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Machine learning–based feature
prediction of convergence zones
in ocean front environments
Weishuai Xu1, Lei Zhang2* and Hua Wang2

1No.5 Student Team, Dalian Naval Academy, Dalian, Liaoning, China, 2Department of Military
Oceanography and Hydrography and Cartography, Dalian Naval Academy, Dalian, Liaoning, China
The convergence zone holds significant importance in deep-sea underwater

acoustic propagation, playing a pivotal role in remote underwater acoustic

detection and communication. Despite the adaptability and predictive power

of machine learning, its practical application in predicting the convergence zone

remains largely unexplored. This study aimed to address this gap by developing a

high-resolution ocean front-based model for convergence zone prediction. Out

of 24 machine learning algorithms tested through K-fold cross-validation, the

multilayer perceptron–random forest hybrid demonstrated the highest accuracy,

showing its superiority in predicting the convergence zone within a complex

ocean front environment. The research findings emphasized the substantial

impact of ocean fronts on the convergence zone’s location concerning the

sound source. Specifically, they highlighted that in relatively cold (or warm) water,

the intensity of the ocean front significantly influences the proximity (or distance)

of the convergence zone to the sound source. Furthermore, among the input

features, the turning depth emerged as a crucial determinant, contributing more

than 25% to the model’s effectiveness in predicting the convergence zone’s

distance. The model achieved an accuracy of 82.43% in predicting the

convergence zone’s distance with an error of less than 1 km. Additionally, it

attained a 77.1% accuracy in predicting the convergence zone’s width within a

similar error range. Notably, this prediction model exhibits strong performance

and generalizability, capable of discerning evolving trends in new datasets when

cross-validated using in situ observation data and information from diverse

sea areas.
KEYWORDS

convergence zone, machine learning, Kuroshio extension front, environmental feature
extraction, multiple regression prediction
1 Introduction

In typical deep-sea environments, when the source and receiver are at shallower depths

than the channel axis, the sound line experiences inversion or reflection, oscillating away

from and toward the channel axis. This phenomenon creates the convergence zone (CZ),

marked by periodic high acoustic intensity dispersion, crucial for underwater target
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detection and long-range acoustic communication (Hanrahan,

1987). The characteristics of the CZ, such as its location, gain,

and energy distribution, are closely tied to the deep-sea acoustic

velocity profile (Wu et al., 2023)., as mesoscale oceanographic

phenomena, ocean fronts significantly affect sound propagation,

thereby affecting CZ properties and underwater acoustic

transmission (Chen et al., 2017; Ozanich et al., 2022; Shafiee

Sarvestani, 2022). Accurate identification and prediction of CZ

within ocean fronts hold paramount importance for

communication, detection, and localization indeep-sea environments.

Extensive research has delved into the observation vicinity,

influencing factors, and analytical modeling of deep-sea CZ. Yang

et al. (2018) examined experimental data from the South China Sea,

studying the influence of seafloor slope on the CZ. They noted that

the seafloor slope brings the CZ closer to the sound source.

Additionally, there’s a trend for the CZ to broaden with increased

depth of the sound source. Zhang et al. (2021), leveraging the

Modular Ocean Data Assimilation System (MODAS), made CZ

predictions and evaluated prediction accuracy using Monte Carlo

sampling. Their prediction model performs well in mesoscale eddy

environments. Wu et al. (2022), by gathering experimental data

from different seasons in the East Indian Ocean and the South

China Sea, highlighted the significant impact of varied marine

environments’ sound velocity profiles on the CZ. In the East

Indian Ocean, the CZ width is roughly 2 km narrower in summer

compared to spring. Employing fuzzy clustering to group sea

surface sound velocity in the Kuroshio Extension (KE), Liu et al.

(2022) developed a sound velocity field model of the KE front

(KEF). They predicted the CZ depth with a root mean square error

of 43.3 m. Building on the Riemannian geometric modeling

foundation for underwater acoustic ray propagation, Ma et al.

(2023) formulated a physical model of deep-sea CZ on a curved

fluid. They validated the model’s accuracy using the Munk sound

velocity profile as an example.

As the exploration of CZ dynamics progresses, researchers are

delving into the influence of deep-sea mesoscale phenomena, such

as mesoscale eddies, internal waves, and ocean fronts, on CZ

propagation. Utilizing ARGO and reanalysis data, Chen et al.

(2017) identified anisotropy in underwater acoustic propagation

within the KEF environment. They noted a discrepancy in the initial

CZ distances in different directions, reaching up to 10 km when the

source lies south of the KEF and exceeding 20 km when located

north of it. Zhang et al. (2020) computed the propagation loss of a

linear internal wave using a ray model and simulated the

uncertainty of the resultant CZ acoustic field via the Monte Carlo

method. The propagation loss experienced notable variation as the

internal wave traversed the CZ, and the uncertainty in the acoustic

field grew with the CZ range. In a study based on simulations using

in-situ observation data from the Eighth Scientific Expedition of

China, Xue et al. (2021) observed that Arctic fronts modify CZ

characteristics, influencing their distance and width within a

specific range. Additionally, Xiao et al. (2021) developed a

theoretical model of the acoustic field under the influence of

ocean mesoscale eddies using finite element analysis. They

observed a reduction in the CZ’s distance and width when the

source was within a cold eddy, while the CZ’s distance and width
Frontiers in Marine Science 02
increased when the source was situated in a warm eddy. Liu et al.

(2021), utilizing ray modeling, arrived at the same conclusion,

which was subsequently validated by Chen et al. (2019) through

simulations using in-situ oceanographic data with both the ray

model and the UMPE (University of Miami Parabolic

Equation) model.

Upon deeper exploration of the underwater acoustic environment

and advancements in computer science, machine learning has seen

extensiveutilization indetecting, classifying, and localizingunderwater

sound sources and targets in underwater acoustics due to its

adaptability and predictive capabilities (Yang et al., 2020), Niu et al.

(2019), and Lin et al. (2020) leveraged ResNet for depth and distance

estimationof target sound sources using a singlehydrophone.Niu et al.

(2019) proposed a two-step prediction strategy, showing superior

performance across various environments, slowly varying source

levels, and conditions with a high signal-to-noise ratio. Doan et al.

(2020) introduced an underwater target identification method based

on a dense convolutional neural network (CNN) model, achieving an

impressive overall accuracy of 98.85% under 0 dB signal-to-noise ratio

conditions. Lagrois et al. (2022) delved into machine learning’s

application in enhancing the efficiency of underwater acoustic

computation, employing XGBoost models to predict agent-based

models. They achieved a 90% accuracy in predicting periodic output

values with a sound pressure level error averaging 3.23 ± 3.76 dB.

Mccarthy et al. (2023) computed propagation loss in various water

depth environments off the coast of Southern California based on

Bellhop and devised a prediction model for propagation loss using a

decision tree, demonstrating the effectiveness of this method.

CZ waveguides, serving as the primary mode of acoustic

propagation in deep ocean waters, constitute a significant research

area in underwater acoustics. Presently, predicting CZ waveguides

relies on physical modeling with complete ocean data, necessitating

high-quality data and significant time investment. Yet, accurately

predicting CZ waveguides in specific marine environments with

limited ocean data remains a challenge. Machine learning shows

promise in addressing this issue, but its full potential in this realm

remains untapped. This study aimed to explore machine learning’s

capacity in modeling the nonlinear relationship between ocean

frontal environmental features and CZ properties. High-resolution

reanalysis datawere utilized to extract ocean andCZ features (Section

2). Multiple machine learning algorithms were employed to

determine the optimal model for learning and predicting 2D and

3D CZ features (Sections 3 and 4), using in situ observational data

and data beyond the training set. Cross-validation (Section 5) was

performed to validate the models’ superiority and generalizability in

this study.
2 Data and methods

The study concentrates on analyzing the CZ waveguide amidst

sound velocity fronts spanning the period from 1993 to 2022. To

establish a predictive model, 24 regression algorithms were

evaluated, encompassing a range of techniques: traditional

methods such as linear and ridge regression, integrated

approaches such as SVR and random forest (RF), deep learning
frontiersin.org
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techniques including CNN and long-short-term memory, and

hybrid models such as multilayer perceptron–RF (MLP-RF) and

CNN-GRU. Each algorithm was chosen based on its unique

strengths and potential to provide high predictive accuracy. The

research aimed for robustness and reliability by thoroughly

exploring these diverse methodological approaches. After rigorous

testing and comparison, the algorithm with the highest accuracy

was selected to build the final predictive model, illustrated in

Figure 1 and described as follows:
Fron
(1) Firstly, horizontal sound velocity gradients of ocean fronts

were computed using a 0.01 m/s/km criterion. Following

this, deep-sea regions that frequently featured ocean fronts

were selected for detailed investigation. To optimize the

model’s practicality and reduce environmental monitoring

costs, oceanic acoustic fronts and underwater acoustic

environmental characteristics were extracted from the

acoustic profiles of two stations. These stations, situated

in the study area’s highest intensity ocean fronts (within the

frontal zone) and positioned 1° apart (outside the frontal

zone), served as inputs for the model;.

(2) Ray model simulations, CZ distances, and widths were

determined, serving as outputs for the model;.

(3) Various algorithms were employed to construct multivariate

regressionmodels aimed at extracting environmental features

relevant to oceanic fronts. The model’s output depended on

these extracted oceanic front characteristics;.

(4) The final step involved constructing multiple regression

prediction networks based on the extracted features using

several algorithms. The optimal prediction model was
tiers in Marine Science 03
identified through K-fold cross-validation. Its relevance was

assessed using correlation analysis and feature importance

measurement, contributing to the development of a predictive

model forCZcharacteristics in theoceanic frontal environment.
Due to spatial limitations, the predictive model primarily

focuses on the CZ waveguide propagating outward from the

sound source in the frontal zone. Notably, the current

methodology does not encompass the waveguide propagating

from outside to inside the frontal zone, although the methodology

remains applicable for future considerations.
2.1 Data and regions

The northwestern Pacific Ocean’s Kuroshio Extension (KE) has

gained significant attention in recent research due to its unique

geographic features and dynamic oceanic processes (Qiu et al.,

2014). This region stands out as a notable source of marine energy

and exhibits extensive biogeochemical cycling, rendering it an area

of great scientific interest. The KE area not only serves as a

significant source of marine and airborne energy (Zhou and

Cheng, 2022; Yu et al . , 2023)but also facil itates rich

biogeochemical cycling (Tozuka et al., 2022). Consequently, this

subject has been a focus of intense research in recent years. The

transition zone where high-temperature, high-salinity KE waters

mix with low-temperature, low-salinity pro-tides, known as KEF

(Xi et al., 2022), represents one of the most significant mesoscale

phenomena in the northwestern Pacific. Our study delves into the

CZ waveguide within the KEF environment, employing high-
FIGURE 1

Flow of predictive model building for clustered areas.
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resolution re-analysis JCOPE2M (Japan Coastal Ocean

Predictability Experiment 2 Modified) data from the Japan

Agency for Marine-Earth Science and Technology (JAMEST).

This dataset offers a daily temporal resolution, 1/12° horizontal

resolution, and encompasses 46 s-layers (Miyazawa et al., 2017;

Miyazawa et al., 2019). The dataset used in this study was obtained

by assimilating multiple sources of information, including in-situ

observations and high-resolution satellite data. This series of data

has been widely utilized in the investigation of mesoscale

phenomena and flow fields in the Kuroshio basin (Chang et al.,

2018; Liu et al., 2019; Zheng et al., 2023).

For topographic information, our study utilized data from

ETOPO1, a comprehensive seafloor topographic model with a 1′×
1′ grid size, released by the National Geophysical Data Center

(NGDC) and the National Oceanic and Atmospheric

Administration (NOAA). This model amalgamates global land

topography and ocean depth data, drawing from numerous

correlation models and specific regional measurements (Amante

and Eakins, 2009), primarily derived from the Scripps Institution of

Oceanography (SIO), USA, for oceanic bathymetry and GTOPO30

for global land topography. The study area, delineated by oceanic

front frequency statistics, spans 146°-150°E and 35°-37°N, as

depicted in Figure 2.

In-situ observations for model cross-validation were obtained

from the KE System Study (KESS), an extensive observational

program funded by the National Science Foundation. KESS,

involving collaborations among the University of Rhode Island,

the University of Hawaii, and the Woods Hole Oceanographic

Institution, aims to discern and quantify the kinetic and

thermodynamic processes governing the variability and interplay

between the KE and its recirculating eddies (Donohue et al., 2008).

Within this project, five continuous sections highlighting

prominent KEF characteristics were identified using CTD data

from an in-situ oceanographic survey conducted by the Research

Vessel Melville in June-July 2006 as part of this initiative.
2.2 Methodology

2.2.1 Ocean and convergence zone feature
extraction methods

Oceanic fronts cause substantial changes in the underwater

acoustic environment, resulting in notable shifts in attributes such
Frontiers in Marine Science 04
as sound channel depth, acoustic layer thickness, and surface sound

velocity on either side of the front (Etter, 2013). This study

considers six specific categories of oceanic underwater acoustic

environmental characteristics, evaluating features 2 through 6

both within and outside the frontal zone. Consequently, the CZ

prediction model comprises 11 input features, detailed and

calculated as follows:
(1) Horizontal Sound Speed Gradient (HSSG): This is defined

as the ratio of the variance in sound speed at the same depth

as the horizontal distance separating sites within and

beyond the front, measured in (m/s)/km.

(2) Surface Sound Speed (SSS): The speed of sound at a site’s

sea surface, recorded in m/s.

(3) Sound Channel Axis Depth (SCAD): Represents the depth

where the sound speed reaches its minimal value, expressed

in meters.

(4) Sonic Layer Depth (SLD): The deepest point in seawater

where the sound velocity gradient remains positive near the

surface, expressed in meters.

(5) Transition Layer of Sound Speed: The vertical sound speed

gradient existing between the sound channel axis and the

sonic layer, quantified in (m/s)/m.

(6) Turning Depth (TD): The depth at which the sound ray

undergoes inversion below the sound channel axis. The

sound speed at the TD (ci) complies with the subsequent

Equation 1, where c0 denotes the sound velocity at the

origin point, and ai represents the emission angle.
ci = c0= cosai     i = 0, 1, 2, · · ·n − 1 (1)
2.2.2 Underwater acoustic simulation modeling
and convergence zone calculation methods

This research distinguishes the CZ by considering the initial

CZ’s width and the separation from the origin, taking into account

the ocean front’s magnitude and its range of influence. The Bellhop

ray model, rooted in geometric and physical transmission

principles, encompasses various ray types, including Gaussian

beams(Porter, 2011). Yang et al. (2018) determined that the

Bellhop model closely matches the recorded CZ distances in

precise underwater acoustic examinations. Hence, it is utilized for

simulating underwater acoustic propagation in this context, using
BA

FIGURE 2

Overview of the study area: (A) Relative frequency of the occurrence of oceanic fronts (discrimination criterion 0.1 (m/s)/km, depth 300 m);
(B) Water depth in the study area.
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the modeled CZ distances and expanses as prediction model

outputs. A prerequisite for establishing a CZ is not only the

existence of a sound speed’s minimal value but also the assurance

that the emitted sound waves, at a minimum horizontally, are

capable of reverting on the seafloor plane. This necessity stipulates

that the sound speed of seawater at the boundary of the seafloor is

represented as cn, as shown in Equation 2.

cn > ci      i = 0, 1, 2, · · ·n − 1 (2)

It is pertinent to note that, among numerous sound waves

projected from a non-directional source, only those contributing to

the CZ sound field are considered significant. This consideration

allows determining the maximal emission angle required from the

sound source for CZ formation, obtained as Equation 3.

amax = arccos c0=cn (3)

When a sound line of cn < ci encounters the seafloor, it

undergoes reflection, leading to seafloor reflection propagation.

(1) Convergence Zone Distance (CZ Distance).

The CZ distance is typically defined as the cyclical distance from

the 0° swept angle sound line reversal point due to the presence of

focal dispersion lines near this point (Ma et al., 2023). To minimize

the influence of surface waveguides, the sound source is positioned

150 m beneath the sea surface within the frontal zone. The CZ

distance, measured in kilometers, is the horizontal distance from

the source to the first CZ created by the source’s horizontally

reversed acoustic rays.

(2) Convergence Zone Width (CZ Width).

Additionally, significant differences in CZ distances result from

the large disparities in swept angles depicted in Figure 1. To

establish consistent criteria and enhance prediction precision, this

research computes the CZ distances for emission angles of 0° and q,
using the disparity as the CZ’s width in kilometers. The Bellhop

model parameters, including the sound source parameter, are

detailed in Table 1, which also lists the acoustic parameters of the

seafloor substrate, taken from Hamilton (1980).
2.3 Precision evaluation methods

Evaluation metrics for model performance encompass mean

absolute error (MAE), mean absolute percentage error (MAPE),

root mean square error (RMSE), and accuracy. It is crucial to

highlight that accuracy serves as a predominant measure in

classification tasks. In this study’s context, accuracy represents the
Frontiers in Marine Science 05
ratio of predicted values within a specified range of true values to the

total samples. This definition is pivotal as it underscores the predictive

capacity of the convergence zone feature model, establishing it as a

significant indicator within our research. Lower MAE, MAPE, and

RMSE values, coupled with higher accuracy, signify reduced variance

between themodel’s predictions and actual values, indicating superior

predictive ability. The calculation methods for these indicators are

illustrated in Equations 4–7.

MAE =
1
no

n

i=1
yi − ŷ ij j (4)

MAPE =
100%
n o

n

i=1

yi − ŷ i

yi

����
���� (5)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(yi − ŷ i)

2

n

vuuut
(6)

Accuracy(1km) =
100%
n o

n

i=1
Ai(Ai =

1, yi − ŷ ij j ≤ 1

0, yi − ŷ ij j > 1
)

(
(7)

where, “y” represents the original value of the CZ prediction,

ascertained through Bellhop model simulation, while “ ŷ “ denotes

the predicted value, i.e., the CZ characteristics derived from the

prediction model.
3 Predictive modeling

3.1 Multivariate regression
prediction models

This research employs 24 distinct regression algorithms to

predict CZ, with their principal parameter configurations outlined

in Table 2. Focusing on the waveguide of CZ, where the sound

source originates in the frontal zone and progresses southward, the

extracted feature dataset is divided into training, validation, and test

sets at an 8:1:1 ratio before commencing sample training.

Normalization of features is applied to expedite model

convergence and improve feature interpretability. Additionally,

alongside the 17 individual models detailed in Table 2, this study

introduces 7 integrated learning strategies by combining two

individual models, determining their output weights based on

accuracy assessment metrics. Integrated learning strategies,

through weighted model combinations, generally exhibit superior

generalization performance compared to individual models.

Subsequently, the 30a dataset is divided into ten segments using

k-fold cross-validation, each containing approximately 1095

samples of 3a. From each segment, designated 3a samples form

the test set, preceding 3a samples create the validation set, and the

remaining 24a serve as the training set. The model undergoes

training using the training set and testing with the test set,

iterating this process ten times. The average outcomes from the

ten models establish the final benchmark for assessing
TABLE 1 Bellhop ray model parameter settings.

Sound
source

parameters

Source
frequency

Grazing
angle range

1 kHz 0°-amax

Seafloor parameters

Density
Compressional
wave Velocity

Attenuation
Coefficient

1.421
g/cm3 1520 m/s 0.12
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generalization accuracy, calculated using Equation 8.

E =
1
10o

10

i=1
Ei (8)

where Ei is the model evaluation index observed throughout each

training iteration. Post-training and evaluation, accuracy results are

depicted in Figure 3. It is observed that conventional regression

methods produce inferior results, often exhibiting MAPE exceeding

5%. Conversely, integrated learning strategies, assigning weights to

samples and learners, demonstrate significantly improved

generalization performance compared to individual learners.

Specifically, integrated learning combined models such as MLP-RF

and MLP-DT achieve an accuracy (1 km) surpassing 81%.

Considering the influential parameters in deep learning

affecting performance, this study combines the Sparrow Search

Algorithm (Xue and Shen, 2020) with four specific single deep
Frontiers in Marine Science 06
learning network structures from Table 3 to predict the

convergence zone distance within a defined hyperparameter

space. The CNN hyperparameters are set as follows: number of

feature maps (1-100) and stride (1-10); while the LSTM, GRU, and

BiLSTM hyperparameters are set as: number of hidden layers (1-

10), number of hidden units (1-100), and dropout rate (0.001-0.5).

While there is an observed improvement in predictive accuracy

after optimization for these algorithms, the overall enhancement is

not substantial. Despite deep learning’s widespread application in

numerous domains(Rajendra Kumar and Manash, 2019), in this

study, due to limited features and data volume, its predictive

accuracy lags behind other models. Consequently, after evaluating

four metrics, MLP-RF is chosen as the optimal algorithm for

predicting convergence zone features in this study. This model

demonstrates high efficacy, with an average prediction error of less

than 1 km in 82.16% of cases after K-fold cross-validation.
TABLE 2 Multiple regression model with the main parameter settings.

Algorithm Hyperparameters Algorithm Hyperparameters

Linear regression Significance level 0.05 Lasso regression
L1

regularization coefficient
1

Ridge regression
L2

Regularization
coefficient

1 Gaussian process regression Kernel scale 1.5

Generalized Regression neural network
(GRNN) regression

Spread coefficient 0.5
Generalized additive models

(GAM) regression
Learning rate 0.2

Extreme learning machine (ELM) regression

Number of
hidden units

16
Support vector machine (SVM) regression

Penalty factor (C) 1

Activation function sig Kernel function gaussian

Decision tree (DT) regression

Minimum depth 5

Random Forest (RF) regression

Numbers of trees 100

Minimum samples
per leaf

1
Minimum samples

per leaf
1

Least squares boosting (LSBoost) regression

Number of
learning cycles

100

Extreme gradient boosting
(XGBoost) regression

Maximum number
of iterations

50

Learning rate 0.05 Minimum depth 5

Minimum samples
per leaf

1
Minimum samples

per leaf
1

Long short-term memory (LSTM) regression

Number of
hidden layers

2

Bidirectional long short-term memory
(BiLSTM) regression

Number of hidden layers 2

Number of
hidden units

16 Number of hidden units 16

Learning rate 0.2 Learning rate 0.2

Gated recurrent unit (GRU) regression

Number of
hidden layers

2

Convolutional neural network
(CNN) regression

Convolutional
kernel size

[3,3]

Number of
hidden units

16
Number of

convolutional kernel
16

Learning rate 0.2 Learning rate 0.001

Back propagation (BP) regression

Number of
hidden layers

2

Number of
hidden units

16
front
The main settings of the combined model are the same as those of the individual models described above.
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The initial step involves segmenting the complete dataset into

training, validation, and test sets. The training set is utilized

independently to train both the MLP (a feed-forward neural

network comprising multiple neurons and layers designed for

nonlinear relationship handling and complex feature learning)

and the RF model (an ensemble learning algorithm with

numerous decision trees, providing final predictions via voting or

averaging of base classifier predictions). To enhance model

performance, this study introduces distinct hyperparameter

selection spaces. These models are then trained on the training

set and evaluated on the validation set. This iterative process occurs

within the hyperparameter space to identify the best model

configuration, optimizing predictive accuracy. The Mean Absolute

Error (MAE) is calculated to determine the weights of the combined

MLP-RF model, using specific hyperparameter configurations

detailed in Table 4.

In cases where significant algorithmic differences between the

models arise from the validation set, the accuracy of the combined

model is expected to be intermediate. Hence, a threshold value q (q
Frontiers in Marine Science 07
= 0.1) is established. If the model variation exceeds this threshold,

the combination is discarded, favoring the model with the lower

error as the final choice. However, if the error differential between

the models falls below a specific threshold, they are merged with

respective weights. The final prediction is the weighted sum of

predicted values from both models, as defined in Equation 9.

YMLP−RF = WMLPYMLP +WRFYRF (9)

where Y is the distance to the CZ predicted by different models,

and W is the weight of the model, and W is the calculation method.

The MLP-RF model building process is shown in Figure 4.

After multiple prediction cycles, the optimal parameters for the

prediction model are determined: the MLP employs hidden layers

set at [8,8] with a prediction weight of 0.51, while the RF model

utilizes 300 random trees with a prediction weight of 0.49.
3.2 Characterization

Given that the extracted marine features might not exhibit

linear correlation with CZ features, this study utilizes Spearman

correlation to analyze the mutual influence between each element.

Furthermore, the Random Forest algorithm is employed to assess

the relative importance of feature variables using the out-of-bag

(OOB) error. This method enables the determination of how much

each marine feature impacts CZ characteristics through

hypothetical sampling and superimposed noise, gauging the

influence of each marine feature on CZ features (Mitchell, 2011).

This analysis involves the calculation of the horizontal sound

velocity gradient between two points within each water layer in the
TABLE 3 Assessment of the predictive accuracy of convergence zone
distance based on SSA and deep learning methods.

Model
MAE
(km)

RMSE
(km)

MAPE
(%)

Accuracy
(1km) (%)

CNN 1.86 2.95 3.36 76.28

LSTM 1.59 2.81 2.81 80.16

GRU 1.69 2.87 2.83 77.37

BiLSTM 1.55 2.75 2.78 80.63
FIGURE 3

Comparison of the predictive accuracy of the models.
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study area. Subsequently, it illustrates the correlation between the

sound velocity gradient and the distance to each water layer’s CZ, as

shown in Figure 5A. Notably, within the 100- to 600-m range, the

intensity of KEF significantly surpasses that of other water layers.

Simultaneously, the correlation between the horizontal sound

velocity gradient and the distance to the CZ typically

demonstrates an initial increase followed by a decrease, peaking

at 150 m—a depth directly associated with the selected sound

source. Consequently, the 150-m horizontal sound velocity

gradient, both inside and outside the frontal zone delineated by

1°, serves as a parameter representing ocean fronts. This parameter,

along with others detailed in section 2.2.1, correlates with the

distance to the CZ, analyzing the importance of each oceanic

condition, as depicted in Figure 5B. The results indicate that TD

is crucial for the distance to the CZ, contributing over 25% among

the 11 feature categories, followed by SLD2 and HSSG at 11% and

9%, respectively.

Snell’s law elucidates the importance of turning depth in

determining the distance to the CZ. When the source is located z =

zs, the horizontal distance a sound line traverses with an initial

outgoing angle from the source is expressed in integral form

Equation 10.

CZ Distance ðSnellÞ = 2 cosa0

Z z

zs

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2(z) − cos2 a0

p (10)
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where CZ Distance (Snell) is the horizontal distance that the

sound line passes through, zs is the depth of the sound source, n(z

) = c0=c(z) is the refractive index, and z is the turning depth. The

turning depth determines the maximum depth at which the sound

line bends downward and determines the horizontal distance of the

convergence zone.

The distance of the CZ: When the sound source is located in the

frontal zone adjacent to relatively colder water, intensified ocean

fronts amplify the environmental differences on either side. This

results in both a shallower acoustic channel depth (with a

correlation between HSSG and SCAD of −0.67) and turning

depth (correlation between HSSG and TD of −0.72) on the

source’s side. This enables sound rays from the source to reach

the CZ more quickly. Thus, the emitted sound rays can reach the

turning depth faster, bringing the CZ closer to the source. Similarly,

in this study, when the source is located at high latitudes for

underwater acoustic propagation—i.e., on the warmer water side

—the stronger the ocean front, the deeper the acoustic channel

(correlation between HSSG and SCAD is −0.69), and the shallower

the turning depth (correlation between HSSG and TD is −0.77)

tends to be on the source side. This delays sound rays from reaching

the turning depth and pushes the CZ further from the source.

Although turning depth plays a pivotal role in predicting the

CZ, this study reveals that relying solely on turning depth cannot

fully capture the oceanographic features of the cross-section during

K-fold cross-validation. The resultant CZ prediction model lacks

robustness; for instance, prediction accuracy dips below 70% when

using years such as 1993-1995 and 2018-2020 as the test set.

Contrastingly, incorporating multiple oceanic parameters offers a

more comprehensive view of the cross-section. Utilizing several

factors as input variables for predicting CZ distances consistently

yields a prediction accuracy exceeding 80% in test sets, thus

enhancing generalization.
FIGURE 4

MLP-RF model construction process.
TABLE 4 Hyperparameter selection space for MLP-RF.

Model Hyperparameters Values

MLP Hidden layer
[8], [6, 4], [8, 8], [16, 16], [8, 16],

[8,8,8], [16,16,16]

RF Number of trees 5, 10, 20, 50, 100, 300, 500
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4 Model prediction process

4.1 Results of two-dimensional cross-
section prediction

The distance and width of the CZ between 2020 and 2022 have

been predicted using the optimal model evaluated in the previous

section. Due to space limitations in the graph, Figures 6A, C only

depict the CZ’s distance and width for 2022, respectively. Scatter

density maps for the years 2020 to 2022 are shown in Figures 6B, D.

The MLP-RF-based model, utilized for CZ distance prediction,

demonstrates an accuracy of 82.43% (within 1 km) and an MAE

of 1.56 km. Figure 6 highlights the model’s proficiency in predicting

CZ distances, aligning effectively with the CZ trend. Variations in

prediction results, up to 10 km in CZ despite similar seasons, may

be attributed to marine environmental factors, such as the acoustic

layer impacting underwater acoustic propagation. Additionally,

since this study aims to predict CZ in a specific sea area that

experiences shifts with the KE jets, the model primarily adapts to

the correlation between marine environmental factors and CZ

characteristics. Consequently, predictive efficacy slightly

diminishes when these uncertain elements heavily influence the

CZ. Figure 6B illustrates that predicted distances closely match

original distances, clustering near the 1:1 line, with more dispersed

points at the edges.

The CZ width is determined from the horizontal outgoing ray

and two acoustic rays emitted at the maximum outgoing angle.

Predicting these rays leads to compounded errors, resulting in a

marginally lower width prediction accuracy compared to distance,

at 77.10% (within 1 km) and an MAE of 1.77 km. Nevertheless,

Figures 6C, D showcase the model’s ability to accommodate

fluctuations in the CZ ’s width, with dispersion points

concentrated around the 1:1 line. Upon further evaluation, the

model’s accuracy in predicting a width error of less than 3 km

exceeds 90%, highlighting its practical application value.
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4.2 Comparison of three-dimensional
prediction results

In Section 3, the sound source is positioned in the frontal zone

for underwater acoustic propagation directed south. A 3D model

predicting the CZ was developed by simulating underwater acoustic

propagation in four distinct directions: south, north, west, and east.

A 1° cross-section in each direction was extracted, utilizing the same

data retrieval method as the previous section to compile datasets on

marine environmental and CZ features. Predictions for underwater

acoustic propagation in these four directions within the KE frontal

zone from 2020 to 2022 were carried out. The averaged CZ distance

and width in each direction serve as the predicted CZ. Figure 7

illustrates the simulation map and the predicted CZ using the

machine learning model, depicted by two red solid lines and a

red fill with 0.5 transparency, contrasted against the Bellhop3D

model’s simulation results. The sound field environment mirrors

that of the 2D section, with a focal depth of 150 m and the circle’s

center as the central point, fixed at a display depth of 150 m. The

primary CZ is identified as the circular region with low propagation

loss surrounding the circle’s center. This study affirms the machine

learning-based approach’s efficacy in accurately predicting the 3D

CZ, exhibiting a high degree of overlap between the predicted and

simulated zones.

The evaluation of CZ characteristics in four directions focused

on predicting accuracy using five evaluation metrics (Table 5).

Results demonstrated improved performance in CZ prediction

across all directions. Specifically, distance prediction accuracy

(1 km) consistently exceeded 70%, with accuracy (3 km)

consistently surpassing 80%. Regarding width prediction,

accuracy (1 km) typically exceeded 60%, while accuracy (3 km)

consistently went beyond 80%. Remarkably, the highest accuracy

was observed when the sound source directed southward, aligning

with the KEF’s near parallelism to the latitude line and its

northward inclination (Wang et al., 2020). This study strategically
BA

FIGURE 5

(A) Plot of KEF intensity versus depth and correlation with distance from the convergence zone; (B) Plot of the correlation between the marine
environment and distance from the convergence zone and significance of features (*** for 99.9% significance test, ** for 99% significance test,
* for 95% significance test, sites marked with “2” in the oceanic features are outside the frontal zone, and the reverse is true for stations within the
frontal zone).
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positioned the sound source cloth at the critical KEF location,

significantly enhancing model interpretability. By deriving ocean

environment features from the physical structure of ocean fronts,

the prediction accuracy for the southward-propagating CZ model

outperformed the other three directions. This resulted in a

maximum accuracy increase of 8.43% for distance prediction

(1 km) and 16.42% for width prediction (1 km).
5 Comparison and validation
of models

Predictive models constructed within an ocean front

environment, incorporating specified inputs and consistent

environmental features, should exhibit robust generalization

capabilities. To broaden the model’s applicability, ocean data

from in situ observations and neighboring sea areas were

integrated as a new test set for cross-validating the CZ

prediction model.

To address uncertainty regarding the precise location of in-situ

observation data, adjustments were made to the feature extraction

method. This involved placing the sound source cloth at the initial

observation site near the section’s northern edge and utilizing
Frontiers in Marine Science 10
acoustic profile information from the section’s final site to extract

out-of-frontal features. The dataset created for predicting in-situ

observations significantly deviates from this study’s original

training set, with a maximum distance of nearly 190 km between

in-front and out-of-front stations, compared with approximately

110 km in the training set. Despite these discrepancies and a specific

anomaly in data collection direction, the proposed predictive model

maintains its efficacy. Figures 8A, B illustrate the correlations

between site distribution and in-situ observation prediction

outcomes, indicating the model’s proficiency in delineating CZ

distance trends. Prediction errors for cross sections 2-5 range

between 0 and 3 km, while cross-section 1 experiences an

approximate 4-km error due to substantial directional and

distance deviations from the training set.

The structural similarity of ocean fronts theoretically allows

machine learning-based CZ prediction methods to be applicable in

all ocean front environments under deep-sea conditions. To further

validate the universality and stability of the model, this study

employed two sea areas as cross-validation regions. Cross-

validation area I lies outside the training area of the Kuroshio

Extension (150°-154°E, 35°-37°N) and aims to verify whether the

trained model can be applied to similar sea areas. Cross-validation

area II, the sub-Arctic front area (146°-150°E, 39°-41°N) (Kida et al.,
B

C D

A

FIGURE 6

(A) Comparison of the 2022 projections with the original convergence zone distances; (B) Scatter density plot between the 2020-2022 projections
and the original convergence zone distances; (C) Comparison of the 2022 projections with the original convergence zone widths; (D) Scatter density
plot between the 2020-2022 projections and the original convergence zone widths.
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2015), aims to verify the method’s applicability to ocean front

regions with thermohaline structures and influence depths differing

from the Kuroshio Extension Front. The network trained in the

Kuroshio Extension training area in section 4.1 was used to predict

the convergence zone distance in sea area I for the year 2022

(Figures 8C, D). Results showed that the predictive model

effectively captured the variation trend of the convergence zone

distance. Although there are differences between the ocean front

characteristics in sea area II and the Kuroshio Extension Front, this

study utilized the MLP-RF algorithm to predict the convergence

zone distance based on extracted sub-Arctic frontal ocean features

(Figures 8E, F). This achieved excellent results with an MAE of

1.28 km and an accuracy (1 km) of 86.6%, further confirming the
Frontiers in Marine Science 11
practical ity and robustness of this convergence zone

prediction method.
6 Conclusion

In this investigation, high-resolution 30a reanalysis data was

utilized to examine a 1° cross-section spanning from inside to

outside of the frontal zone within a deep-sea area known for

frequent ocean front occurrences. Out of 24 machine learning

algorithms assessed, the most accurate models successfully

learned and predicted six classes, 11 marine environmental

features, and two CZ features. The findings highlighted the
TABLE 5 Assessment of the predictive accuracy of convergence zone features in four directions.

Transmission Direction Southward Northward Eastward Westward

Distance Width Distance Width Distance Width Distance Width

MAE (km) 1.56 1.77 2.76 2.69 2.72 2.42 2.91 2.16

RMSE (km) 2.95 2.78 4.49 3.79 4.41 3.27 4.68 3.08

MAPE (%) 3.20 19.96 5.09 33.88 5.07 32.10 5.34 29.68

Accuracy (1 km) (%) 82.43 77.10 74.54 61.84 74.09 60.68 74.00 67.61

Accuracy (3 km) (%) 91.70 92.24 86.31 87.75 85.49 89.23 84.03 88.59
front
B C D

E F G H

I J K L

A

FIGURE 7

Comparison of machine learning–based 3D convergence zone prediction and simulation results (labels in the upper left corner are date and sound
source location).
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pivotal role of turning depth in the CZ prediction model,

contributing over 25% according to OOB error, followed by SLD2

and HSSG at 11% and 9%, respectively. This study sheds light on the

critical significance of turning depth in understanding the

characteristics of the CZ within ocean front environments,

employing fundamental principles of ray acoustics. Specifically, the

study elucidates that a stronger orweaker ocean front, when the sound

source is on the colder water side, impacts the CZ’s proximity to or

distance from the sound source. Conversely, when the source is on the

warmer water side, a stronger or weaker ocean front pushes the CZ

farther from or nearer to the sound source.

The MLP-RF algorithm, identified as the most accurate through

K-fold cross-validation, was employed to build the CZ prediction

model. This model exhibited an 82.43% accuracy in predicting the CZ

within a 1 km error margin in the 2D section, alongside an MAE of

1.56 km. While slightly less precise in predicting the CZ width, the
Frontiers in Marine Science 12
model achieved a 77.1% accuracy for errors under 1 km, with anMAE

of 1.77 km. Application of this model to the 3D marine environment

showed promising alignment between predicted and simulated CZ,

with notably higher accuracy observed for CZ propagation toward the

south compared with other directions. Furthermore, the model’s

performance was evaluated against in-situ ocean data and reanalysis

data from adjacent ocean areas through cross-validation,

demonstrating its ability to accurately predict trends in new datasets,

thus confirming its robust performance and generalizability.

Given the absence of long-term sound field measurements in

the marine environment, this study primarily relies on reanalysis

data and ray models to predict the CZ, potentially resulting in

deviations from actual conditions. However, the model

construction approach suggested here is adaptable to information

obtained from in-situ observations, highlighting machine learning’s

ability to effectively capture the nonlinear relationship between the
B

C D

E F

A

FIGURE 8

(A) Five cruises of the KESS project during June-August 2006 (the bottom panel shows the sound speed in m/s on June 8); (B) comparison of the
original convergence zone distances of the five cruises with the results of the model prediction; (C) schematic representation of the location of
cross-validation sea area I; (D) line graph of the distance of the original convergence zones in the sea area I in 2022 compared with the results of
the model prediction; (E) schematic representation of the location of cross-validation sea area II; and (F) line graph of the distance of the original
convergence zones in sea area II in 2022 compared with the results of the model prediction.
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marine environment and the CZ in underwater acoustic predictions,

offering significant practical potential. Future research should consider

exploring integrating marine environment numerical predicting and

physical ocean front modeling into the machine-learning prediction

model to enhance its applicability and interpretability.
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