNA was enriched by removing rRNA using the

Ribo ZeroTM magnetic kit (Epicentre, Madison, WI, USA). The

enriched mRNA was then broken into short fragments using

fragmentation buffer and reverse transcribed into cDNA using

random primers. cDNA was extracted using DNA polymerase I,
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RNase H, dNTPs, and buffer. It was then used for second-strand

cDNA synthesis. The cDNA fragments were purified and end-

repaired, and poly(A) was added. Then, the fragments with lengths

ranging from 250 to 300 bp were screened using AMPure XP beads,

PCR amplified, and the PCR products were purified again using the

above-mentioned beads (NEBNex® Ultra™ RNA Library Prep Kit

for Illumina®). Finally, the fragments were sequenced using an

Illumina NovaSeq 6000 platform, and the raw reads were deposited

into the Sequence Read Archive (SRA) database at the National

Center for Biotechnology Information (NCBI) (TaxID: 307972).
2.3 Mapping reads

The raw data is further filtered in order to obtain high quality

clean reads. In addition, to ensure the quality and reliability of the

data analysis, the reads with adapters, N (which indicated that the

base information could not be determined), and low quality (reads

with Qphred ≤ 20 bases accounting for more than 50% of the entire

read length) were removed from the raw data. At the same time,

Q20, Q30, and GC contents were calculated for the clean data.

Then, the reference genome was obtained and the paired-end clean

reads were mapped to it using HISAT2 v2.0.5.
2.4 Identification of differentially expressed
genes and their functional annotation

Based on the results of principal component analysis (PCA), the 12

samples were divided into four groups (i.e., P, LP, G, and LG). Then,

differential expression analysis was performed for P vs LP, G vs LG, and

P vs G to identify DEGs between different colored A. japonicus. Genes

with adjusted a value of P <0.05 found by DESeq2 were assigned as

differentially expressed. Genes with a false discovery rate (FDR) ≤ 0.001

and a fold change ≥ 2.0 or ≤ 0.5 in pairwise comparisons were

considered as DEGs and were functionally annotated in the NCBI

Non-redundant protein (NR), Kyoto Encyclopedia of Genes and

Genomes (KEGG), Swissprot, the protein family database (Pfam),

Gene Ontology (GO), EuKaryotic Orthologous Groups (KOG), and

Clusters of Orthologous Groups of proteins (COG) databases.
2.5 Real-time PCR validation

To validate the RNA-sequencing results, nine genes were

randomly selected for real-time PCR. Primers were designed for

optimal performance using primer 5 (Supplementary Table S3).

Using the Prime Script™ RT Reagent Kit with genomic DNA

Eraser (Takara), the RNA was reverse transcribed into single-

stranded cDNA and adopted as a template for qRT-PCR. Actin

was used as the reference gene. Supplementary Table S3 lists the

primers (AJ-GEN F and AJ-GEN R) and actin primers (actin F and
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actin R) for the gene of A. japonicus. The mRNA expression levels of

differently colored A. japonicus individuals were assessed using the

SYBR® Premix ExTaq™ (Takara) kit. The reaction system was set

up according to the instructions, with pre-denaturation at 95°C for

5 seconds, followed by 40 denaturation cycles at 95°C for 10 seconds

each, denaturation at 60°C for 20 seconds, and extension at 72°C for

30 seconds. Finally, the melting curve was added. The expression

level of mRNA was measured using the 2−DDCt method.
2.6 Statistical analysis

The results of the experiments were expressed as mean ±

standard deviation (SD). Data were analyzed using one-way

analysis of variance (ANOVA) with multiple comparisons for

significant differences in gene expression between groups, and the

normal distribution of raw data was assessed via T-test. Statistical

analyses were performed using GraphPad Prism version 8.0.

P values < 0.05 were considered significant. Genes with P ≤ 0.05

and an absolute fold change of ≥ 2 were considered DEGs.
3 Results

3.1 Transcriptome assembly
and annotation

To understand the transcriptional regulation of different colors

in A. japonicus, the three samples examined for each group, i.e., LP,

P, G, and LG, were subjected to RNA sequencing (RNA-seq). A

total of 12 cDNA libraries were constructed in this study. To ensure

data quality, the raw data were filtered before information analysis

to reduce the interference of invalid data. First, fastp (Chen et al.,

2018) was used to perform quality control on the raw reads and

filter low-quality data to obtain clean reads (Supplementary Table

S1). RNA-seq generated 40, 141, 262-47, 613, and 400 high-quality

clean reads. Then, the clean reads were compared to the ribosomal

database for the species examined using the short read comparison

tool HISAT2. The reads mapped to ribosomes in the comparison

groups without allowing mismatches were removed and the

unmapped reads were retained for subsequent transcriptome

analysis. A reference genome-based comparison analysis was

carried out in HISAT2. In total, 28, 534, 702-35, 058, 298 reads

(67.9–76.98% of clean reads) were mapped to the A. japonicus

genome (Supplementary Table S2).
3.2 Identification of DEGs

To reveal the effect of breeding conditions on the body color of

A. japonicus, the samples of LG and LP individuals grown in the
frontiersin.org
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natural environment and those of G and P individuals cultured

under artificial breeding conditions were subjected to DEG analysis

(P < 0.05). Overall, 989, 982, and 646 DEGs were detected in P vs

LP, G vs LG, and P vs G, respectively. A total of 588 upregulated

genes and 401 downregulated genes were differentially expressed
Frontiers in Marine Science 04
between P and LP, and a total of 642 upregulated genes and 340

downregulated genes were differentially expressed between G and

LG. In addition, 326 upregulated genes and 320 downregulated

genes were differentially expressed between P and G individuals

(Figure 1). To verify the expression of the identified DEGs, nine
B C

D E F

G H I

A

FIGURE 2

Graphs illustrating the differences in the relative expression of nine selected DEGs. (A–C) Differential expression of AJAP07870, AJAP00874, and
AJAP30316 in the P vs LP group; (D, E) Differential expression of AJAP01638 and AJAP05703 in the P vs G group; (F–I) Differential expression of
AJAP28566, AJAP29744, AJAP24843, and AJAP01638 in the G vs LG group.
B CA

FIGURE 1

Identification of differentially expressed genes (DEGs) in the body wall of A. japonicus after exposure to different breeding conditions.
(A–C) represent the volcano plots of DEGs in P vs LP, G vs LG, and P vs G, respectively. The red and green dots indicate upregulated and
downregulated genes, respectively. P, purple; LP, light purple; G, green; and LG, light green.
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TABLE 2 Selection of DEGs in green (G) and light green (LG) A. japonicus for RNA-seq and RT-PCR analysis.

Gene ID
G vs LG

Exp RNA-seq qRT-PCR Same Trend

AJAP28566 ↓ -1.66193 -0.89** Y

AJAP29744 ↑ 5.20066 4.03** Y

AJAP24843 ↑ 6.202915 2.77** Y

AJAP01638 ↑ 8.41421 1.74**** Y
F
rontiers in Marine Science
 05
Genes with the same trend (up or down regulation) as shown by both RNA-seq and RT-PCR analysis are indicated by “Y” (yes). **, **** indicate P < 0.01. Exp, expression trend; “↑” upregulated
expression; “↓” downregulated expression.
TABLE 1 Selection of DEGs in purple (P) and light purple (LP) A. japonicus for RNA-seq and RT-PCR analysis.

Gene ID
P vs LP

Exp RNA-seq qRT-PCR Same Trend

AJAP07870 ↓ -7.9713 -7.19**** Y

AJAP00874 ↓ -3.37254 -1.48** Y

AJAP30316 ↓ -3.61494 -1.78*** Y
Genes with the same trend (up or down regulation) as shown by both RNA-seq and RT-PCR analysis are indicated by “Y” (yes). **, ***, **** indicate P < 0.01. Exp, expression trend; “↑”
upregulated expression; “↓” downregulated expression.
TABLE 3 Selection of DEGs in purple (P) and green (G) A. japonicus for RNA-seq and RT-PCR analysis.

Gene ID
P vs G

Exp RNA-seq qRT-PCR Same Trend

AJAP01638 ↓ -6.30039 -1.07* Y

AJAP05703 ↑ 2.993407 8.55**** Y
Genes with the same trend (up or down regulation) as shown by both RNA-seq and RT-PCR analysis are indicated by “Y” (yes). * P < 0.05, **** P < 0.01. Exp, expression trend; “↑” upregulated
expression; “↓” downregulated expression.
FIGURE 3

Scatterplot illustrating the GO enrichment of DEGs in P vs LP (P, purple; LP, light purple).
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genes were selected for qRT-PCR. The RNA-seq results reported in

Figure 2 are well in line with the qRT-PCR results (Tables 1–3).
3.3 Functional enrichment of DEGs

To further understand the function of DEGs, GO term and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analyses

were performed. After GO annotation, the DEGs in P vs LP were

shown to be significantly enriched with 18 GO terms, including 10

biological processes and 8 molecular functions (Figure 3). The three

most significantly enriched functional categories were

“fucosyltransferase activity”, “protein tyrosine phosphatase activity”,

and “protein glycosylation”. The DEGs in G vs LG were significantly

enriched with 12 GO terms, including 2 biological processes and 10

cellular components (Figure 4). The three most significantly enriched

functional categories were “tetrapyrrole binding”, “antioxidant

activity”, and “peroxidase activity”. The DEGs in G vs P were

significantly enriched in 241 GO terms, including 114 biological

processes, 13 cellular components, and 114 molecular functions.

However, the GO terms in these two groups were not significantly

enriched in DEGs (Figure 5).

To further investigate their functionality, these DEGs were all

mapped to the KEGG database. A hypergeometric test with a P

value of 0.05 was used as the criterion for pathway detection. After

the mapping, the 989 DEGs in the P vs LP group were divided into

54 pathways, of which two were significantly enriched (Table 4).

The 982 DEGs in the G vs LG group were divided into 58 pathways,

of which two (Table 5) were significantly enriched (P < 0.05). The

646 DEGs in the P vs G group were divided into 32 pathways, but

none of them were significantly enriched (Figure 6). Two

significantly enriched pathways were detected in P vs LP, i.e.,
Frontiers in Marine Science 06
“Drug metabolism - cytochrome P450” and “Arachidonic acid

metabolism” and in G vs LG, i.e., “Oxidative phosphorylation”

and “Arachidonic acid metabolism”.

To further understand the molecular mechanism of body color and

growth in green and purple A. japonicus cultured in different breeding

environments, the following enrichment pathways were selected for

subsequent analysis: “Phosphatidylinositol signaling system”, “Wnt

signaling”, “Drug metabolism - cytochrome P450”, “Porphyrin and

chlorophyll”, “TGF-beta signaling”, and “mTOR signaling” (Tables 6–8).
4 Discussion

4.1 “Wnt signaling”, “drug metabolism -
cytochrome P450”, and “Porphyrin and
chlorophyll metabolism”

Pigment cells develop from the neural crest in the embryo and play

an important role in the production of body color in animals (Streelman

et al., 2007). However, in some species, these cells can rapidly change

color by changing the position of pigments and reorienting reflective

structures (Yu, 1996). The mechanisms of color change vary among

species. For example, Chamaeleonidaewhere shown to use cell signals to

change color (Stuart-Fox et al., 2007). Misumena vatia (Thomisidae)

body color variation is related to the formation and location of ocular

pigment granules (Insausti and Casas, 2008). Wnt signaling plays an

important role in many developmental processes, including neural crest-

derived melanocyte development (Cho et al., 2009). This pathway was

shown to promote the differentiation of neural crest cells to melanocytes

in mice (Dunn et al., 2000), while its inhibition was shown to reduce

pigment cells in zebrafish (Dorsky et al., 1998). The family of

macrophage migration inhibitory factors (e.g., FMO) are ancient and
FIGURE 4

Scatterplot illustrating the GO enrichment of DEGs in G vs LG (G, green; LG, light green).
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have been identified in bacteria, plants, and animals (Huang et al., 2016).

These genes encode an inflammatory cytokine with reciprocal isomerase

activity (Lubetsky et al., 2002; Calestani et al., 2003; Wessel et al., 2020;

Spurrell et al., 2023). Dimethylaniline monooxygenase [N-oxide-

forming] 2 (FMO2) (Bickel, 1971) is a mitochondria-specific factor

involved in pigment cell expression but not in pigment biosynthesis.

UDP-glucuronosyltransferase is an intracellular membrane protein that

catalyzes the transfer of glucuronide from UDP glucuronic acid to

lipophilic receptors. Glucuronidation plays an integral role in the

metabolism of various endogenous substances, such as bilirubin and

steroid hormones (Mackenzie, 1986; Mackenzie and Rodbourn, 1990;

Stuart-Fox et al., 2007; Mroz et al., 2018). In the present study, UDP-

glucuronosyltransferase in G vs LG was upregulated in the “Drug

metabolism - cytochrome P450” and “Porphyrin and chlorophyll

metabolism” pathways, while in P vs LP and G vs LG it was

downregulated in the “Drug metabolism - cytochrome P450” pathway.
Frontiers in Marine Science 07
FMO2 in both P vs LP and G vs LG was downregulated in “Drug

metabolism - cytochrome P450”. These results indicate that both the

upregulation of UDP-glucuronosyltransferase and the downregulation of

FMO2 may lead to a decrease in the pigmentation of sea cucumbers in

natural farming environments. These findings are more conducive to the

light conditions and breeding environments required by the body color

of the A. japonicus, and are applied to the selection of high-

quality varieties.
4.2 “Phosphatidylinositol signaling system”,
“TGF-beta signaling pathway”, and “mTOR
signaling pathway”

The epidermal cells of sea cucumbers secrete mucus, and the

epithelium serves to protect the body. Myc proteins (c-Myc, L-Myc,
FIGURE 5

Scatterplot illustrating the GO enrichment of DEGs in P vs G (P, purple; G, green).
TABLE 4 Enriched DEG pathways in P vs LP (P, purple; LP, light purple).

Pathway ID Pathway
DEGs with pathway
annotation (44)

All genes with pathway
annotation (3166)

P-value

spu00982 Drug metabolism - cytochrome P450 5 (11.36%) 55 (1.74%) 6.53×10-4

spu00590 Arachidonic acid metabolism 4 (9.09%) 36 (1.14%) 3.67×10-2
TABLE 5 Enriched DEG pathways in G vs LG (G, green; LG, light green).

Pathway ID Pathway
DEGs with pathway

annotation (67)
All genes with pathway

annotation (3183)
P-value

spu00190 Oxidative phosphorylation 8(11.94%) 93(2.92%) 6.21×10-4

spu00590 Arachidonic acid metabolism 5(7.46%) 35(1.10%) 7.08×10-4
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S-Myc, and N-Myc) are a class of transcription factors that regulate

growth and cell cycle entry by inducing the expression of genes

required for these processes (Zhu and Thompson, 2019). The

mTOR protein kinase belongs to a major eukaryotic signaling

network that regulates cell growth depending on environmental

conditions and plays a fundamental role in cellular and organismal

physiology (Dowling et al., 2010; Hoeffer and Klann, 2010; Laplante

and Sabatini, 2012). Phosphatidylinositol 3-kinases (PI3Ks) are a

protein family involved in the regulation of a variety of cellular

functions, including cell survival, growth, metabolism, and glucose

homeostasis (Fruman et al., 2017). TGF-beta superfamily ligands

play an important role in the development and physiology of

different animal species, among which TGF-beta signaling may be

closely related to tumor progression (Gigante et al., 2012; Larson

et al., 2020). TGF-beta signaling plays an important role in early

embryonic development as well as in tissue and organ formation,

immune surveillance, and the balance between tissue repair and

homeostasis in the adult body (Heldin et al., 1997; Feng and

Derynck, 2005; Qin et al., 2022; Li et al., 2023). The results of this

study showed that in G vs LG, Myc protein genes were up-regulated

in the “TGF-beta signaling” and “Wnt signaling” pathways. Myc

gene products, especially c- Myc, play an important role in the

induction of apoptosis and regulation of cell growth (Lourenco

et al., 2021; Patange et al., 2022).
5 Conclusion

This is the first study to investigate the effects of different

breeding environments on body color-related genes in green and

purple A. japonicus using RNA-seq analysis. We identified five
TABLE 6 Selected DEGs between purple (P) and light purple (LP)
A. japonicus and associated enriched pathways.

Gene id
Nr/

Swissprot
description

Ratio (P
vs LP)

Probability

Drug metabolism - cytochrome P450

AJAP26268
UDP-glucoronosyl and UDP-

glucosyl transferase
6.971938 0.977931

AJAP30316
flavin-containing

monooxygenase 2 (FMO2)
-3.62494 0.999286

AJAP02070
sigma class glutathione-s-

transferase 2
-2.95374 0.999001

AJAP14503 glutathione S-transferase-like -2.64661 0.989788

AJAP00070 GST_pi-like protein -3.59377 0.954734

Porphyrin and chlorophyll metabolism

AJAP29651 Ceruloplasmin; Ferroxidase 5.032656 0.99999

AJAP26268
UDP-

glucuronosyltransferase 2B7
6.971938 0.977931

TGF-beta signaling pathway

AJAP04605
repulsive guidance molecule

A isoform X3
-1.98093 0.96745

Phosphatidylinositol signaling system

novel.3376 -2.26693 0.950922

Wnt signaling pathway

novel.2754
Cell migration-inducing gene

5 protein
5.532099 0.999976
FIGURE 6

Histogram illustrating the KEGG enrichment of DEGs in P vs G. (P, purple; G, green).
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pathways involved in the regulation of pigmentation genes.

Moreover, based on the number of identified DEGs, it was revealed

that purple individuals were more susceptible to the breeding

environment. Those grown in natural conditions were lighter in

color compared to those grown in the dark, in which flavin-

containing monooxygenase 2 (FMO2) (AJAP30316) and polyketide

synthase (AJAP13983) showed significant downregulation. In

particular, the former gene was also significantly enriched in “Drug

metabolism - cytochrome P450”. In addition, GO and KEGG

analyses revealed the presence of possible DEGs enriched in the

following pathways: “Wnt signaling”, “Drug metabolism -

cytochrome P450”, “Porphyrin and chlorophyll metabolism”,

“Phosphatidylinositol signaling system”, “TGF-beta signaling”, and

“mTOR signaling”. The results of this study provide important clues

to better understand the effects of different breeding environments on

green and purple A. japonicus and will contribute to the development

of optimal culture strategies.
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TABLE 7 Selected DEGs between green (G) and light green (LG)
A. japonicus and associated enriched pathways.

Gene id
Nr/

Swissprot
description

Ratio (G
vs LG)

Probability

Drug metabolism - cytochrome P450

AJAP30296
UDP-

glucuronosyltransferase 2B1
3.588473 0.999638

AJAP30316
flavin-containing

monooxygenase 2 (FMO2)
-3.62494 0.999286

Porphyrin and chlorophyll metabolism

AJAP30296
UDP-

glucuronosyltransferase 2B1
3.588473 0.999638

Wnt signaling pathway

AJAP02429 Protein notum homolog 4.848749 0.998568

AJAP11986 Myc protein 1.205439 0.959865

TGF-beta signaling pathway

AJAP11986 Myc protein 1.205439 0.959865

mTOR signaling pathway

AJAP21010
V-type proton ATPase

subunit F
-1.55491 0.982506
TABLE 8 Selected DEGs between purple (P) and green (G) A. japonicus
and associated enriched pathways.

Gene
id

Nr/
Swissprot
description

Ratio (P
vs G)

Probability

Phosphatidylinositol signaling system

novel.3376 -2.52012 0.962446

Wnt signaling pathway

novel.2754
Cell migration-inducing gene

5 protein
4.818737 0.998793
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