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of informative single-
nucleotide polymorphisms
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The commercially important species Lutjanus campechanus (Northern/Gulf red

snapper) and Lutjanus purpureus (Southern/Caribbean red snapper) are the

protagonists of a decade’s long taxonomic debate over their species

delimitation, due in part to partial habitat overlap, extensive morphological

similarity, and the lack of resolution when applying canonically reliable DNA

barcoding approaches. In this study, we leveraged publicly available RAD-Seq

data for L. campechanus and L. purpureus to identify species-informative single‐

nucleotide polymorphisms (SNPs) at the genome scale that were successful in

distinguishing the Northern and Southern red snappers, while also detecting

individuals exhibiting introgression. This 4-step empirical approach

demonstrates the value of applying novel bioinformatics pipelines to existing

genome-scale data to maximize the distillation of informative subsets. Our

results facilitate economically relevant species identification in addition to

confirming or challenging species identifications for specimens with data in

public databases. These findings and their applications will benefit future

sustainability strategies and broader research questions surrounding these

overfished and evolutionarily entangled snapper species.
KEYWORDS

red snapper, Lutjanus campechanus, Lutjanus purpureus, species identification, single
nucleotide polymorphisms (SNPs)
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1 Introduction

Global fish production is estimated at $401 billion USD and fish

consistently holds its place as one of the major food commodities

across the globe (FAO, 2020). Routine assessment offish population

structure remains an important factor towards minimizing over-

exploitation and improving fisheries’ stock, but understanding

abundances and geographic distribution relies critically on

accurate species identification (Ying et al., 2011). Morphological

species identification in fishes can be challenging in earlier life

stages (Yancy et al., 2008), and the lack of diagnostic morphologic

traits persists through adulthood for some cryptic species (Griffiths

et al., 2010; Lara et al., 2010; Melo et al., 2016). In these cases,

molecular approaches ranging from analyses of single loci to large

swaths of the genome have directly contributed to the advancement

of conservation efforts by facilitating the development of more

informed fishery management strategies (Gomes et al., 2012;

Ovenden et al., 2015).

Snappers (Lutjanidae) are commercially important reef-

associated fishes normally found around natural and artificial

reefs and occasionally in open waters (Gallaway et al., 2009;

Dance et al., 2011). According to traditional morphology-based

assessments, Lutjanus campechanus Poey, 1860 (Northern/Gulf red

snapper) is distributed mainly off the South Atlantic coast of the

United States, the Gulf of Mexico, and down through the eastern

coastal waters of Central America, with sporadic reports of

expanded southern ranges reaching the coastal and offshore

waters around northern South America (Rivas, 1966; NOAA,

2022). The sister species L. purpureus Poey, 1866 (Southern/

Caribbean red snapper) is found in seas off the coast of

southeastern Brazil, northwards through to the Caribbean Sea,

but reports have been observed further north in the Yucatan

Peninsula (Mexico) and even in the United States off the coasts of

the Carolinas, Georgia, and Northeast Florida (Rivas, 1966; Moura

and Lindeman, 2007). Both species provide major economic

resources for local fisheries (Charuau et al., 2001; Marko et al.,

2004; Begossi et al., 2011; NOAA, 2022), with commercial landings

of L. campechanus in the United States totaling around 7.7 million

pounds ($33 million USD) in 2021 (NOAA, 2022). However, due in

part to remarkable morphological resemblance across life stages and

their partially overlapping distribution, specimens of L.

campechanus and L. purpureus are frequently misidentified,

exacerbating a century-long taxonomic debate (Rivas, 1966).

In practice, DNA barcoding using cytochrome c oxidase

subunit 1 (COI) can accurately identify many commercial species

of fish (Handy et al., 2011) which assists in answering questions

about species distribution, evolutionary history, and for assessing

the authenticity and accurate labeling of fish and seafood products

(Staffen et al., 2017; Willette et al., 2017; Christiansen et al., 2018;

Chen et al., 2019; Nehal et al., 2021). Despite its successful

applicability for most fish species, small-scale barcoding strategies

fail to discriminate closely related species with low genetic

divergence such as L. campechanus and L. purpureus (Cawthorn

et al., 2018; Silva et al., 2018). Early research classified Northern and

Southern red snappers as two separate species (Rivas, 1966), but

follow-up studies argued that they are essentially conspecific
Frontiers in Marine Science 02
populations with widespread distribution across the western

Atlantic region (Cervigón, 1993; Gomes et al., 2008, 2012). Multi-

gene mitochondrial DNA (mtDNA) data along with reports of

interspecific hybridization in northern South America (Pedraza-

Marron et al., 2019) suggest regular gene flow between the species

(Gomes et al., 2008, 2012; Silva et al., 2018). Supplementing

mitochondrial data with nuclear gene data and otolith

morphometrics also failed to reveal a robust species-informative

signal (Marval-Rodrıǵuez et al., 2022), but recent studies based on

genome-wide restriction-site associated DNA sequencing (RAD-

seq) found sufficient genetic evidence to support the hypothesis that

L. campechanus and L. purpureus should be considered two unique

species, albeit with significant admixture at intermediate latitudes

(Pedraza-Marron et al., 2019; Silva et al., 2020).

Here, we leverage a recently published genome assembly for

L. campechanus (Norrell et al., 2020) along with previously

published RAD-Seq data (Pedraza-Marron et al., 2019) to identify

a genome-wide panel of over 10,000 single-nucleotide

polymorphisms (SNPs) capable of in silico delineation of L.

campechanus and L. purpureus. Fish from the more extreme ends

of their respective ranges displayed significant differentiation, but

we also observed more of an allelic patchwork in samples from

more intermediate latitudes. We rolled all analytical steps for SNP-

based species identification into the open-source, user-friendly tool

“Snapper Sn i ff e r” (h t tps : / /g i thub .com/BobLi te rman/

Snapper_Sniffer), and applied this tool to assess species

assignments for all red snapper individuals with genome-scale

data hosted at the National Center for Biotechnology Information

(NCBI). The basic steps of this pipeline are readily adaptable for

many biological systems, providing a rapid option for the

development of DNA-based species identification assays for

species with limited genomic resources, or whenever low

sequence diversity restricts the utility of canonical PCR primers

and DNA barcoding assays.
2 Materials and methods

A detailed stepwise description of the procedures can be found

on the following GitHub repository: https://github.com/

BobLiterman/Snapper_RADSeq
2.1 Pre-processing of sequencing data

All RAD-Seq data for this study were downloaded from the

NCBI Short Read Archive (Supplementary Table S1) and were

published along with the following studies: PRJNA243918 (Puritz

et al., 2014), PRJNA325063 (Norrell et al., 2020), PRJNA329407

(Puritz et al., 2016), PRJNA524905 (Pedraza-Marron et al., 2019),

PRJNA783042 (Portnoy et al., 2022). We trimmed and quality-

filtered all reads with bbduk from the BBMap suite v. 38.86 (B.

Bushnell - sourceforge.net/projects/bbmap/) using a sliding window

with a Q10-cutoff and removing reads with a post-trimming

minimum average quality below Q15 and/or a length less

than 50bp.
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2.2 Identification of species-informative
single-nucleotide polymorphisms

Designing effective species-informative SNPs relies on selecting

appropriate reference samples. To that end, we generated our final

diagnostic SNP dataset after four iterative rounds of comparisons

and filtering (Figure 1), selecting reference individuals in each

round that displayed maximal species separation. SNPs were

designed based on RAD-seq data from Pedraza-Marron et al.

(2019), and we mapped all RAD-Seq datasets against the draft

L. campechanus genome from Norrell et al. (2020) using bbmap as

implemented in the SISRS bioinformatics package (Schwartz

et al., 2015).

We began our search for SNPs using data from the four

populations exhibiting minimal introgression in Pedraza-Marron

et al. (2019) (L. campechanus: Alabama, Florida; L. purpureus:

Fortaleza, São Luı ́s). We calculated the pairwise sequence

similarities between (1) L. campechanus from Alabama (USA)

versus L. purpureus from Fortaleza (Ceará, Brazil) and (2) Florida

(USA) L. campechanus versus São Luı ́s (Maranhão, Brazil)

L. purpureus (Supplementary Figure S1). The genetic

differentiation between Alabama L. campechanus and Fortaleza L.

purpureus was more pronounced when compared to the Florida/

São Luıś samples, so the first set of proto-diagnostic SNPs were

designed based off the Alabama/Fortaleza individuals. For each

species we chose two replicate sets of four individuals, selecting

individuals based on 1) having relatively high numbers of alleles

with read coverage, 2) a high degree of sequence similarity with
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individuals from their reported species, and 3) a low degree of

sequence similarity with individuals from the alternate species. For

each replicate reference set, we identified putative species-

informative SNPs at positions where 1) alleles were fixed/

homozygous in all four individuals, 2) the alleles were fixed

within species, and 3) the alleles varied between species. We

queried the bases at these SNP positions for all L. campechanus

and L. purpureus samples from Florida, Alabama, Fortaleza, and

São Luıś, and we identified all positions that had (1) the L.

campechanus reference allele, (2) the L. purpureus reference allele,

(3) both reference alleles, or (4) neither (Supplementary Figure S2).

Based on the first round of allele characterization, new reference

samples were selected from Florida, Alabama, Fortaleza, and São

Luıś individuals with the lowest proportions of SNPs that matched

either the alternate species or had reference alleles for both species.

From each species, we selected two sets of five individuals, and

species-informative SNPs were identified at genomic sites where 1)

variation was fixed within-species and variable between species and

2) where at least two out of the five individuals had read coverage.

Any genomic positions that had conflicting allelic signal between

the two reference sets were excluded, and resulting SNPs were used

to characterize all samples from Pedraza-Marron et al. (2019)

(Supplementary Figure S3). A third set of reference samples

including 20 individuals per species were selected as above, but

with no restriction on population of origin. These samples were

separated into two sets of ten, and SNPs were identified as before.

We queried these new SNP positions in all samples from Pedraza-

Marron et al. (2019) (Supplementary Figure S4).
FIGURE 1

Iterative approach to design species-informative SNPs for the identification of non-reference L. campechanus vs. L. purpureus samples.
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To generate the final SNP dataset, we identified the 15

individuals per species with the lowest proportion of SNPs

matching the alternate species or both species. We pooled all

SNPs from the third iteration (Reference SNPs 3A + 3B),

removed any SNPs where any reference sample displayed

heterozygosity or conflicting signal, and filtered these SNPs based

on whether there was allelic data for 2, 3, 4, or 5 individuals per

species. We used SNPs with coverage from at least 2 individuals per

species to classify all samples from Pedraza-Marron et al. (2019)

along with samples from other Lutjanus studies (Puritz et al., 2016;

Norrell et al., 2020; Portnoy et al., 2022).
3 Results

3.1 Reference genome mapping of
RAD-seq data

Post-trimming base counts for the 178 RAD-seq datasets from

Pedraza-Marron et al. (2019) ranged from 4.2 Mb – 3.1 Gb (L.

campechanus: n = 105; L. purpureus: n = 73; Supplementary Table

S1). RAD-seq data from other studies ranged between 29 Kb – 1.5

Gb (Supplementary Table S1). Based on read mapping against the L.

campechanus draft genome of (Norrell et al., 2020), samples had a

single allele (i.e., fixed/homozygous sites) at 1.97M – 279M genomic

sites (Average: 67M sites; Supplementary Table S2), with more than

one allele present at between 663 – 1.48M sites (Average: 256K sites;

Supplementary Table S2).
3.2 Generating species-informative SNPs
for the delineation of L. campechanus and
L. purpureus

We used a four-round iterative approach to design and refine a

genome-scale species-informative SNP dataset, with increasing

numbers of high-confidence samples added to subsequent

reference pools (Figure 1). The first set of reference samples came

from Alabama (L. campechanus) and Fortaleza (L. purpureus). Two

replicate reference sets each containing 2 individuals per species

resulted in 24,179 SNPs (Reference Set 1A; Supplementary Table

S4) and 22,121 SNPs (Reference Set 1B; Supplementary Table S4).

To create the second round of reference SNPs we used the

species-informative SNPs identified in the first round to score all

samples from Florida, Alabama, Fortaleza, and São Luıś. Of all

species-informative SNP positions analyzed, individual samples had

coverage of between 664 – 22,560 positions (Supplementary Table

S5). For each species, samples always had the highest allele

matching rate with their species of record (Supplementary Table

S5). L. campechanus samples had L. campechanus alleles at 70.7% -

84.0% of covered sites (Mean: 76.9%; Supplementary Table S5), and

L. purpureus alleles were found at 63.3% - 82.8% of sites among

L. purpureus samples (Mean: 75.1%; Supplementary Table S5).

Among L. campechanus, the L. purpureus allele was detected at

between 6.1% - 28.6% of sites (Mean: 12.0%; Supplementary Table

S5), and among L. purpureus the L. campechanus allele was
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observed at between 8.2% - 25.3% (Mean: 12.9%; Supplementary

Table S5). We selected two replicate sets of 5 samples per species,

and analyses of these reference sets resulted in 19,252 SNPs

(Reference Set 2A; Supplementary Table S4) and 19,720 SNPs

(Reference Set 2B; Supplementary Table S4).

Using the SNPs identified from the second round we performed

the same SNP characterization on all samples from Pedraza-Marron

et al. (2019). SNP coverage ranged from 540 – 19,054 positions per

individual (Supplementary Table S6). Notably, two populations of

L. purpureus from Nueva Esparta (Venezuela) and La Guajira

(Colombia) showed patterns consistent with increased

introgression with L. campechanus (Figure 2, Supplementary

Table S6). In these two populations, individuals had the L.

purpureus allele at around 46% of SNP positions (35.6% - 63.7%;

Figure 2; Supplementary Table S6) compared to other L. purpureus

populations where the allele was observed at more than 72% of sites

on average (59.8% - 83.4%; Figure 2; Supplementary Table S6).

Samples from Nueva Esparta and La Guajira also had

L. campechanus alleles at higher rates, with 17.2% - 45.8% of

positions carrying that allele (Mean: 28.9%; Figure 2;

Supplementary Table S6) compared to an average of around 14%

in the other populations (9.0% - 31.1%; Figure 2; Supplementary

Table S6). We separated the top twenty individuals into two sets of

ten, resulting in 26,738 SNPs and 24,213 SNPs for reference sets 3A

and 3B, respectively (Supplementary Table S4).

The final set of reference SNPs for the delineation of

L. campechanus and L. purpureus was generated following the

third round of SNP-based identification. Individuals had coverage

for 429 – 24,633 SNPs (Mean: 14,246; Supplementary Table S7) and

for each species we selected the 15 samples with the lowest

proportion of alleles matching the opposite species or both

species. We then filtered the final SNP set down to sites that had

mapping coverage data for between 2 - 5 of the 15 total individuals.

Final reference samples for L. campechanus came from three

locations in the USA: Alabama (n = 7), Florida (n=2), and

Louisiana (n=6) and L. purpureus samples came from four

locations in Brazil: Amapá (n=1), Fortaleza (n=6), Salvador (n=3)

and São Luı ́s (n=5) (Supplementary Table S8). With 2 - 5

individuals per species required to have coverage, final SNP

counts were 12,636 (minimum 2), 8,546 (minimum 3), 5,799

(minimum 4), and 4,111 (minimum 5) (Supplementary Table S4).
3.3 RAD-seq derived SNPs are sufficient for
the identification of L. campechanus and
L. purpureus individuals

We used the final set of SNPs to re-identify all samples from

Pedraza-Marron et al. (2019). Results were qualitatively consistent

when requiring 2 – 5 reference samples per species to have SNP

coverage (Supplementary Table S8), and here we discuss results

from the SNPs covered by 2 individuals per species, as this dataset

provided the highest SNP counts (Supplementary Figure 2, Table

S4). Across all L. campechanus samples, 65.6% – 90.2% of covered

SNPs had the L. campechanus allele (Mean: 85.0%; Figure 2;

Supplementary Table S8), 6.2% - 29.7% of sites had the
frontiersin.org
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L. purpureus allele (Mean: 9.0%; Figure 2; Supplementary Table S8),

and 1.5% - 13.8% of SNPs had both alleles (Mean: 5.9%; Figure 2;

Supplementary Table S8). Only eight L. campechanus individuals

had less than 80% of SNPs carrying the L. campechanus allele, with

six from the Yucatan region and two from the Gulf coast off

northern Florida (Apalachicola).

Results were more variable among L. purpureus populations.

The southern-most populations from Brazil (Fortaleza, São Luıś,

Salvador, and Amapá) had the L. purpureus allele at 75.9% - 86.5%

of sites on average (Figure 2; Supplementary Table S8), but this

average was only 50.8% and 48.7% in the northern populations of

La Guajira and Nueva Esparta respectively (Figure 2;

Supplementary Table S8). Similarly, while the L. campechanus

allele was observed on average at 6.4% - 11.9% of sites among the

southern populations (Figure 2; Supplementary Table S8), the

L. campechanus allele was detected on average at 28.0% and

32.7% of sites in individuals from La Guajira (Colombia) and

Nueva Esparta (Venezuela) respectively (Figure 2; Supplementary

Table S8). The northern populations also had a higher proportion of

sites containing both alleles, with 19.3% of sites having both in the

north compared to an average of 8.0% of sites in the south (Figure 2;

Supplementary Table S8). For individuals from Amapá (Brazil), a

population with an intermediate latitude relative to the most

northern and southern populations, 12.1% of sites had both

alleles on average (Supplementary Table S8).

At the time of this study, the RAD-Seq data from Pedraza-

Marron et al. (2019) represented the only publicly available

genome-scale sequence data for L. purpureus, but several studies

had generated comparable data for L. campechanus (Puritz et al.,

2014, 2016; Norrell et al., 2020; Portnoy et al., 2022). We combined

all analytical steps from read trimming through SNP calling into a

fully automated pipeline (https://github.com/BobLiterman/

Snapper_Sniffer) and reanalyzed the L. campechanus samples
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of these independent studies. Mean SNP coverages varied

significantly between study datasets, with data from Pedraza-

Marron et al. (2019) having the highest mean coverage (7,862

SNPs) and data from Puritz et al. (2014) having the lowest mean

coverage (86 SNPs; Supplementary Table S9). In 1,241 out of the

total 1,247 L. campechanus samples, the L. campechanus allele was

detected at 64.1% - 92.8% of queried sites (Mean: 78.1%; Figure 3;

Supplementary Table S9) while the proportion of sites with the

L. purpureus allele was lower and non-overlapping (5.4% - 30.8% of

sites; Mean: 16.2%; Figure 3; Supplementary Table S9).

Six samples from Norrell et al. (2020) caught off the coast of the

Carolinas (n = 2), the Florida Gulf coast (n = 2), and the Alabama

Gulf coast (n = 2) had proportionally fewer L. campechanus alleles

(27.8% - 41.4% of sites; Mean: 32.8%; Figure 3; Supplementary

Table S9), and between 45.3% - 59.5% of sites in those samples had

the L. purpureus allele (Mean: 53.2%; Figure 3; Supplementary

Table S9). For those six samples, 9.9% - 15.9% of sites had alleles

associated with both species (Mean: 12.1%; Figure 3; Supplementary

Table S9), compared to 0% - 12.8% of sites (Mean: 4.6%; Figure 3;

Supplementary Table S9) in the remaining 1,241 samples. These six

samples had SNP coverage for 268 – 564 sites (Supplementary Table

S9), which was above the median value for all samples (242 SNPs;

Supplementary Table S9). For all L. campechanus datasets excluding

these six samples, the ratio of the number of contigs containing

L. purpureus alleles versus those containing L. campechanus alleles

was between 25% - 27% (Supplementary Table S10). The

L. purpureus samples from Pedraza-Marron et al. (2019) had

L. purpureus alleles on around 3 times the number of contigs that

harbored L. campechanus alleles (L. purpureus contigs: 3,233; L.

campechanus contigs: 1,904; Ratio: 2.96; Supplementary Table S10),

while the six samples from Norrell et al. (2020) had an intermediate

value with an average of 209 contigs containing L. purpureus alleles
A

B

FIGURE 2

SNP-based identification of Lutjanus samples from Pedraza-Marron et al. (2019). (A) L. campechanus samples (locations 1-9) and (B) L. purpureus
samples (locations 10-15) were collected from different locations in North and South America, as shown in the map.
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versus 138 contigs containing L. campechanus alleles (Ratio: 1.51;

Table S10).
4 Discussion

In this study, the Lutjanus campechanus genome assembly of

Norrell et al. (2020) enabled a genome-guided reanalysis of snapper

RAD-Seq data from Pedraza-Marron et al. (2019), and in

concordance with that study we too find support for allelic

variation capable of distinguishing Northern and Southern red

snappers. We identified over 12,000 genome-anchored SNPs that

demonstrated utility in assessing the species of Lutjanus samples

collected in different studies, and compiled all the analytical steps

for our empirical method to identify diagnostic SNPs for species

identification into the Nextflow bioinformatics pipeline “Snapper

Sniffer” (https://github.com/BobLiterman/Snapper_Sniffer). This

pipeline allows users to query their own raw sequencing data in a

single command. Genome-anchored SNP datasets such as this

provide valuable insights towards the development of rapid

species diagnostic tools (e.g., designing PCR markers or qPCR

assays in informative regions), which are often critical

infrastructure in the fight against seafood misidentification.

Furthermore, this method can be easily extended to vary the

criteria used to select reference individuals used to select SNPs,

and their numbers at each step during analysis of other datasets

with different characteristics.

Lending support to the robustness of our diagnostic SNPs when

applied to external datasets, a vast majority of the allelic SNP

profiles from NCBI L. campechanus were qualitatively equivalent
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to L. campechanus individuals from Pedraza-Marron et al. (2019).

Six individuals, all labeled as L. campechanus at NCBI and caught or

procured from either the American Gulf coast or off the coast of the

Carolinas, displayed an allelic profile that was more similar to L.

purpureus from northern South America, supporting intermittent

reports of L. purpureus or potential hybrids in more northerly

waters (Rivas, 1966; Moura and Lindeman, 2007). Understanding

whether these samples represent more recent hybrids or ‘northern’

L. purpureus, along with other deeper dives into the complex

evolutionary trajectories of these lineages, would greatly benefit

from incorporating more data both in terms of depth and breadth.

Aside from the samples from Pedraza-Marron et al. (2019), out of

over 12,000 SNPs that were identified as putatively informative the

median coverage for individual samples was fewer than 300 sites.

This scant data distribution precludes meaningful analysis of many

data subdivisions, and the application of optimal marker filtering

strategies (O'Leary et al., 2018) are also limited when many sites are

covered by only a few reads. The method designed in this work is

promising for recovering diagnostic SNPs despite large variations in

coverage among samples. Varying some parameters of the search,

such as sample size at each step, would be worth exploring.

Although linkage map data from the L. campechanus genome was

not considered as a factor in SNP identification here, one option to

combat limited sequencing depth in derived assays would be to

identify a limited yet highly discriminatory subset of SNPs that were

(1) evenly distributed across linkage groups and (2) recoverable

from the vast majority of samples even when sequencing at low

depth. Using chromosomal linkage data would also permit more

precise dissection of the historical allelic signal and would help

disentangle complex signal from hybridization or gene flow events.
FIGURE 3

In silico identification of L. campechanus individuals from this and other studies using SNPs designed in this study. From top to bottom:
PRJNA524905 (Pedraza-Marron et al., 2019), PRJNA243918 (Puritz et al., 2014), PRJNA329407 (Puritz et al., 2016), PRJNA783042 (Portnoy et al.,
2022), typical specimens from PRJNA325063 (Norrell et al., 2020), apparent hybrids from PRJNA325063 (Norrell et al., 2020).
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The robustness of SNP datasets designed using reference

individuals will scale with the logic underling reference selection

and how the resulting SNPs are filtered. In this study, we used an

iterative approach to reference selection, starting from populations

with a priori expectations of strong allelic distinction and

broadening out to allow references from any population so long

as they provided maximal separation between species, but whole

genome clustering pipelines such as STRUCTURE (Pritchard et al.,

2000) or Mash (Ondov et al., 2016) would provide alternative

methods to selecting the genetically distinct references.

Considering the low sequencing depths for the query samples, we

chose to filter our reference SNPs loosely so that individual queries

had a chance to cover a reasonable number of SNPs. However,

recent advances in machine learning algorithms have been applied

to diagnostic SNP development in plants (Korani et al., 2019) and

animals (Momeni et al., 2021) and these methods may provide a

route to maximize discrimination-per-SNP basis even when dealing

with limited datasets.

While the current incarnation of ‘Snapper Sniffer’ is applied to

the delineation of L. campechanus and L. purpureus, the underlying

computational steps would apply to most any biological system,

with similarly successful applications in other fish species (Literman

et al., 2023) along with diploid and polyploid plant species (Hunter

et al., 2021; Literman et al., 2022). We note that the parameters

presented herein might need some adjustment for the analysis of

other datasets. Accurate species identification is a critical factor for

abundance assessment and informed conservation efforts

(Rodrigues et al., 2006; Beerkircher et al., 2009; Kürzel et al.,

2022), suggesting that the generalization of scripts associated with

this pipeline along with de novo pangenome options for clades

lacking a reference genome (Schwartz et al., 2015) would enable

broad deployment across understudied clades lacking robust DNA-

based markers.
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