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Introduction: Assimilating all available observations in numerical models may

lead to deterioration of the analysis. Ensemble Forecast Sensitivity to

Observations (EFSO) is a method that helps to identify all such observations

which benefit the analyses. EFSO has never been tested in an ocean data

assimilation system because of a lack of robust formulation of a squared norm

against which beneficiality of observations can be estimated.

Methods: Here, we explore the efficacy of EFSO in the ocean data assimilation

system that comprises the ocean model, Regional Ocean Modeling System

(ROMS), coupled to the assimilation system Local Ensemble Transform Kalman

Filter (LETKF), collectively called LETKF- ROMS, in the Bay of Bengal by envisaging

a novel squared norm. The Bay of Bengal is known for its higher stratification and

shallow mixed layer depth. In view of baroclinicity representing the stratification

of the ocean, we use themodulus of the baroclinic vector as the squared norm to

evaluate forecast errors in EFSO.

Results: Using this approach, we identify beneficial observations. Assimilating

only the beneficial observations greatly improves the ocean state. We also show

that the improvements are more pronounced in the head of the Bay of Bengal

where stratification is much higher compared to the rest of the basin.

Discussion: Though this approach doesn’t degrade the ocean state in other

regions of the Indian Ocean, a universal squared norm is needed that can be

extended beyond the Bay of Bengal basin.
KEYWORDS

ensemble forecast sensitivity to observations, local ensemble transform Kalman filter,
ocean general circulation models, Indian Ocean, Bay of Bengal
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1 Introduction

In this modern era of observation networks wherein the ocean is

observed through a multitude of observation lenses consisting of Argo

floats, buoys, ship tracks, satellite measurements and so on, it is

imperative to ascertain if these observations add value to a data

assimilation system used to forecast ocean states or generate

reanalysis products used by the scientific community in their quest

to understand the workings of oceans better. Naively feeding the data

assimilation system with all available quality controlled observations

may lead to a degradation or a non-optimal improvement (Balmaseda

et al., 2007; Hamrud et al., 2015; Schraff et al., 2016; Hotta et al., 2017;

Sivareddy et al., 2017; Waters et al., 2017). One of the methods to

ascertain the beneficiality of observations in the ocean has been to let

each observation pass through the observing system experiments

(OSEs). This method, even though robust, consumes large

computational resources primarily because it is a data denial

experiment. It comprises two systems - a control run where some

observations, whose beneficiality is to be determined, are withheld from

feeding it to the data assimilation system and a test run where all

observations are assimilated. A short run of these two systems do not

produce statistically significant results because the improvements or

degradations in the test run are obscured by the presence of other

observations. As a result, a long run is needed to produce statistically

significant results, thereby consuming large computational resources.

In contrast, ensemble forecast sensitivity to observations (EFSO)

(Kalnay et al., 2012; Hotta et al., 2017; Lien et al., 2018) which is an

ensemble version of forecast sensitivity to observations (FSO)

(Langland and Baker, 2004; Lorenc and Marriott, 2014) - the

resource consuming adjoint-based approaches - is an alternative

robust method that has successfully identified beneficial observations

and discarded the detrimental ones in the numerical weather

prediction systems (Ota et al., 2013; Hotta et al., 2017; Chen and

Kalnay, 2019). It measures the impact of observations on the forecast

valid at a future time with a cost function which is the difference

between the squares of forecast errors with and without assimilating the

observations. The errors in forecast are calculated with a weight matrix

resulting in the squared norm, taken as the dry total energy (Gelaro

et al., 2010; Kalnay et al., 2012; Lorenc and Marriott, 2014) or moist

total energy (Ehrendorfer et al., 1999; Ota et al., 2013; Hotta et al., 2017)

in atmospheric systems, which decides the contribution of different

variables in the errors. Fujii et al., 2019 have studied FSO for ocean

model with a variational data assimilation system where observation

sensitivity is evaluated from the adjoint of the model. Recently, Drake

et al., 2023 have explored FSO in ROMS with 4DVar assimilation

system to study the impact of different observation types using different

norms in the California current system. But, the efficacy of FSO for

ensemble data assimilation systems in oceanic models has not yet been

explored adequately. The oceanic community still largely relies on

resource consuming OSEs, at least for oceanic models with ensemble

data assimilation systems. With the advent of high resolution models,

the leeway with resources is limited and there is a pressing need for an

alternative method to filter out beneficial observations in oceanic

ensemble data assimilation systems.

We have employed the EFSO in our in-house developed ocean

data assimilation system LETKF-ROMS (Local Ensemble
Frontiers in Marine Science 02
Transform Kalman Filter coupled to Regional Ocean Modeling

System) for the Indian Ocean (Balaji et al., 2018; Baduru et al.,

2019). One of the challenges in implementing EFSO to ocean

systems is the lack of any established squared norm unlike its

atmospheric counterpart wherein the norm is defined as moist or

dry total energy of the atmospheric state. The total error energy

norm is straightforward for currents and temperature in the ocean,

but salinity does not have an explicit energy form under hydrostatic

approximation (Reid et al., 1981) which many state-of-the-art

ocean models including ROMS assume. So, unlike meteorological

systems, the total error energy of a parcel in the ocean may or may

not be the best approximation for the squared norm.

The Indian Ocean (30°S-30°N; 30°E-120°E) consists of diverse

water masses across the domain exhibiting very different

characteristics. For example, the Bay of Bengal is a very stratified

system owing to large river discharges from river Ganges and river

Brahmaputra (see Figure 1). In contrast, the Arabian Sea and the

equatorial Indian Ocean is comparatively mildly stratified. It is

challenging to devise a squared norm that takes into account these

diverse characteristics across the entire domain of the Indian Ocean.

Instead, we focus our attention on the Bay of Bengal to begin with. It

is a smaller domain compared to the Arabian Sea and the rest of the

Indian Ocean and therefore easy to analyze. Its characteristics are

unique and very different from other large basins. Also, it has been

challenging to simulate the ocean states using ocean general

circulation models in the Bay of Bengal. One of the reasons is the

lack of daily river discharge data into the ocean. Most of the models

either incorporate a monthly climatological river discharges (Ferrer

et al., 2009) or simply relax the salinity to its climatological value

(Reynolds et al., 1998; Haidvogel et al., 2000; Baduru et al., 2019;

Francis et al., 2020, 2021). None of these approaches have been

particularly successful in simulating the upper ocean stratification

in the Bay of Bengal on a daily scale which is an essential

requirement for operational centers. Another probable reason is

that the parameterizations of oceanic processes like mixing, bottom

stress, etc are formulated from observational expeditions done in

mostly Pacific Ocean (Large and Gent, 1999; Li et al., 2001) or

Atlantic Ocean (Halliwell, 2004) where the conditions are vastly

different from that of the Bay of Bengal. This may result in

inaccurate parameter estimates for the Bay of Bengal.

Consequently, the estimation of currents and other salient

features like the thermocline and the mixed layer depths in the

Bay of Bengal are compromised leaving large scope of

improvements even after assimilating all available tracer

observations (Balaji et al., 2018; Baduru et al., 2019).

One of the variables that mirror stratification to a good extent is

the baroclinicity of the ocean state. A large stratification yields a

large baroclinicity and vice versa. The state of the ocean is called

baroclinic if the constant pressure surfaces and the constant density

surfaces are not parallel. If these surfaces are parallel, the state is

called barotropic. In real oceans, the state is baroclinic and the

baroclinicity vector contributes significantly to the rate of change of

relative vorticity of the ocean and the circulation (Pedlosky, 1987).

The vertical structure of the ocean can be decomposed into normal

modes. The zeroth mode is the depth-integrated mode and hence is

an outcome of the barotropic processes whereas all the other modes
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result from fluctuations in density interfaces and is an outcome of

baroclinic processes. The barotropic mode is reasonably well

simulated by the OGCMs because of the simplicity involved

(Pedlosky, 1987). The propagation speeds of barotropic processes

are also very fast. The domain of the Bay of Bengal is adjusted due to

barotropic signals within the typical assimilation window in oceans

which range from a day to a week. In contrast, the baroclinic modes

propagate slowly, are harder to estimate, and have led to increased

endeavors of accounting complicated processes through

parameterizations (Treguier et al., 1997; Hallberg, 2013) and

therefore the estimation of these modes leads to potentially larger

errors. With this context in mind, we define the modulus of the

baroclinic vector as the squared norm against which the cost

function is estimated in the EFSO. We show that this approach

yields promising results in identifying observations that contribute

positively to the estimation of analysis.

Section 2 describes the experimental design we have for this

EFSO experiment for the Indian Ocean. Section 3 shows the results

where we identify the beneficial observations and its impact on the

ocean state. We show that the inclusion of only beneficial

observations significantly improves the estimation of the currents

and the thermocline. Section 4 is a summary of the results and

discussion of the future aspect of use of EFSO for the ocean.
2 Methodology

The Regional Ocean Modeling System (ROMS) is a free surface

and terrain-following ocean general circulation model (Song and

Haidvogel, 1994; Shchepetkin and McWilliams, 2005). The set-up

of ROMS for the Indian Ocean domain extends from 30°E to 120°E

in the zonal direction and from 30°S to 30°N in the meridional

direction. Though we are interested in testing the efficacy of the new

norm in the Bay of Bengal which lies north of the equator, the

southern boundary of our model domain is transgressed beyond the
Frontiers in Marine Science 03
equator to 30°S. This is imperative because the dynamics in the

north Indian Ocean is strongly influenced by the equatorial Indian

Ocean dynamics (Chatterjee et al., 2017; Cheng et al., 2018). The

remote influence of equatorial dynamics on the north Indian Ocean

cannot be adequately captured through daily boundary conditions if

the southern boundary of the model domain is kept north of the

equator. Also, recent studies have shown that there are strong

influences at intraseasonal scales of the dynamics in the Maritime

Continent on the tropical Indian Ocean (Rohith et al., 2019;

Afroosa et al., 2021). The horizontal grid resolution of the model

is 1/12 degree (Francis et al., 2013). It has 40 vertical sigma levels.

The boundaries in the east and south are open while the boundaries

in the north and west are closed with no-slip boundary conditions.

The model does not have a river runoff scheme; so model surface

salinity is relaxed to its monthly climatology (Antonov et al., 2010)

over a timescale of 30 days.

A Local Ensemble Transform Kalman Filter (LETKF) is a

variant of Ensemble Kalman Filter where background error

covariance is approximated by the sample covariance computed

from ensemble members (Hunt et al., 2007). We use 20 ensemble

members for the ocean initial state which are forced with 20

ensemble atmospheric fields from Global Forecast System (GFS)

at National Centre for Medium Range Weather Forecasting (Prasad

et al., 2016). The initial ensembles are drawn from 80-ensemble

versions of LETKF-ROMS (Baduru et al., 2019) where initial

ensembles are prepared by random sampling (Xu and Oey, 2014)

from ROMS with a reasonable amount of initial spread. Further, we

use two different schemes, viz., KPP (Large et al., 1994) and Mellor–

Yamada (Mellor and Yamada, 1982) for parameterizing the vertical

mixing to ensure that the ensemble spread is maintained during the

model simulation. We also inflate the ensemble spread by 10% at

each analysis cycle for the same reason. However, covariance

inflation is not applied in calculating EFSO cost function. As the

number of ensembles is much less than the length of model state

vector, so, to minimize the long distance spurious correlation, this
FIGURE 1

Time-depth plot of climatological Brunt-Vaisala frequency (unit in 1/s) in (A) Arabian Sea and (B) Bay of Bengal estimated from World Ocean
Atlas 2018.
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system uses a Gaussian profile for localization with a radius of 700

km (Anderson, 2007; Nurujjaman et al., 2013; Ying et al., 2018).

Any particular observation influences all the prognostic variables at

each grid location within its localization radius through the

multivariate background error covariance matrix. No vertical

localization has been applied, i.e., the observation at the surface

influences the model ocean state even at the deepest layer beneath

the observation. The observation errors have spatio-temporal

variation and includes the representational errors which account

for unresolved processes in the model (Sanikommu et al., 2019). In

this experimental setup, LETKF-ROMS assimilates in-situ

temperature (T) and salinity (S) profiles from Argo, buoy and

ship track data, and satellite swaths of sea surface temperature (SST)

from GHRSST only in the northern Indian Ocean (north of

Equator), including the Arabian Sea and the Bay of Bengal, where

we are interested in testing the new norm for measuring the forecast

error. The errors in T, S, and SST observations consist of instrument

errors of 0.2 °C, 0.1 PSU, and 0.1 °C respectively plus spatio-

temporal varying representational errors estimated using the

method prescribed in Sanikommu et al., 2019. The assimilation

window for this system is 5 days where model initial conditions are

updated with analysis generated by LETKF every 5th day with the

observations available only on the 5th day. The observations from

day 1 to day 4 during an assimilation cycle are ignored. More details

about the assimilation system can be found in Baduru et al., 2019.

Kalnay et al., 2012 have developed EFSO whose efficacy was

demonstrated in a toy atmospheric model. Later on, EFSO was

applied with success in state-of-the-art numerical weather

prediction systems (Ota et al., 2013; Hotta et al., 2017; Lien et al.,

2018). EFSO for atmosphere generally uses dry or moist total energy

as the squared norm matrix (see equation (9) of Kalnay et al., 2012).

Squared norm assigns weights to each prognostic variable of the

model for their contribution to the cost function. The cost function

measures the impact of observations on the forecast at a future time.

Such a predefined squared norm for the ocean which explicitly

depends on each prognostic variable does not exist to the best of our

knowledge. So, we choose the modulus of the baroclinicity vector as

the squared norm. The norm of the baroclinicity vector is

represented as ‖ mr�mp
r2 ‖, where r represents the density and p

represents the pressure on the fluid parcel.

The cost function (J) for EFSO (defined by Kalnay et al., 2012)

at j-th model grid point for l-th observation is given as

Jj,l = ½△ e2�j,l =
1

k − 1
(dy0)

T
l ljR

−1Ya
0 XfT

tj0
� �

j
Cjj(etj0 + etj−5)j

� �
l

where,

k= ensemble size;

dy0 = y0 −H �xf0j−5
� �

is the innovation with respect to the first

guess at t = 0;

H = observation operator;
�xf0j−5= background state obtained from the analysis of 5

days ago;

lj  = localization function at j-th grid point;
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R = observational error covariance matrix;

Ya
0 = HXa

0 where X
a
0 = analysis perturbation matrix at t = 0;

Xf
tj0= forecast perturbation matrix;

Cjj   = modulus of the baroclinic vector ‖ mr�mp
r2 ‖

� �
at the j-th

model grid point;

etj0 = �xftj0 − �xat  and etj−5 = �xftj−5 − �xat
Both the forecasts �xftj0 (with assimilation at t = 0 days) and �xftj−5

(with assimilation at t = −5 days) were verified against a reference

analysis �xat which is a product of 80 ensemble LETKF-ROMS

(Baduru et al., 2019) used for operational ocean state forecast at

Indian National Centre for Ocean Information Services (INCOIS).

The evaluation forecast time is taken as 5 days.

We use 20 ensembles in this EFSO experiment with a 5 days

assimilation window in the LETKF-ROMS starting from August 15,

2016 till December 31, 2017. This study examines two data

assimilation systems. In the first system, we assimilate all the

available 5th day’s observations which lie north of the equator

using LETKF in ROMS. We call this assimilation system ‘ALL’. For

each observation during an assimilation cycle, we estimate the sum

of the cost function over all those model grid points that lie within

the localization radius of the particular observation. If this sum

turns out to be negative (positive), the observation contributes

positively (negatively) to the model analysis by reducing

(increasing) the forecast error and we call this data beneficial

(harmful) during that assimilation cycle. Note that the data

measured by any observing system at any depth can alternate

between beneficial and harmful over assimilation cycles. We see

that approximately half of the total observations which go into ALL

are beneficial to the system and contribute to the improvement of

the model state (Figure 2). We identify these observations as

beneficial observations. The rest of the observations do not either

improve the model state or degrade the state. We identify these as

detrimental observations. In the other data assimilation system, we

use only the beneficial observations estimated from the first system

to rerun the system from the same initial condition. We call this

system ‘BEN’. Whenever we compare ALL or BEN with available

observations, we use a short term forecast (up to five days)

throughout the study.
3 Results

We assess the statistics of forecast error reductions and how well

the estimated error reduction represents the true error reduction.

Both the true and estimated forecast error reductions are calculated

by comparing the ocean states from ALL with a forecast lead time of

5 days with the ocean states estimated from 80 ensemble LETKF-

ROMS. At each assimilation cycle, the true error reduction is

calculated as eTtj0Cetj0 − eTtj−5Cetj−5 whereas the estimated error

reduction is simply the cost function at that assimilation cycle.

The cost function is estimated at each model grid point for each

observation during each assimilation cycle. This allows us to assess

the impact of the observation type (temperature, salinity and SST)
frontiersin.org
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on the cost function. Also, the improvements or degradations can

be aggregated spatially or temporally for each observation type.

We estimate the cost function at time t (J(t)) as follows:

J(t) =o
j
o
l

Jj,l(t)

That is, the cost function at each model grid point (j) is summed

across the model domain (both horizontally and vertically) and all

observations (l) across all observation types. The estimated error

reduction is equivalent to the true error reduction under ideal

circumstances. However, the linearity approximations incorporated

while arriving at the estimated error reduction introduces

deviations from the true error reduction. Figure 3A shows the

time series of true and estimated error reduction during the period
Frontiers in Marine Science 05
of our study. A negative (positive) error reduction signifies

improvement (degradation). The true error reduction (black

curve in Figure 3A) remains negative during the period of our

study signifying that there is an overall improvement in ALL due to

assimilation. The estimated error reduction (red curve in Figure 3A)

remains negative during most of the assimilation cycles. The

estimated error reduction however is positive during a few

occasions. Nevertheless, the estimated error reduction manages to

capture almost every peak of the true error reduction during our

period of study. The two time series have a correlation of 0.86 which

is at a 99% confidence level. This shows that the estimated error

reduction manages to reasonably represent the true error reduction

during the period of our study. The error reduction (both estimated

and true) during the initial one and half months is small because of
A

B

FIGURE 3

Time series of true (black) and estimated (red) forecast error reduction verified with 80 ensemble LETKF-ROMS for (A) Northern Indian Ocean and
(B) Bay of Bengal.
FIGURE 2

Time series of ratio of the number of beneficial observations to all the observations.
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assimilating only temperature and salinity profiles. Satellite SST has

been assimilated since October 10, 2016. The introduction of SST

appears to have a pronounced effect on both true and estimated

error reduction. The errors have reduced once the SST is introduced

as SST has a larger impact than temperature and salinity profiles as

we will see while assessing the impact of each type of observation.

We now focus our attention over the Bay of Bengal (the

southern boundary of this analysis is up to 7°N). We plot the true

(black curve) and estimated (red curve) error reduction only over

the Bay of Bengal in Figure 3B. Both the true and the estimated

error reduction remains negative during the entire period of our

study signifying that there is an overall improvement in the Bay of

Bengal due to assimilation. The correlation coefficient between the

true and estimated error reduction has increased to 0.95 (> 99%

significance). This implies that the estimated error reduction could

represent the true error reduction over the Bay of Bengal

significantly better than what it could for the whole northern

Indian Ocean. Also, this indicates that the source of positive

estimated error reduction during some occasions in Figure 3A

could come from the Arabian Sea.

We now assess the average impact of each observation type in

the two basins - Arabian Sea and Bay of Bengal. The southern

boundary of the Arabian Sea (Bay of Bengal) is chosen at 5°N (7°N).

The impact is estimated by summing the cost function of an

observation type over the depth and the duration of the study

followed by dividing it with the number of that observation type

assimilated. It is then summed over the individual basin. We plot

the average (total) impact per observation for the three observation

types - temperature, salinity, and SST - in Figures 4A, B. We see that

assimilating SST imparts the largest impact across the two basins

both in terms of average impact and total impact. This is possibly

because of the large number of available SST observations

compared to temperature and salinity (see Figures 5A–F) and

because of more homogeneous spatial coverage of SST

observations (see Figure 5G). Also, the average impact of SST is

pronounced in the Arabian Sea compared to that in the Bay of

Bengal. That is because the number of SST observations in the

Arabian Sea exceeds that of the Bay of Bengal by a considerable

margin (see Figures 5A, B) coupled with a more homogeneous

representation of SST in the Arabian Sea (Figure 5G). In addition,

the SST variability in the Arabian Sea is more pronounced than in

the Bay of Bengal (Murtugudde et al., 2007; Khan et al., 2021).

Feeding the SST observations likely improves the mesoscale

variability of SST near the western boundary of the Arabian Sea

and the variability of SST in the south-central part of the basin

during summer monsoon. In contrast, the numbers of temperature

and salinity observations are comparable in the Bay of Bengal and

Arabian Sea. But the impact of salinity observations is more

pronounced in the Bay of Bengal than that of temperature.

To further analyze the impact of observation types with depth, we

assess the impact of temperature (Figure 6) and salinity observations

(Figure 7) versus depth in the two basins. For each basin, this is

estimated by summing the cost function across all grid points for

temperature (or salinity) observations at each vertical layer and

subsequently dividing it by the total number of temperature (or

salinity) observations in that layer during the period of our study. The
Frontiers in Marine Science 06
impact of salinity observation in the Bay of Bengal is larger than that

of the Arabian Sea across the depth. The largest impact of salinity

observation in the Bay of Bengal occurs at 20-75 m. The impact of

temperature observations is comparable along the depth of top 200 m

in the Bay of Bengal and Arabian Sea. Also, the impact of salinity

observations outscores the impact of temperature observations in the

Bay of Bengal – particularly in the top layers where the freshwater

resides. The model does not ingest freshwater fluxes from major

rivers like Ganga and Brahmaputra. Instead, the impact of freshwater

fluxes is captured only through a weak relaxation to monthly salinity

climatology with a timescale of 30 days. Consequently, the salinity

representation in Bay of Bengal is not properly reproduced in the

model thereby leaving large scope for improvements.

Which of the two regions - Arabian Sea and Bay of Bengal -

have more beneficial observations? In Figure 8, we plot the

percentage and number of beneficial temperature and salinity

observations in the two basins - Arabian Sea and Bay of Bengal.

We find that the Arabian Sea and Bay of Bengal have nearly

comparable percentages of beneficial temperature and salinity

observations even though the exact numbers vary across the

period of our study. However, the Bay of Bengal has more

beneficial temperature and salinity observations than the Arabian

Sea, i.e., there are more observations in the Bay of Bengal that

positively contribute to the improvement in the ocean state. Also,

there are significantly more sub-surface beneficial observations in
A

B

FIGURE 4

(A) The average impact of Temperature, Salinity, and Sea Surface
Temperature observations in Arabian Sea (blue) and Bay of Bengal
(orange). (B) The total impact of Temperature, Salinity, and Sea
Surface Temperature observations in Arabian Sea (blue) and Bay of
Bengal (orange). Note that two different axes and hence labels are
used in (B) – the top axis for temp and salt, and the bottom axis
for SST.
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the Bay of Bengal. Does it render any positive impact on the

estimation of thermocline in the Bay of Bengal?

In order to understand that, we look at the three buoys installed in

the Bay of Bengal along 90°E at three latitudes - 0°N, 4°N and 12°N.

We compare the thermocline depth estimated from ALL and BEN at

these three locations (Figure 9). We would like to point out that all

those three buoys are assimilated in ALL and BEN. Both BEN and

ALL appear to be equally efficient in simulating the equatorial

subsurface characteristics (thermocline depth). The RMSE in

thermocline depth is less than 15 m and the correlation is higher

than 0.75 across both the systems. However, as we approach

northwards, the RMSE (correlation) progressively increases

(decreases) in ALL. Near the head bay at 12°N, the model

thermocline depth and the observed thermocline depth gets

decorrelated. The RMSE rises to ~33 m at 12°N. This vindicates

earlier results that the model fails to estimate the sub-surface oceanic

structure close to the northern Bay where the ocean is largely stratified.

In contrast, we see a much improved simulated thermocline depth in
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BEN even near the head bay. The correlation improves (>40%) and

the RMSE decreases significantly (~26 m) with respect to ALL. The

difference in RMSE between BEN and ALL progressively increases

northwards. The stratification is more pronounced near the head Bay

due to river discharges from Ganges and Brahmaputra. With

baroclinicity as the squared norm, ALL tries to identify all those

observations that improve the stratification of the system within the

localization radius. And when only all those identified beneficial

observations are fed into BEN and all observations that were

detrimental are discarded, we see a marked improvement in the

estimation of thermocline. It appears that the larger the

stratification is, the larger the improvement is in the BEN.

This result is also vindicated when both these systems are

compared against ARGO floats in the Bay of Bengal. We see a

significant improvement in thermocline depth while comparing

with an ARGO which drifts in and around the head of the Bay of

Bengal (Figure 10). Are these improvements limited only in the

estimation of the stratification or is it extended to ocean currents as
FIGURE 5

Time series of number of beneficial (black) and non-beneficial (red) SST (A, B), temperature (C, D) and salinity (E, F) observations in Arabian Sea (top)
and Bay of Bengal (bottom). (G) The spatial coverage of SST observations on the northern Indian Ocean coarse-grained over a length scale of
~100 km.
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well since an improved baroclinicity is expected to improve

the circulation?

The East India Coastal Currents (EICC) is one of the major

events that have a prominent seasonal signal along the east coast of

India. EICC flows poleward from May to October (Shankar et al.,

2002; Schott et al., 2009) along the east coast of India (western Bay

of Bengal). The observations from high-frequency coastal radar

(HF-R) installed at approximately 11.7°N and 80.8°E on the east

coast of India is used for comparison. Ocean current data were not
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assimilated during any of the experiments. HF-R measures hourly

surface currents up to 200 km offshore with a spatial resolution of 6

km (Jena et al., 2019; Paul et al., 2021). We use daily averaged data

for estimating RMSE. We compare surface currents from the BEN

and ALL experiments with HF-R surface currents during the

monsoon period June-September, 2017 when the stratification is

large. We plot the difference in RMSE between these two

experiments with respect to HF-R surface currents in Figure 11.

Negative (positive) values indicate that BEN improves (degrades)

the surface currents compared to ALL. We see that the zonal and

meridional surface currents estimated in BEN are closer to observed

EICC compared to that of ALL - particularly within the bulk of the

region observed by the HF-R. We, however, do see some

degradation at the edges of the domain of observation. This may

be because the quality of HF-R currents at the edges is questionable

(Cosoli and Bolzon, 2015; Wyatt et al., 2017). There are regions

where the meridional (zonal) current has improved by more than

0.38 m/s (0.25 m/s). During the rest of the season, we do not see any

significant improvement. This comparison exhibits improvements

in surface currents that are limited to a small region across the east

coast of India. Is this improvement extended across the entire basin

of the Bay of Bengal?

We therefore compare the ocean surface currents averaged over

the Bay of Bengal and the top 30 m from ALL and BEN with Ocean

Surface Current Analysis Real-time (OSCAR) data. The mixed layer

depth in the head of the Bay of Bengal is very shallow due to higher

stratification and OSCAR currents capture the currents almost upto

mixed layer depth (Li et al., 2017). BEN shows an overall

improvement of near-surface currents along both zonal and

meridional directions in the Bay of Bengal (Figure 12). The

improvements are however not overwhelming.

Is this improvement in surface current reflected in the

subsurface currents as well? We plot the time-series of zonal and

meridional currents near Puri, Odisha at 86°E, 19°N (Figure 13A)

during August, 2016-February, 2017 - the duration when the

stratification over the Bay of Bengal is large due to monsoon and

large river discharges (see Figure 1) - from Acoustic Doppler

Current Profiler (ADCP), BEN and ALL. The strengthening of

zonal current during October-November seen in ADCP is not

captured when all observations are assimilated (ALL). However, if

only beneficial observations are assimilated, the pronounced

currents are captured during the late phase, i.e., during

November. ALL also estimates a spurious large zonal and

meridional current during February which is not vindicated by

observations. BEN however manages to reduce the magnitude of

this spurious current to a large extent. The subsurface currents of

BEN improve in terms of reduced RMSE by ~5–10% and ~5%

(Figure 13B). During the rest of the period of our study when the

stratification is weaker, there is not much improvement in using

beneficial observations in improving the subsurface currents.

In order to understand why the improvements are

overwhelming in the Bay of Bengal, we assess the average impact

of each beneficial temperature (Figure 14A) and salinity

(Figure 14B) observations in the two basins along the depth on

the ocean state in BEN. The impact of observations in BEN is

calculated in a similar way of what is followed in ALL. This is to
FIGURE 6

Average impact of each Temperature observation in the Arabian Sea
(blue) and Bay of Bengal (orange) at different depths.
FIGURE 7

Average impact of each Salinity observation in the Arabian Sea (blue)
and Bay of Bengal (orange) at different depths.
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note that this impact should not be compared with the impact

estimated in ALL because removal of detrimental or neutral

observations at each assimilation cycle has cumulative effects on

the background state, and the reduced number of observations

exhibits a larger average impact than assimilating all the available

observations. The purpose of this exercise is to compare the impact

of subsurface beneficial observations in the Arabian Sea and Bay of

Bengal in BEN. The impact of beneficial temperature and salinity

observation in the Bay of Bengal outscores the Arabian Sea across

all the depths. The largest impact of temperature (salinity)

observation in the Bay of Bengal occurs at 75-100 m (50-75 m).

In contrast, the largest impact of temperature (salinity) observation

in the Arabian Sea occurs at 175-200 m (100-125 m) - at a much

deeper depth. Also the impact of temperature transcends to a much

greater depth across both the basins compared to that of the salinity.

This is probably because of the larger variability in temperature at

subsurface (below 200 m) compared to that of salinity across the

two basins. The typical thermocline depth in the Bay of Bengal and

Arabian Sea varies from ~30 m to ~110 m across the seasons (You,

1997). The larger impact of temperature and salinity in the

comparatively upper layers in the Bay of Bengal ensures that the
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stratification and thermocline is better captured in the Bay of Bengal

compared to the Arabian Sea and consequently larger

improvements are seen in the ocean state in the Bay of Bengal. In

short, the dynamically active sub-surface layers (top layers) in the

Bay of Bengal are positively affected due to the assimilation of

beneficial observations leading to an improved stratification and

consequently an improved circulation - particularly during the

monsoons. In contrast, the largest improvements in the Arabian

Sea occur at layers which lie below or at the bottom boundary of the

dynamically active zone leading to minimal or insignificant

improvements in the ocean state.
4 Summary and discussions

In this study, we have explored the feasibility of using ensemble

forecast sensitivity to observations (EFSO) in ocean models which,

until now, have not been studied adequately in the ocean to the best

of our knowledge. Unlike using some conventional energy norm as

the squared norm, we instead used the modulus of the baroclinic

vector to identify the observations that are beneficial to the data
FIGURE 8

Time depth section of percentage (total number) of beneficial (A, E) temperature observations in Arabian Sea, (B, F) temperature observations in Bay
of Bengal, (C, G) salinity observations in Arabian Sea, (D, H) salinity observations in Bay of Bengal.
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assimilation system, i.e., observations that improve ocean analysis.

Only ~50% of the observations improve the ocean analysis while the

rest are neutral or degrade the ocean state.

We see that the number of beneficial observations in the Bay of

Bengal exceeds that in the Arabian Sea if the modulus of the

baroclinic vector is chosen to be the squared norm - particularly

in sub-surface. Using only these beneficial observations improves

the thermocline in the Bay of Bengal. This improvement is most

prominent in regions of large stratification, i.e., the closer we get to

the head Bay, the more pronounced the improvements are. These

improvements are translated into the improvements of ocean

circulation in both surface and sub-surface in the Bay of Bengal.

This is expected because an improved estimation of baroclinicity

improves the circulation of the ocean (see equation 2.2.7 or 2.4.6 in

Pedlosky, 1987). These improvements are most pronounced during

the monsoon when the stratification is large in the Bay of Bengal.

Recent literature shows that locally assimilating many more

observations than ensemble size may degrade analysis, and the

analysis can be improved just by reducing the number of

observations to be assimilated (Hotta and Ota, 2021). So, it can

be argued that the improvements in a small ensemble system (20

members) like BEN can be attributed to a mere reduction in the

number of observations by ~50% compared to its parent system
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which comprises 80 ensemble members (Hamrud et al., 2015;

Schraff et al., 2016) and therefore the improvements may not be

attributable to the chosen squared norm. In order to explore this

possibility, we have conducted an additional experiment called

“DET” where only the detrimental or neutral observations are

assimilated. Interestingly, almost the same number of

observations goes in the assimilation system in both DET and

BEN (see Figure 5). We see that even though DET improves upon

ALL - most likely because of a reduction in the number of

observations - it significantly falls behind BEN (Figure 9). This

establishes that the improvement seen in BEN is not merely an

artefact of the reduction in numbers of observations.

The absence of daily river discharges in the model (due to lack

of data) used to conduct these EFSO experiments poses a serious

challenge in estimating the ocean state. This challenge is

compounded in the Bay of Bengal particularly owing to large

freshwater fluxes that pours in from rivers like Ganges and

Brahmaputra. A part of this challenge is mitigated by weakly

relaxing the model surface salinity to monthly climatology over a

relaxation time scale of 30 days. A major part of this challenge is

expected to be overcome using in-situ salinity observations in data

assimilation. How well do these salinity observations fare in

improving the ocean state? The average impact of salinity

observation in the Bay of Bengal and the Arabian Sea are shown

in Figures 7 and 14B from ALL and BEN. We see that when all

observations are assimilated in ALL, salinity observations degrade

the ocean state in the Arabian Sea below 125 m. However, in the Bay

of Bengal, there are improvements till ~100-125 m after which the

improvements are negligible. Once “bad” observations are removed

from the assimilation system, significant improvements are seen in
FIGURE 9

RMSE (blue) in meters and Correlation Coefficient (red) of
thermocline depth from ALL (starred), BEN (solid circle) and DET
(solid triangle) with respect to RAMA buoys at 0°N, 4°N and 12°N
along 90°E.
FIGURE 10

Taylor diagrams depicting the RMSE (unit in m), Correlation and
Standard Deviation of thermocline depth from ALL (red cross) and
BEN (red filled circle) with respect to along-track measurements
from an ARGO in the head Bay of Bengal. The solid red curve
represents the standard deviation of the observation. The dotted
green curves represent RMSE contours. (Inset) Argo track (black
curve) during the period of study.
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A

B

FIGURE 12

RMSE of (A) zonal and (B) meridional surface currents of ALL (red) and BEN (black) with respect to OSCAR currents in Bay of Bengal (unit in m/s).
A B

FIGURE 13

ADCP mooring in Bay of Bengal at 86°E, 19°N: (A) Time-depth section of ADCP (top), BEN (middle) and ALL (bottom) for zonal (left) and meridional
(right) currents (unit in m/s); (B) RMSE of ALL (red) and BEN (black) currents with respect to ADCP along depth for zonal (left) and meridional (right)
currents (unit in m/s).
A B

FIGURE 11

Difference in RMSE between BEN and ALL with respect to HF-R currents at 11.7°N and 80.8°E in (A) zonal and (B) meridional directions (unit in m/s).
The black line on the left side represents the coastline.
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the Bay of Bengal and Arabian Sea. The impact in the Bay of Bengal

is more pronounced and is also subsequently reflected in the

improvement in the ocean state of the Bay. There are positive

impacts on the Arabian Sea but are not transcended to significant

improvements in the ocean state of the Arabian Sea because of two

probable reasons - 1) the impact in the Arabian Sea per beneficial

salinity observation is about 5-6 fold less compared to that of the

Bay of Bengal, and 2) the spatio-temporal sampling of salinity in the

Arabian Sea (Figure 8G) is inferior to that in the Bay of

Bengal (Figure 8H).

This is reflected in the lack of improvement in the circulation in

the Arabian Sea. We observe that this strategy does not improve the

surface or subsurface circulation in the Arabian Sea (Figure 15)

either near the coast or in the open ocean. But this strategy does not

degrade the circulation either. In short, this strategy helps in
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identifying the beneficial observations that improve the ocean

state in the Bay of Bengal and has limited or no influence on the

ocean state in the Arabian Sea. We believe that this is because of the

choice of the squared norm since the criterion of identifying

beneficial observation depends on the choice of the norm.

We have tested EFSO with other possible norms, e.g., 1) Total

energy, 2) Kinetic energy, 3) Relative vorticity, and 4) Potential

vorticity. But none of these norms have produced an adequate

improvement in model state in any of the basins like what

baroclinic vector as norm does. Assimilating the beneficial

observations determined using total or kinetic energy as squared

norm degrades the subsurface currents in the Bay of Bengal and

does not improve temperature or salinity profiles. Also assimilating

the beneficial observations determined using vorticity as squared

norm has a mixed effects on simulating subsurface currents and
A B

FIGURE 15

(A) RMSE of zonal (left) and meridional (right) currents of ALL (red) and BEN (black) at 73.4°E, 14°N in Arabian Sea; (B) RMSE of zonal (left) and
meridional (right) currents of ALL (red) and BEN (black) at 69.2°E, 20°N in Arabian Sea.
A B

FIGURE 14

Average impact of each beneficial (A) Temperature and (B) Salinity observation in the Arabian Sea (blue) and Bay of Bengal (orange) at
different depths.
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thermocline structure. We are exploring other squared norms that

will have positive impacts across the basins.

EFSO is a handy tool for assessing the impact of assimilated

observations for all operational agencies like INCOIS which use

ensemble assimilation systems for their ocean forecast. However,

increased effort is needed to come up with a holistic strategy that

improves the ocean state across the regions. This is reserved for

future work.
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Fujii, Y., Rémy, E., Zuo, H., Oke, P., Halliwell, G., Gasparin, F., et al. (2019).
Observing system evaluation based on ocean data assimilation and prediction systems:
on-going challenges and a future vision for designing and supporting ocean
observational networks. Front. Mar. Sci. 6,417. doi: 10.3389/fmars.2019.00417

Gelaro, R., Langland, R. H., Pellerin, S., and Todling, R. (2010). The THORPEX
observation impact intercomparison experiment. Monthly Weather Rev. 138, 4009–
4025. doi: 10.1175/2010MWR3393.1

Haidvogel, D. B., Arango, H. G., Hedstrom, K., Beckmann, A., Malanotte-Rizzoli, P.,
and Shchepetkin, A. F. (2000). Model evaluation experiments in the North Atlantic
Basin: simulations in nonlinear terrain-following coordinates. Dynamics atmospheres
oceans 32, 239–281. doi: 10.1016/S0377-0265(00)00049-X

Hallberg, R. (2013). Using a resolution function to regulate parameterizations of oceanic
mesoscale eddy effects. Ocean Model. 72, 92–103. doi: 10.1016/j.ocemod.2013.08.007

Halliwell, G. R. (2004). Evaluation of vertical coordinate and vertical mixing
algorithms in the HYbrid-Coordinate Ocean Model (HYCOM). Ocean Model. 7,
285–322. doi: 10.1016/j.ocemod.2003.10.002

Hamrud, M., Bonavita, M., and Isaksen, L. (2015). EnKF and hybrid gain ensemble
data assimilation. Part I: EnKF implementation. Monthly Weather Rev. 143, 4847–
4864. doi: 10.1175/MWR-D-14-00333.1

Hotta, D., Chen, T. C., Kalnay, E., Ota, Y., and Miyoshi, T. (2017). Proactive QC: A
fully flow-dependent quality control scheme based on EFSO. Monthly Weather Rev.
145, 3331–3354. doi: 10.1175/MWR-D-16-0290.1

Hotta, D., and Ota, Y. (2021). Why does EnKF suffer from analysis overconfidence?
An insight into exploiting the ever-increasing volume of observations. Q. J. R.
Meteorological Soc. 147, 1258–1277. doi: 10.1002/qj.3970

Hunt, B. R., Kostelich, E. J., and Szunyogh, I. (2007). Efficient data assimilation for
spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear
Phenomena 230, 112–126. doi: 10.1016/j.physd.2006.11.008

Jena, B. K., Arunraj, K. S., Suseentharan, V., Tushar, K., and Karthikeyan, T. (2019). Indian
coastal ocean radar network. Curr. Sci. 116, 372–378. doi: 10.18520/cs/v116/i3/372-378

Kalnay, E., Ota, Y., Miyoshi, T., and Liu, J. (2012). A simpler formulation of forecast
sensitivity to observations: Application to ensemble Kalman filters. Tellus A: Dynamic
Meteorology Oceanography 64, 18462. doi: 10.3402/tellusa.v64i0.18462

Khan, S., Piao, S., Khan, I. U., Xu, B., Khan, S., Ismail, M. A., et al. (2021). Variability
of SST and ILD in the arabian sea and sea of Oman in association with the monsoon
cycle. Math. Problems Eng. 2021 (9958257), 1–15. doi: 10.1155/2021/9958257

Langland, R. H., and Baker, N. L. (2004). Estimation of observation impact using the
NRL atmospheric variational data assimilation adjoint system. Tellus A: Dynamic
Meteorology Oceanography 56, 189–201. doi: 10.3402/tellusa.v56i3.14413

Large, W. G., and Gent, P. R. (1999). Validation of vertical mixing in an equatorial
ocean model using large eddy simulations and observations. J. Phys. Oceanography 29,
449–464. doi: 10.1175/1520-0485(1999)029<0449:VOVMIA>2.0.CO;2

Large, W. G., McWilliams, J. C., and Doney, S. C. (1994). Oceanic vertical mixing: A
review and a model with a nonlocal boundary layer parameterization. Rev. geophysics
32, 363–403. doi: 10.1029/94RG01872

Li, X., Chao, Y., McWilliams, J. C., and Fu, L. L. (2001). A comparison of two vertical-
mixing schemes in a Pacific Ocean general circulation model. J. Climate 14, 1377–1398.
doi: 10.1175/1520-0442(2001)014<1377:ACOTVM>2.0.CO;2

Li, Y., Han, W., Ravichandran, M., Wang, W., Shinoda, T., and Lee, T. (2017). Bay of
Bengal salinity stratification and Indian summer monsoon intraseasonal oscillation: 1.
Intraseasonal variability and causes. J. Geophysical Research: Oceans 122, 4291–4311. doi:
10.1002/2017JC012691

Lien, G. Y., Hotta, D., Kalnay, E., Miyoshi, T., and Chen, T. C. (2018). Accelerating
assimilation development for new observing systems using EFSO. Nonlinear Processes
Geophysics 25, 129–143. doi: 10.5194/npg-25-129-2018

Lorenc, A. C., and Marriott, R. T. (2014). Forecast sensitivity to observations in the
Met Office global numerical weather prediction system. Q. J. R. Meteorological Soc. 140,
209–224. doi: 10.1002/qj.2122

Mellor, G. L., and Yamada, T. (1982). Development of a turbulence closure model for
geophysical fluid problems. Rev. Geophysics 20, 851–875. doi: 10.1029/RG020i004p00851

Murtugudde, R., Seager, R., and Thoppil, P. (2007). Arabian Sea response to
monsoon variations. Paleoceanography 22, PA4217. doi: 10.1029/2007PA001467
Frontiers in Marine Science 14
Nurujjaman, M., Apte, A., and Vinayachandran, P. (2013). Data assimilation using
ensemble transform Kalman filter (ETKF) in ROMS model for Indian Ocean. Eur.
Phys. J. Special Topics 222, 875–883. doi: 10.1140/epjst/e2013-01890-3

Ota, Y., Derber, J. C., Kalnay, E., and Miyoshi, T. (2013). Ensemble-based
observation impact estimates using the NCEP GFS. Tellus A: Dynamic Meteorology
Oceanography 65, 20038. doi: 10.3402/tellusa.v65i0.20038

Paul, B., Baduru, B., Paul, A., Francis, P. A., and Shetye, S. R. (2021). Absence of the
annual cycle in shelf current inshore of the East Indian Coastal Current. Continental
Shelf Res. 215, 104355. doi: 10.1016/j.csr.2021.104355

Pedlosky, J. (1987). Geophysical fluid dynamics (Vol. 710) (New York: springer).

Prasad, V. S., Johny, C. J., and Sodhi, J. S. (2016). Impact of 3DVar GSI-ENKF hybrid data
assimilation system. J. Earth System Sci. 125, 1509–1521. doi: 10.1007/s12040-016-0761-3

Reid, R. O., Elliott, B. A., and Olson, D. B. (1981). Available potential energy: A
clarification. J. Phys. Oceanography 11, 15–29. doi: 10.1175/1520-0485(1981)011<0015:
APEAC>2.0.CO;2

Reynolds, R. W., Ji, M., and Leetmaa, A. (1998). Use of salinity to improve ocean
modeling. Phys. Chem. Earth 23, 543–553. doi: 10.1016/S0079-1946(98)00068-8

Rohith, B., Paul, A., Durand, F., Testut, L., Prerna, S., Afroosa, M., et al. (2019).
Basin-wide sea level coherency in the tropical Indian Ocean driven by Madden–Julian
Oscillation. Nat. Commun. 10, 1–9. doi: 10.1038/s41467-019-09243-5

Sanikommu, S., Banerjee, D. S., Baduru, B., Paul, B., Paul, A., Chakraborty, K.,
et al. (2019). Impact of dynamical representational errors on an Indian Ocean ensemble
data assimilation system. Q. J. R. Meteorological Soc. 145, 3680–3691. doi: 10.1002/
qj.3649

Schott, F. A., Xie, S. P., and McCreary, J. P. Jr. (2009). Indian Ocean circulation and
climate variability. Rev. Geophysics 47, RG1002. doi: 10.1029/2007RG000245

Schraff, C., Reich, H., Rhodin, A., Schomburg, A., Stephan, K., Periáñez, A., et al.
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