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Nitrogen is one of the critical factors in water pollution and eutrophication, so

applying the deep learning method in remote sensing inversion of nitrogen can

provide basic information for environmental management. This paper proposes a

two-step feature extraction method to solve the problem that the number of

bands in water quality inversion is insufficient and the deep learning method

cannot be fully exploited. Firstly, manual feature extraction is completed through

the fusion between bands to obtain a set of high-latitude shallow factors, which

make the features rich and diverse. Then, a one-dimensional convolutional

residual network (ResNet-1D) is constructed, and the deep features are

automatically extracted through convolution operations of the model, where

the residual learning is used to reduce the training difficulty. The full connection

is established through depth features. The comparison of models shows that the

Mean Relative Error (MRE) is decreased by at least 10% in both test and validation

datasets. Finally, the spatiotemporal distribution of total nitrogen concentration

(TNC) in the coastal waters of Shandong is explored. In general, the spatial

distribution is that the concentration near the coast is higher than the far. The

temporal variation is that themonthly mean of the TNC is low inMarch, moderate

in May and August, and high in October; the annual average value of TNC is

0.3mg/L, which has decreased slightly year by year since 2014.
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1 Introduction

The deterioration of surface water quality and eutrophication

has become a serious pollution problem in many countries over

recent decades due to the increasing amount of nutrients discharged

into water by various pollution sources (Smith et al., 1999; Yu et al.,

2016). Of all nutrients, nitrogen is required to support aquatic plant

growth and is the crucial limiting nutrient in most aquatic and

terrestrial ecosystems (Guildford and Hecky, 2000; Conley et al.,

2009). So, it is closely related to the ecological balance of aquatic

organisms and eutrophication (Sagan et al., 2020). Therefore,

effectively monitoring nitrogen concentration is essential for

evaluating the water environment (Qin et al., 2006). Traditional

water quality monitoring methods can monitor nitrogen element

concentration, providing accurate and detailed water quality

parameter information at monitoring points (Sun et al., 2014).

Still, it is difficult to reflect the spatial distribution of water quality,

and it consumes many resources (Mohammad et al., 2016).

Water quality remote sensing monitoring is a technology that

uses spaceborne sensors to obtain image data, constructs a water

quality parameter inversion model based on image reflectance, and

calculates water environment factors (Wagle et al., 2020). It explores

the internal relationship between spectral reflectance and water

composition (Harvey et al., 2015). The method has the advantages

of a wide range and long-term dynamics, which can make up for the

shortcomings of traditional water quality monitoring methods

(Shen et al., 2020). The inversion model is the core, and the data

is the key to the process (Uudeberg et al., 2020). The water quality

remote sensing inversion method can be divided into empirical and

analytical methods. The former is widely used due to its superior

accuracy and easy construction, but the universality is low (Soomets

et al., 2020). Therefore, it is necessary to establish a specific

empirical model suitable for the study area.

Nitrogen is not only an essential factor that contributes to the

formation of bloom but also an indicator of water eutrophication

(Chen, 2006). Therefore, monitoring its spatial and temporal

distribution characteristics using remote sensing data is highly

critical to preventing nitrogen pollution and strengthening water

ecological environment governance (Muhammad et al., 2020;

Muhammad et al., 2022). Compared with chlorophyll-a and total

suspended solids, TN does not have significant spectral responses,

making remote sensing retrieval difficult. Carpenter and Serwan

constructed a linear regression model in the study area using

Landsat data to invert water quality parameters (Carpenter and

Carpenter, 1983; Serwan, 1993). However, linear models can only

reflect the linear relationship between spectral data and water

quality parameters. Due to the limitations of watercolor remote

sensing detection technology and the complexity of water dynamics,

the two types of data exhibit complex nonlinear relationships

(Wagle et al., 2020), such as exponent, logarithm, power function,

polynomial, etc (Reilly and Werdell, 2019). The above models are

simple and have explicit mapping relationships, making them

common methods for inverting water quality parameters (Liu

et al., 2015; Li, 2020; Zhang et al., 2021). However, these methods

require the sample population to have specific distribution
Frontiers in Marine Science 02
characteristics, resulting in small applicability, low prediction

accuracy, and poor generalization performance (Fang et al., 2019).

With the development of machine learning, nonparametric and

nonlinear models represented by random forests (Shen et al., 2020),

support vector machines (SVM) (Sheng et al., 2021), and neural

networks (Zhu et al., 2017; Pahlevan et al., 2020) have the

characteristics of broad applicability, high accuracy, and strong

reliability and are favored by many scholars. Based on measured

hyperspectral data, Liu manually selected sensitive bands and used

SVM models to invert the surface TNC of rivers in arid areas (Liu

et al., 2020) and so on (Dong et al., 2023; Yin et al., 2023a; Yin et al.,

2023b; Wen et al., 2024). Amiri and Liu fitted the distribution of

TNC in the study area using artificial neural networks and multiple

linear regression methods (Amiri and Nakane, 2009; Liu et al.,

2015). The results showed that the former had higher accuracy. The

input factors of the above machine learning models are the original

band or artificially designed combination band, and the number is

relatively small. The model is calculated by these limited shallow

features, with slight accuracy improvement (Song et al., 2012; Sun

et al., 2023). Moreover, the spectral characteristics of nitrogen-

containing water bodies are comprehensively influenced by

chlorophyll, suspended solids, and colored soluble organic matter

in the water. Hence, the inversion model involves multiple and

complex variables (Mohammad et al., 2016).

Deep learning can automatically extract deep features and

achieve complex non-linear mapping (Lecun et al., 2015).

Simultaneously possessing the ability to process high-dimensional

data, it is widely used in fields such as computer vision (Le, 2013),

natural language processing (Li, 2018), remote sensing image

classification (Marmanis et al., 2016), and remote sensing water

quality parameter inversion (Yu, 2019; Han et al., 2023).

Convolutional neural networks (CNN) are one of the most widely

used methods in deep learning models (Zhao and Du, 2016). Pu

constructed a multilayer CNN to invert water quality parameters

(Pu et al., 2019). Yu first used CNN to build a global ocean Chla

concentration inversion model and demonstrated its superiority in

solving inversion problems (Yu et al., 2020). However, with

increased depth, CNN will experience gradient explosion or

disappearance, resulting in abnormal training. The residual

network solves the problem that the deep network is challenging

to train by adding residual learning units (He et al., 2016).

The measured hyperspectral data is adopted due to rich bands

in water quality remote sensing monitoring, which can accurately

capture the subtle differences between water quality parameters

(Pyo et al., 2018). However, such data is challenging, expensive, and

has a small coverage range. In contrast, multispectral data is widely

used because of its easy acquisition, low cost, and comprehensive

coverage (Mohammad et al., 2016). However, this type of data has a

wide and limited number of bands, which limits its application in

deep learning (Cao et al., 2020; Cao et al., 2022). So, spaceborne

hyperspectral data is a perfect choice.

The sample points of TN and synchronous MODIS image data

are used in the paper. The multiple original bands are fused into a

set of high-dimensional feature factors through operation, which

gets diverse features. The ResNet-1D is employed as the inversion
frontiersin.org
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model to mine the deep features between high-dimensional factors

automatically. The residual learning is used to reduce the training

difficulty of the network, and the remote sensing monitoring model

of TNC is established. Compared with the BP, PSO-BP, and CNN

models, the result shows that the MRE of the ResNet-1D is

decreased by at least 10% on the two data. The temporal and

spatial variation characteristic of TNC in the coastal waters of

Shandong is explored.
2 Study area and data

2.1 Study area

The coastal water of the Shandong Peninsula is the research

object, whose latitude and longitude range is 117° 50′ ~123°30′E,
34°50′~38°40′N, as shown in Figure 1. The mudflat in the region

accounts for about 15% of the country, and the coastline starts from

the Zhang Weixin River in the north and ends at the Xiuzhen River

in the south, with a total length of 3345km. Over 300 rivers

emptying into the sea, including the Yellow and Weihe Rivers,

continuously transport fresh water and terrestrial materials to the

nearshore waters. These rivers flow through different regions and

carry various types of land-sourced pollutants. Consequently, the

research area has been continuously injected with terrestrial

materials, especially inorganic nitrogen and active phosphate,

which have exacerbated the eutrophication of seawater. In

addition, there are numerous aquaculture areas in the region.

Human activities have intensified with the continuous

development and utilization of marine resources, seriously

affecting the nearshore water quality . Ecological and

environmental problems are prominent, with frequent
Frontiers in Marine Science 03
occurrences of red tide, green tide, and other disasters affecting

ship traffic and marine fishery, causing substantial economic losses.
2.2 Measured data

To explore the water quality around the Shandong Peninsula,

the Beihai Branch of the Natural Resources Ministry carried out

continuous water quality testing from 2008 to 2018. The weather

was clear during the measurement, and the water surface was calm.

Water samples are collected from 10:00 to 14:00. One water sample

is obtained at each monitor point, stored at a low temperature, and

moved to the laboratory to measure the TNC. A total of 1276 points

were received over the past 11 years. Figure 1 shows the spatial

distribution of measure points, with more points near-shore than

far shore and more in the northern part of the Peninsula than in the

eastern and southeastern parts.

The statistics result of the measured TNC in each year is shown

in Table 1, which demonstrates that the maximum TNC value is

1.47mg/L, and the minimum is 0.001mg/L, indicating a

significant dispersion.

Figure 2 is the boxplot of the measured TN data. The white dots

in the boxes symbolize the respective mean, and the horizontal lines

represent the median. The above two do not coincide in some years.

The bottom and top line of each box are the 25th percentile (Q1)

and 75th percentile (Q2), respectively, so that the difference

between Q1 and Q2 builds the interquartile range (IQR). The

bottom line of the whisker is the larger value between Q1-

1.5*IQR and the minimum value of the annual measured data,

and the top line of the whisker is the smaller value between Q2 +

1.5*IQR and the maximum value of the data. The points outside the

whisker are treated as singular points. These points may lead to an
FIGURE 1

Research area and monitor points.
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immense loss function of the model, resulting in excessive weight

adjustment and unreasonable weight value in the optimization

process, which reduces the stability and generalization ability of

the model. Therefore, the singularities should be deserted.

As shown in Figure 2, except in 2008, the median of the

measured data is less than or equal to the mean value, indicating

that the data number in the low-value area is more than that in the

high-value area. From 2008 to 2013, the height of the box was high,

and the distance between the top line and the bottom line was large.

From 2014 to 2018, the height of the box was low, and the distance

between the top line and the bottom line was small. This indicates

that the measured data value of the latter was lower than that of the

former, and the difference between the data was minor.
2.3 Satellite image data

The MODIS, SeaWiFS, MERIS, VIIRS, GOCI, COCTS, MSI,

etc., are commonly used water quality remote sensing monitoring

sensors, whose parameters are shown in Table 2. In contrast,

MODIS has significant advantages in resolution and band

number; therefore, it is used as the data source.

The spatial resolutions of MODIS are 250m, 500m, and 1000m,

and the number of corresponding bands is 2, 5, and 29, respectively.

The former has a high resolution, but the band number is small,

while the latter has a large number of bands, but the resolution is
Frontiers in Marine Science 04
too low. Considering the band number, resolution, and research

area size, bands with resolutions of 250m and 500m are selected as

the data sources shown in Table 3.

Considering tides, ocean currents, and so on, 43 cloudless or

slightly cloudy remote sense images were downloaded based on the

actual sampling date and with a time window of ± 6 hours. The

image dates are shown in Table 4.

To reduce the processing time, each image is cropped first.

Because the measured points are located in the sea within 60 km of

the coastline, a unilateral buffer is generated by extending 60km from

the shoreline to the ocean. The buffer zone crops the image to retain

the nearshore area only. Then, radiation calibration, geometric

correction, atmospheric correction, and other preprocessing work

are carried out to obtain remote sensing reflectance data. Finally,

based on the spectral differences of water in the green and near-

infrared bands, the Normalized Water Index (NDWI) is applied to

suppress non-water interference and extract water information. The

calculation formula is shown in Equation 1.

NDWI =
(rGREEN − rNIR)
(rGREEN + rNIR)

(1)

rGREEN、 rNIR is the pixel reflectance in the green and near-

infrared band.
2.4 Data preprocess

The water quality remote sensing inversion model is inseparable

from high-quality data, so the measured water TN data and the

extracted image reflectance data must be preprocessed.

Due to human operational errors and instrument factors, points

with the same acquisition time and close position are regarded as

repeated points, and the mean value is calculated. The nutrient-rich

freshwater carried by rivers flows into the sea at the estuary, and

feed is used in aquaculture. So, the river estuary and aquaculture are

rich in nutrients, and the measured TNC values in these areas are

significantly higher, which are singular points and will be excluded

(Chen et al., 2019). After preprocessing the measured points, the

corresponding pixels on the image are searched based on the

acquisition time and position.

The pixels of the sea-land junction in the image are mixtures

due to the spatial resolution limitation. The image has several mixed

pixels of clouds and water affected by weather with a composite

reflectivity value. At the same time, factors such as cloud cover,

astigmatism, and flares lead to low-quality pixels in the image. If the
FIGURE 2

Box plot of measured TN data.
TABLE 1 Statistical table of measured TNC data.

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Max 0.623 1.318 1.470 0.814 0.764 1.150 0.653 0.600 0.567 0.409 0.458

Min 0.064 0.063 0.014 0.026 0.047 0.195 0.072 0.053 0.001 0.136 0.135

Mean 0.348 0.488 0.586 0.528 0.348 0.667 0.334 0.309 0.309 0.301 0.288

Median 0.399 0.393 0.583 0.311 0.325 0.631 0.283 0.275 0.294 0.306 0.275

Number 15 81 78 45 106 51 81 274 243 93 209
fro
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monitoring point corresponds to the above pixels in the image,

there is a lack of accurate reflectance data. The above pixel points

and corresponding measured points will be deleted to improve the

data quality, ensuring that only high-quality pure water pixel

reflectance values are used in the inversion model. To further

reduce the impact of singular values, taking the pixel

corresponding to the measured point as the center, the mean

value of the 3×3 neighborhood pixel is calculated as the remote

sensing reflectivity sample data.

After the above processing, 301 measured points are ultimately

selected as the model inversion sample data. To understand the

status of the sample data, indicators such as the minimum,

maximum, average, and standard deviation of TNC are

calculated, as shown in Table 5. We can see that the dispersion is

smaller than the original data.
3 Research methods

3.1 Correlation analysis and
evaluation indicator

The band sensitivity analysis of spectral reflectance data and

water quality parameter concentration data is carried out to screen

out the bands or band combinations that significantly correlate with
Frontiers in Marine Science 05
TNC. Taking them as the input factors is the premise of establishing

the inversion model and improving the inversion accuracy.

The correlation coefficient (r) is a quantitative indicator that

measures the linear relationship between two variables, which can

be calculated through Pearson analysis, as shown in Equation 2. The

value is between -1 and +1, and the larger the deal, the stronger the

linear relationship. A positive value indicates a positive correlation,

a negative value indicates a negative correlation, and a value of 0

indicates a non-correlation.

The coefficient of determination (R2) is an evaluation index of

the agreement degree between the regression value and the actual

observed value. It is used to determine the fit degree of the

regression model, as shown in Equation 3. The greater the R2,

the higher the interpretation of the independent variable to the

dependent variable. In addition, the MRE is used to evaluate

the accuracy of the inversion model, as shown in Equation 4.

rj =
on

i=1(xij − �x)(yi − y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(xij − �x)2 o(yi − �y)2
q (2)

R2 = o
n
i=1(yipre − y)

2

on
i=1(yi − y)

2 (3)

MRE =
1
no

n
i=1

yipre−yi
yi

����
����� 100% (4)

rj is the correlation coefficient; j is the band number; n is the

number of samples; xij is the spectral reflectance of the i sample in

the j band; �x, �y is the mean of reflectance and TNC respectively; yi,

yipre is the measured and predicted value of TNC of i

sample respectively.

According to Equations 2 and 3, we can see that correlation

coefficient and determination coefficient are different indicators.

When two variables have a linear relationship, then R2 = r2.
3.2 One-dimensional
convolutional network

CNN automatically extracts features through multilayer

convolution and pooling operations. Compared with explicit
TABLE 3 MODIS data band information.

Band Spectral
range
(nm)

SNR Characteristic Resolution
(m)

B1 620~670 128 red 250

B2 841~876 201 SW-NIR 250

B3 459~479 243 Blue 500

B4 545~565 228 Green 500

B5 1230~1250 74 LW- NIR 500

B6 1628~1652 275 LW- NIR 500

B7 2105~2135 110 LW- NIR 500
TABLE 2 Common sensor parameters for water quality remote sensing.

Sensor Institution Band number
Cloth width (km) Resolution

(m)
Spectral range

(nm)

MODIS America 36 2330 250/500/1000 405~14385

SeaWiFS America 8 2806 1100 402~885

MERIS Eurospace 15 1150 300/1200 412~1050

VIIRS America 22 3000 375/750 402~11800

GOCI South Korea 8 2500 500 400~865

COCTS China 10 3000 1100 402~12500

MSI Eurospace 13 290 10/20/60 442~2202
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feature extraction methods, the obtained deep features are more

abstract and compelling, making essential breakthroughs in

machine learning (Sun et al., 2023). The convolution operation

can be represented by Equation 5.

vxi,j = f o
m
o
pi−1

p=0
wp
i,j,mv

x+p
(i−1),m + bi,j

 !
(5)

vxi,j is the value at position x in the j feature map of the i layer; f is

the activation function; m is the index of layer i and i-1; pi
represents the length of a one-dimensional convolutional kernel;

wp
i,j,m is the weight of position p connected to the m feature map;

vx+p(i−1),m is the value at position x+p in the m feature map of the i-1

layer; bi,j is the offset on the j feature map of the i layer.

According to the dimensions of the convolutional kernel, the

CNN is divided into three types: one-dimensional, two-

dimensional, and three-dimensional. The reflectance data of the

remote sensing image is one-dimensional spectral data, and the

one-dimensional convolutional network (1D CNN) has shown

promising results in analyzing spectral data, which is used in the

environmental classification task (Riese and Keller, 2019) and Chl-a

simulation training (Maier et al., 2021). So, it was adopted in the

study. 1D CNN with a feature graph and a convolution kernel

length of 3 can be represented in Figure 3.
3.3 Residual network

Generally speaking, the deeper the neural network is, the more

abstract features are extracted, and the better the network

performance will get. However, if there are too many layers in

applications, the gradient explosion or disappearance may occur,

making it difficult to train and optimize the network. The Residual

Net (ResNet) makes it possible to train the deep network,

profoundly impacting deep learning (He et al., 2016).

ResNet set up a residual module based on convolutional neural

networks, composed of residual mapping and identity mapping, as

shown in Figure 4. The dashed box in the figure is the residual
Frontiers in Marine Science 06
mapping, consisting of convolutional layers, activation functions,

and convolutional layers, which is the main path of the module. The

curve part is the identity mapping, a shortcut that directly skips the

middle part of the convolution layer and fuses with the main path.

Thus, identity mapping imports the module’s input directly into

the output.

Assuming that the input of the module is x and the function to

be fitted is h(x), the identity mapping directly outputs x, while the

residual mapping outputs f (x), the total output h(x) is the sum of

the shortcut x and the main path f (x). Before adding the identity

mapping, the module needs to learn the function h(x), while after

adding the identity map, the function f (x) that the residual

mapping needs to learn is equivalent to h(x) − x, whose

complexity has been reduced, so the learning difficulty of the

main path is cut down.

The setting of the shortcut does not introduce additional

parameters, which cannot affect the complexity of the original

network. The network can still be trained and solved by the

existing deep-learning methods. In the training process, the error

of the bottom layer can be propagated to the up layer fast through

the shortcut, which weakens the influence of gradient disappearance

caused by too many layers and improves the training accuracy.
4 Experiments and results

There are differences in the response to electromagnetic waves

due to different types and components of ground objects. The TNC

of measured points and reflectance of images are acquired in the

paper. According to the spatial distribution of sample points, some

are selected for model training, while the remaining are used for

model validation. A quantitative inversion model is constructed,

and long-term inversion is carried out in the coastal waters of

Shandong. The specific technical route is shown in Figure 5.
4.1 Manual extraction and analysis of
band features

There are only seven bands in MODIS data with spatial

resolutions of 250 m and 500 m, which are too few to meet the

inversion requirements. Therefore, it is necessary to integrate the

original bands and construct new factors to make the features more

diverse. The research shows that the band ratio can partially

compensate for the influence of the atmosphere and effectively

eliminate the interference of water surface roughness and

environmental noise (Mohammad et al., 2016). Therefore, 21

factors are constructed through band ratio, combined with 7

original bands, and 28 characteristics are obtained. So, the

correlations between 28 factors and TNC are analyzed, and the

correlation coefficients are calculated, as shown in Figure 6.

Figure 6 shows that the correlation coefficients of all factors are

between ± 0.4, indicating a weak linear correlation. The absolute

values of the correlation coefficients of 5 elements are more

significant than 0.3, ranging from high to low as B4, B3, B2, B5,

and B1/B6. At the same time, the values of 13 factors are between
TABLE 4 Image date information.

Data
type

Acquisition date

MODIS

2008/05/06、2008/08/23、2008/10/14、2009/05/17、2009/08/13、
2009/10/15、2009/10/23、2010/05/19、2010/08/18、2010/10/16、
2010/10/21、2011/05/28、2011/08/23、2011/10/11、2012/02/19、
2012/05/09、2012/08/16、2012/10/12、2013/03/14、2013/05/16、
2013/10/11、2014/05/15、2014/08/12、2014/10/27、2015/03/24、
2015/05/20、2015/08/22、2015/10/12、2016/03/24、2016/05/16、
2016/08/29、2016/10/14、2017/03/24、2017/05/07、2017/08/07、
2017/10/24、2018/02/08、2018/03/23、2018/05/09、2018/07/14、
2018/08/24、2018/09/04、2018/10/17
TABLE 5 Statistical table of sample TNC data.

Number Min Max Mean Standard
Deviation

301 0.078 1.410 0.538 0.331
frontiersin.org

https://doi.org/10.3389/fmars.2024.1336259
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zheng et al. 10.3389/fmars.2024.1336259
0.25 and 0.3, including B1/B2, B1/B5, B1/B7, B2/B3, B2/B4, B3/B5,

B2/B6, B3/B5, B3/B6, B3/B7, B4/B5, B4/B6, and B4/B7, which are

better than that of B6 and B7 band. In summary, with the help of

band operation methods, the proportion bands with high

correlation have been detected, enriching the feature information

and providing a basis for selecting feature factors.
4.2 Construction of the ResNet-1D

With the gradual enhancement of layers in the deep learning

network, the model parameters increase, so the required

computational performance and the training difficulty of the

model also augment accordingly. Considering that only a few of
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the 301 sample data exist, the network structure should not be too

complex to avoid overfitting and challenging training. So, selecting

a ResNet with fewer layers and appropriate feature factors is

necessary. Therefore, the ResNet-18 is chosen in the paper, and

18 elements with a correlation greater than 0.25 are screened out as

input factors of the one-dimensional residual network to inverse the

TNC, which is recorded as the ResNet-1D model. The network

structure and parameters are shown in Figure 7 and Table 6.

The ResNet-1D model consists of an input layer, five

convolutional layers, a fully connected layer, and an output layer.

Among them, the input layer is composed of 18 nodes, the output

layer is one node of the regression value., Conv1 involves only one

convolution operation, Conv2.x~ Conv5.x contains two residual

modules respectively; eight residual modules constitute four

convolution layers. Because one residual module contains two

convolution operations with the same depth, the ResNet-1D

model contains 17 convolution operations, with convolution

kernel sizes of 7, 3, 1, and step size of 1. The number of

convolution kernels in each layer is 8, 8, 16, 32, and 64, respectively.

The input layer is one-dimensional data with 18 nodes, which is

relatively small, so the pooling layers in the ResNet-18 have been

removed. Meanwhile, after nine convolution operations in the

former three convolutional layers, the number of nodes has been

reduced to one, and the view field has expanded globally. Therefore,

the eight convolution operations in convolutional layers 4 and 5

perform fully connected point convolutions.

After the convolution operations, all features are flattened into

column vectors and inputted into the fully connected layer. The

batch normalization operations are added before the activation

function, which can weaken the gradient disappearance and

improve the network’s generalization ability. Due to simplicity,

the ReLU function is selected as the network’s activation function.

MRE is selected as the cost function. Considering the first and

second moment estimation, the Adam algorithm is adopted to

calculate the update step size. The initial learning rate is 9×10-4, the

learning rate attenuation factor is 0.6, the maximum train number is
FIGURE 3

Structure diagram of the 1D convolution process.
FIGURE 4

Structure diagram of the residual module.
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200, and the batch size is 1. The early stop method is used to weaken

the impact of overfitting.

The sample dataset is divided into train, validation, and test sets

in a 6:2:2 ratio. When the train loss drops to 0.080, the mean

absolute error of the train and validation set is about 0.215mg/L and

0.265mg/L, respectively, and the MRE of the test set is 39.64%. The

R2 of the train and test data is 0.84 and 0.72, respectively. The

measured and inverted values of some points are shown in Figure 8.

Figure 8 shows that the measured values have a significant

dispersion, with an average of 0.52 mg/L. By comparison, the

inversion values have a small degree of distribution, with a mean

of 0.50 mg/L. The absolute error increases gradually from the center

of point 19 to both sides. Generally speaking, for measuring points

with values greater than 0.5, the inversion value is smaller than the

measured value. In contrast, the inversion value is more significant

for measuring points with values less than 0.5.
Frontiers in Marine Science 08
The points of 8, 1, 2 in the high-value area and 21, 24, and 30 in

the low-value area have relatively higher absolute error with values

of 0.24, 0.22, 0.17, 0.16, 0.16, and 0.15, respectively. The

corresponding MREs are 37.6%, 27.1%, 25.2%, 58.5%, 44.4%, and

52.6%. The points in the low-value area have significant relative

errors due to the low-measured TNC values. It shows that the

inversion ability of the ResNet-1D is weaker in the low value.
4.3 Preponderance analysis of the
ResNet-1D

To compare with the ResNet-1D, the traditional BP neural

network model (BP model), the particle swarm optimization BP

neural network model (PSO-BP model), and the shallow

convolutional network model (CNN model) are constructed. The
FIGURE 5

Technical roadmap.
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FIGURE 6

Correlation coefficient plot of band and band ratio.
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datasets are divided into train and test sets in a 4:1 ratio in the first

two models. The dataset partition of the CNN is the same as

ResNet-1D.

The BP model is a fully connected neural network consisting of

input, hidden, and output layers. To reduce parameters, the node

number in the input and output layers is set to 5 and 1, respectively.

The five factors with absolute correlation coefficients greater than

0.3 are input data, and the TNC values are output data. After

repeated experiments, the number of hidden layer nodes is 8, the

learning rate is 0.001, the expected error is 0.005, and the maximum

number of training sessions is 3000. The Tansig and Purelin

functions are used in the implicit and output layers, and the

training function is Trainlm. The results show that the R2 of the

train and test data is 0.71 and 0.50, respectively. The latter is

significantly lower than the former. The MREs are 45.64% and

62.86%. In conclusion, the BP model has low accuracy and poor

generalization ability. Given this, the particle swarm algorithm is

used to optimize the BP model, denoted as the PSO-BP model.

The PSO-BP model’s model structure remains unchanged,

while the population size and evolution numbers are 10,100, and

C1 and C2 are 2. The results show that the R2 of the train and test

data is 0.72 and 0.58, and the MRE is 46.99% and 49.25%. The PSO-

BP model has the same effect as the BP model on the train set and

performs better on the test.

The CNN model consists of four layers: one input layer, two

convolution layers, and one output layer. The shape of the input
Frontiers in Marine Science 09
layer is the same as the BP model. The parameters are optimized

through a large number of experiments. The size and number of

convolution kernels are 3 and 8; the sliding step size is 1, and the

same convolution method is adopted. The results showed that the

mean absolute error of the train set was about 0.270 mg/L when the

train loss decreased to 0.135. The verification loss is about 0.195,

and the MRE of the verification set and test set are about 0.350 mg/L

and 51.66%, respectively, much lower than the BP model but

slightly higher than the PSO-BP model. The R2 is 0.76 and 0.65

for the two datasets.

From the BP to the CNN model, the number of network layers

deepens from 3 to 4, and one full-connection operation in feature

extraction is replaced by two convolution operations. As a result,

the latter’s accuracy on the test and verification set is better than

that of the former.

The precisions of the four models are listed in Table 7. In the train

set, theMRE of the ResNet-1Dmodel is the lowest, only 35.75%, while

theMREof theother threemodels is almost identical, about46%. In the

test set, theMREsof the fourmodels arequitedifferent.TheResNet-1D

has the lowestMRE of 39.64%, and the BPmodel has the highestMRE

of 62.86%. The PSO-BP and CNNmodels rank third and fourth, with

49.25% and 51.66%, respectively.

Whether in the train or test set, ResNet-1D has the lowest MRE

and the highest R2 of the four models, which is the optimal model

with the highest accuracy and strongest generalization ability. The

PSO-BP and CNNmodels are suboptimal, while the BP model is the

worst. From the BP, CNN to ResNet-1D model, the number of

feature factor nodes has increased, the network depth has deepened,

and the model performance has improved.
5 Analysis

5.1 Analysis of spatiotemporal
characteristics of TNC based on ResNet-1D

TheResNet-1D is used to invert the spatiotemporal characteristics

of TNC in Shandong offshore. Since the model can only process one-

dimensional data, pixel-by-pixel prediction is required for a two-

dimensional image. After converting the image into one-

dimensional data, the image pixels are inputted into the model in

batches to achieve rapid processing. The corrosion and expansion

operations are used to avoid fragmentation. Affected by the sampling

time and the quality of satellite images, 34 spatiotemporal distribution

maps of TNCwere obtained in the Shandong coastal waters from2008
FIGURE 7

ResNet-1D structure diagram.
TABLE 6 Primary structure and parameters of the ResNet-1D.

Layer
Input Convolutional

parameters
Output

Conv1 18×1 [7×1, 8] 16×1×8

Conv2.x 16×1×8
3� 1, 8

3� 1, 8

2
4

3
5� 2 8×1×8

Conv3.x 8×1×8
3� 1, 16

3� 1, 16

2
4

3
5� 2 1×1×16

Conv4.x 1×1×16
3� 1, 32

3� 1, 32

2
4

3
5� 2 1×1×32

Conv5.x 1×1×32
3� 1, 64

3� 1, 64

2
4

3
5� 2 1×1×64

Fully
connected layer

64×1
\

1
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to 2018, as shown in Figure 9. There are 6, 10, 10, and 8 periods in

March, May, August, and October, respectively.

Regarding spatial distribution, the TNC in the coastal waters shows

an overall trend of high inshore and low offshore, between 0.08 mg/L

and 1.69 mg/L. The southern part of Bohai Bay and the northwestern

part of Laizhou Bay are areas with high TNC, which occur more

frequently. The frequency of the high-value area in the southeast of

Weihai and the coastal waters of Qingdao is relatively low.

Based on Figure 9 and the measured data in Table 1, the

seasonal variation chart of TNC in Shandong offshore was made,

as shown in Figure 10. The picture shows that the overall

concentration was lowest in March, medium in May and August,

and highest in October, when the distribution of high-value areas

expanded from land to sea compared with other months.

Regarding spatiotemporal distribution, the significant values of

TNC in all seasons emerged in the southern area of Bohai Bay and

the northwestern area of Laizhou Bay, which had the widest

distribution and highest value in May, followed by October. The

TNC was generally low in the coastal waters of the Peninsula in

March. A banded high-value area appeared in the southern waters

of the peninsula in May, which extended to the northern waters in

August. In October, the high-value area further expanded from the

above coastal waters to the far waters, among which the eastern

waters of Weihai had the most apparent phenomenon.

The Shandong Peninsula is in the Jiaodong Economic Circle,

whichhasmuscular economic strength. Ithasmanycounties andmore

than 300 rivers flowing into the sea. The total area exceeds 50,000 km2,

accounting for about 30% of Shandong Province, and the entire

population surpasses 30 million. Therefore, many high-intensity

human and industrial activities, as well as the eutrophic water bodies

injected into the coastal waters, will strongly affect the quality of the
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coastal waters. The tides cause water exchange, resulting in solid

turbulence of the shallow coastal waters, impacting coastal water

quality. Compared with coastal water, offshore water is less affected

by human activities and surface runoff, has a relatively stable marine

environment, and has a lower TNC.

Many rivers that carry eutrophic fresh water, such as the Yellow

River and the Weihe River, flow into the sea at Laizhou Bay and Bohai

Bay.As a result, theTNC in the above two regions is higher than in other

areas, especially in May and August, when precipitation is abundant.

The Shandong Peninsula has a warm, temperate, humid

monsoon climate. The annual precipitation is 650 to 850 mm.

The summer precipitation is abundant, accounting for about 60% of

the annual precipitation, while the spring and autumn precipitation

is less. The annual humidity changes are severe, with dry and windy

spring, high humidity in summer, and monsoons prevalent in

winter. In addition, due to the influence of the physical properties

of land and sea, the environment in some areas is complex and

variable. The above factors jointly affect the change in the water

environment in Shandong’s coastal waters.

In summary, the overall change in TNC is closely related to

human activities, industrial and agricultural production, climate,

precipitation, surface runoff into the sea, and tides.
5.2 Analysis of interannual variation
characteristics of TNC based on
measured data

The image amounts of each year are inconsistent, and the

distribution of TNC in each month is quite different, so the

interannual change trend of TNC based on Figure 9 is not apparent.
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Results of inverted and measured values at test points.
TABLE 7 Model comparison.

Data Set Indicator BP PSO-BP CNN ResNet-1D

Train
R2

0.71 0.72 0.76 0.80

Test 0.50 0.58 0.65 0.72

Train
MRE

46.54% 46.99% 47.55% 35.75%

Test 62.86% 49.25% 51.66% 39.64%
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In this paper, measured data were used to carry out this study, and the

average chart of TNC for each year is shown in Figure 11, which

visually shows the interannual variation of TNC in the study area from

2008 to 2018.

Figure 11 shows that the interannual variation of TNC can be

clearly divided into two periods: the variation period of the broken

line from 2008 to 2014 and the constant period of the approximate

straight line from 2015 to 2018. In the previous period, the TNC had

a distribution trend of two liters and two drops. In the later period, it

had a stable and slightly reduced distribution characteristic.
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Shandong province has implemented a drainage basin pollution

control system. Taking small drainage basins as control units,

pollution prevention, cyclic utilization, and ecological protection

were implemented, and the aquatic environment quality has been

significantly improved. By the end of 2010, fish growth had

recovered in 58 heavily polluted rivers, and the water quality

indexes of major rivers basically met the requirements of Case V

Waters (Zhou and Ji, 2016). The regulation and improvement of

rivers entering the sea were completed. In 2016, China put forward

the Blue Bay Action. The goal is to improve the marine
FIGURE 9

Distribution Map of TNC in Shandong Offshore from 2008 to 2018.
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environment quality and enhance the ecological functions of the

coast, marine, and island.

Therefore, the TNC in the coastal waters of Shandong has been

less than 0.35 since 2011 and slightly decreased because of measures

such as controlling the discharge of land pollutants into the sea,

reducing ecological damage, implementing ecological protection

and restoration, and comprehensive prevention and ecological

environment control of land, shore, and marine. The

environmental treatment of coastal waters in Shandong Province

has been successful. Nevertheless, the high value in 2013 may be a

singular value.
6 Discussion
Fron
(1) The spectral data is commonly used in water quality

parameter inversion models. However, the number of

bands is limited sometimes, and some correlate poorly

with water quality parameters. Therefore, band features

can be manually extracted by band ratio to extend the
tiers in Marine Science 12
sensitive factors, which can eliminate the influence of the

atmosphere and environment. Pearson analysis calculates

the correlation between each factor and TNC. Although this

method cannot describe nonlinear relationships, the

research has shown that the Pearson correlation

coefficients of some ratio factors are more significant than

those of single bands. The factors with large correlation

coefficients can be used as input factors of the inversion

model, thereby improving the model’s accuracy.

(2) There is a type II water body in the coastal area whose

optical properties are much more complex than those of

ocean water. The absorption and scattering regions of

chlorophyll, suspended sediment, and dissolved organic

matter overlap in the spectrum. The relationship between

TNC and remote sensing reflectance is non-linear and

complex. In this study, the correlations between index

factors and TNC are less than 0.4, which may indicate a

significant nonlinear mapping relationship between various

factors and TNC from the other side. Therefore, the

selection of a nonlinear inversion model is crucial.

(3) Because the nonlinear model has the double ability of both

linear and nonlinear fitting, five factors with high

correlation coefficients can be selected as the input of BP,

PSO-BP, and CNN models, and 18 factors can be chosen as

the input of the ResNet-1D model. The calculation result

shows that the accuracy of the first three models on the

train set is almost identical. On the test set, the precision of

the PSO-BP and CNN models is roughly the same, but it is

significantly higher than that of the BP model. That is, the

CNN and BP models have the same input, and the network

structure of the former is more than that of the latter; the

accuracy is higher. The ResNet-1D model has the most

input factors and the deepest layers. With the increase of

indicator factors and the depth of the model, the automatic

feature extraction ability is further enhanced, and the

performance is the best on both the test and train set,

making it the optimal model in this article.

(4) Many composite variables are used in the ResNet-1D

model, derived from specific operations between different

bands, demonstrating that the estimation of TNC is affected
A B

FIGURE 10

Seasonal variation of TNC in Shandong offshore. (A) Spatial distribution diagram of TNC inversion data. (B) Histogram of TNC measured data.
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FIGURE 11

Annual mean value histogram of TNC measured data.
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by many complex factors. Therefore, machine learning

models such as BP, PSO-BP, and CNN are challenging to

match the accuracy of the ResNet-1D due to the small

number and the single type of variables. Therefore, the

remote sensing inversion of TNC requires the participation

of multiple and polytype variables.

(5) The ResNet-1D model has added 13 indicator factors and is

deepened to 18 layers compared with the BP, PSO-BP, and

CNN models. Although the Pearson coefficients of the

factors are low, the model improves the inversion

accuracy and generalization performance by increasing

network depth to automatically extract deep features,

back-propagation to update weights, and setting identity

mapping to make the model easy to optimize. Therefore,

the MRE on both datasets is decreased by at least 10%, and

the nonlinear relationship between the two data types is

fully fitted in the ResNet-1D model.

(6) The quantitative research of water quality parameters

mainly focuses on estimating light-sensitive variables,

such as total suspended solids, chlorophyll-a, and

turbidity. In contrast, some non-photosensitive indicators,

such as TN, pH, dissolved phosphorus, etc., have no

significant spectral response in the visible and near-

infrared regions, and the inversion accuracy is

significantly lower than the above light-sensitive

parameters (Mohammad et al., 2016; Liu et al., 2020).

Although the ResNet-1D is the optimal inversion model

constructed in this paper, its R2 on the two data sets is 0.8

and 0.72, which are reasonable. However, the MRE is only

35.7% and 39.6%, which are large, and there is still a

significant gap in the practical application. However,

theoretical approaches such as increasing the number of

input factors, deepening network layers, extracting deep

features, and using nonlinear inversion models are

discussed in this article in the case of a few satellite band

data and low correlation coefficients of constructed

indicators. The result shows that the MRE of the ResNet-

1D is reduced by 23% compared to the traditional BP model

and nearly 10% compared to the suboptimal PSO-BP

model. This has a specific guiding significance for the

inversion of non-photosensitive substances in the water

body. Although the inversion accuracy of the ResNet-1D

model is only 60%, the TN concentration map inverted by

the model can reflect the spatiotemporal trend and has a

certain reference value.

(7) Through a series of convolution operations, the deep

residual network transforms the features of samples in the

original space into the new feature space and automatically

obtains the hierarchical feature representation. The

training difficulty of the network is reduced by adding

residual learning units to the convolutional layer, and the

network automatically updates the weights through

backpropagation in the residual network (He et al., 2016).

Because of these merits, it is widely used in data analysis.

Among them, in one-dimensional spectral data analysis, Lu
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employed the measured hyperspectral data as the data

source and the one-dimensional residual network as the

inversion model to obtain the haze monitoring results in

Suzhou City (Lu et al., 2017). In 2D image data processing,

Li proposed a multi-scale edge detection algorithm for

medical ultrasonic images based on a two-dimensional

deep ResNet (Li et al., 2021); Wang and Duan had

combined a two-dimensional deep ResNet with wavelet

transform for image super-resolution (Duan et al., 2019;

Wang et al., 2022). In this study, ResNet-1D was applied to

the inversion of TNC in the coastal waters of Shandong.

Compared with the traditional model, it showed higher

inversion accuracy due to the automatic extraction of deep

features, automatic updating of weights, and automated

determination of optimal thresholds. This study has

provided a scientific method that extends a limited set of

field observation data to areas or times where field data are

not available. However, the applicability of this method in

other sea areas needs to be further verified.
7 Conclusion

The TN inversion in Shandong coastal waters is set as the

research object. The measured TNC and MODIS remote sensing

image’s reflectance are data sources. The two-step feature extraction

is adopted as a means, and the ResNet-1D is constructed as an

inversion model. The spatial and temporal distribution

characteristics of TNC from 2008 to 2018 are explored. The main

conclusions are as follows:
(1) The ResNet-1D can automatically extract the deep features

based on manually extracted features and improve the

inversion model’s accuracy. Based on the operation between

bands, the shallow features are extended. The correlation

analysis between all the shallow factors and TNC is carried

out. Five factors with significant correlation coefficients are

screened out as the input of the BP, PSO-BP, and CNN

models, and 18 factors are used as the input of the ResNet-

1D to extract the deep features. The results show that the

ResNet-1D has the highest accuracy, indicating that the deep

model automatically extracts deep features and realizes

complex nonlinear mapping with increased input factors

and model layers.

(2) The ResNet-1D can inverse the spatiotemporal distribution

characteristics in the coastal waters of Shandong Province

from 2008 to 2018. The research indicates that the TNC in

the region is between 0.08 mg/L and 1.69 mg/L. Regarding

spatial distribution, the near-shore concentration is higher

than the far-shore. The frequency of high-value areas on the

peninsula’s north coast is higher than on the southeast.

Regarding time distribution, the overall concentration is

low in spring, middle in summer, and high in autumn. The

distribution range of high-value areas is expanded in autumn
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compared with other seasons. In terms of interannual

variation, TNC had a trend of two increases and two

decreases in the first seven years and characteristic of stable

and slightly reduced distribution in the last four years.

Although the inversion accuracy of the ResNet-1D model is

only 60%, the TNCmap inverted by the model can reflect the

spatiotemporal trend and has a certain reference value.
The inversion of TNC is still in the exploratory stage, limited by

the number of sampling points, satellite image resolution, regional

conditions, and inversion models. In the future, expanding the

sampling point, increasing the spectral index factor, fusing images

of different resolutions, extending the spatiotemporal monitoring

range, and improving inversion models will be necessary.
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