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Introduction:Worldwide coastal fish resources face severe threats from fisheries

overexploitation. However, the evaluation of abundance trends in most coastal

fisheries is constrained by limited data. This study took blackmouth croaker

(Atrobucca nibe), a stock depleted by coastal trawl fishery in southwestern

Taiwan, as an example to showcase the development of a relative abundance

index from data-limited fishery (only landing data were available).

Methods: This study employed unique data sourcing from voyage data recorders

(VDRs) to estimate fishing effort (in combination with landing data to estimate the

catch per unit effort, CPUE) that demonstrated the potential application in global

data-limited fisheries and assessed alternative approaches for predictors of

fishery-targeting practices to condition effort for producing more accurate

metrics of relative abundance. The nominal CPUE was standardized using

three statistical models: generalized linear model, generalized additive model

(GAM), and vector-autoregressive spatiotemporal models (VASTs) with two

treatments of each of the four effects: environmental (sea temperature, salinity,

density of mixing layer, seafloor temperature, and chlorophyll), vessel, spatial,

and targeting effects. A total of 15 models were designed and compared for these

effects, and their explanatory power (EP) was evaluated using cross-validation R2

and other metrics.

Results and discussion: Results indicated that the targeting effect exerted the

most significant influence on standardization and was suggested to be addressed

through the principal component analysis (PCA) approach. Both vessel and

spatial effects demonstrated considerable influence, whereas the

environmental effect exhibited a limited impact, possibly due to the small

fishing area in this study. Regarding models’ EP, given the nonlinear nature of
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the PCA algorithm and environmental data, the study highlighted the superiority

of the GAM over linear-based models. However, incorporating nonlinear features

in VAST (M15) makes it the most effective model in terms of predictive power in

this study. Concerning the stock status, despite variations in relative CPUE trends

among major models, a general declining trend since 2015 signals the potential

decline of the blackmouth stock and urges fishery managers to consider further

design of management measures.
KEYWORDS

data-limited fisheries, fishing effort estimation, CPUE standardization, VAST, GAM
(generalized additive models), spatiotemporal effects, nonlinear feature VAST, five-
fold cross-validation
1 Introduction

Coastal marine ecosystems, renowned for their high

productivity, face severe threats from pervasive human

disturbance, with overfishing emerging as a primary concern

leading to the depletion of fish stocks (Jackson et al., 2001;

Halpern et al., 2008; Nias, 2013). Many data-rich stocks have

been assessed with sophisticated approaches, such as stock

assessments, and managed accordingly with strengthened

measures. Recent analyses suggested a global recovery of the

population of well-managed stocks (Duarte et al., 2020; Hilborn

et al., 2020), although this is cautioned to be over-optimistic (Duarte

et al., 2020). In contrast, many coastal fisheries lack proper

management due to insufficient data, creating uncertainty about

stock depletion levels and posing challenges in persuading

stakeholders to implement necessary measures, such as reducing

fishing efforts (King, 2007). The absence of adequate data is

attributed to various factors, notably the frequent omission

of small-scale coastal fisheries from logbook submission

requirements, which hinders the derivation of comprehensive

geo-referenced effort data (Chang et al., 2019; Sari et al., 2021).

Various alternative approaches can be explored to address the

issue, especially in obtaining abundance indices that provide

insights into population abundance changes over time (Chang

et al., 2017; Ducharme-Barth et al., 2018). Utilizing market

landing data, which includes date information and vessel identity

and adheres to specific data quality standards (e.g., minimal

discarding due to size-specific high grading, at-sea dumping, and

losses during fish processing), can serve as a substitute to represent

the catch (Afonso-Dias et al., 2004; Lourenço and Pereira, 2006;

Bastardie et al., 2010; FAO, 2023). Fishing effort can be estimated by

simple methods such as taking days absent from port or each

landing event as a multiplier of fishing day (Greenstreet et al., 2009;

Sonderblohm et al., 2014) or, more sophisticatedly, by applying

fishery-specific algorithms to auxiliary data such as the data from

vessel monitoring system (VMS), coastal surveillance radar system

(CSRS), or voyage data recorders (VDRs) (Lee et al., 2010; Gerritsen
02
and Lordan, 2011; Sonderblohm et al., 2014; Chang, 2016; Chang

et al., 2017). Catch per unit effort (CPUE) can then be calculated

from those data.

CPUE can be influenced by various factors unrelated to

population abundance, making the nominal CPUE seldom

directly proportional to the abundance over the entire history of

exploitation and so needs to be standardized to eliminate the impact

of these factors on the abundance index (Maunder and Punt, 2004).

The generalized linear model (GLM) is widely employed for this

purpose, and the generalized additive model (GAM), incorporating

components to capture both linear and nonlinear relationships

between CPUE and influencing factors (Sacau et al., 2005), is also

commonly used (Winker et al., 2014; Chang et al., 2019). Given that

catch data often include a substantial number of zero catches for the

studied species, the two-stage delta method [e.g., delta-GLM or

delta-GAM, consisting of a positive-catch model (PCM) and a zero-

proportion model (ZPM)] is frequently applied to address the

impact of high zero-catch records in the data (Lo et al., 1992;

Chang et al., 2017), unless the proportion of zero-catch records is

exceptionally high (e.g., Wu et al., 2021).

These statistical models offer the flexibility to treat any

categorical factor, such as vessel identifier, to allow estimation of

the vessel-specific differences in fishing efficiency as either a fixed or

random effect. When incorporating random effects, the adaptation

of the GLM/GAM to “mixed-effect” models (GLMM/GAMM)

becomes essential to address variability associated with random

factors (Helser et al., 2004). In addition to these models, an

increasing number of studies have embraced vector-autoregressive

spatiotemporal models (VASTs) (Thorson, 2019; Thorson and

Haltuch, 2019; Hansell et al., 2022), a geostatistical model that

employs a delta-GLMM approach and simultaneously integrates

spatial and spatiotemporal effects within the statistical R package.

Factors that have a significant influence on fishing efficiency

are necessary to be considered in the CPUE standardization

models, such as sampling time (year, quarter, or other

timespan), location (statistical region, 5° square area, or other

resolution), and vessel-related aspects (vessel size or vessel
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characteristics) (Murray et al., 2013). The targeting effect is

particularly pivotal in understanding the intricate dynamics of

multispecies fisheries (Maunder and Punt, 2004; Chang et al.,

2011; Okamura et al., 2018; Chang et al., 2019), especially in trawl

fisheries that frequently capture a diverse array of species (up to

200) simultaneously and change targets seasonally. k-means

clustering analysis, commonly used to characterize fish

targeting, groups species-specific catch data into clusters

showing similar catch patterns (Chang et al., 2011; Wu et al.,

2021). One of the inherent challenges in clustering analysis lies in

determining the optimal number of groups into which the data

should be divided. Alternatively, some studies propose that

principal component analysis (PCA) is more effective in

selecting species that capture information about the composition

of fish market catches (Winker et al., 2013, 2014; Chang et al.,

2019). PCA’s primary advantage lies in its ability to circumvent

the need for categorizing fishing vessels while accounting for the

covariance between features in the catch composition data.

The majority of fisheries with a spatial dimension reveal that

adjacent locations exhibit similar catch rates, suggesting that the

distribution of fish abundance or availability is not random but

exhibits a discernible degree of spatial continuity (Booth, 2000;

Poulsen and Holm, 2007). Addressing this spatial component is

crucial for obtaining accurate estimates of relative abundance

(Swartzman et al., 1992). Conversely, the spatial distribution of

marine fishes is significantly influenced by environmental factors,

encompassing biological elements such as chlorophyll

concentration and hydrological factors such as water temperature

and salinity (Solanki et al., 2003; Pennino et al., 2020). Therefore, it

is imperative to account for the spatial heterogeneity in CPUE data

and the spatial effects of environmental and hydrological factors

during the standardization process.

Blackmouth croaker, Atrobucca nibe (Jordan and Thompson,

1911), is one of the most important demersal fish species in the

southwest coastal waters (including offshore waters hereinafter) of

Taiwan, with a high economic value. This species, estimated to have

a growth rate of 0.39 year−1 with L∞ = 53.11 cm, was harvested

mainly by small-scale multispecies trawl fishery and gillnet fishery.

There has been a significant decline in the domestic catch of

Taiwan, dropping from 2,500 tons in 1993 to less than 500 tons

after 2011 (Huang et al., 2022; Shao, 2023). However, like the other

coastal fisheries around Taiwan, the exemption of submission of

catch data from the fishery has hindered informing managers/

industry about stock status derived from scientific evidence. For

the stock, only market landing data, no spatiotemporal catch and

effort data, were available and were considered a data-limited stock

(ICES, 2012). This study uses blackmouth croaker off southwestern

Taiwan as an example to demonstrate a set of procedures to

develop relative abundance indices that could inform future

management measures.

This study conducted a comprehensive analysis involving three

levels: (1) nominal CPUE derivation: deriving nominal CPUE from

market landing data and VDR data, originally designed for

calculating fuel subsidies for small-scale fishing vessels (Chang,

2016). (2) CPUE standardization: standardizing CPUE using three

statistical models (delta-GLM, delta-GAM, and VAST). Two
Frontiers in Marine Science 03
treatments were applied for each of the four effects :

environmental effect (with and without), vessel effect (fixed and

random), spatial effect (with and without), and targeting effect

(k-means and PCA). This resulted in a total of 15 model runs.

(3) Model Explanatory Power (EP) Evaluation: assessing the EP of

model runs through cross-validation R2 (CV-R2). The latter,

calculated via a cross-validation procedure (Zhang and Yang,

2015; Hsu et al., 2022), determined the overall correlation

between observed and predicted values while mitigating

overfitting concerns (Chang et al., 2017). The findings of this

study offer a scientific foundation for managers to engage with

stakeholders regarding stock trends. Additionally, the results

provide valuable insights and guidelines for other coastal fisheries

in Taiwan or similar regions with similar data-limited situations,

aiding in the development of relative abundance indices.
2 Materials and methods

2.1 The data

Blackmouth croaker is predominantly harvested by coastal

trawl and gillnet fisheries in the northern and southwestern

regions of Taiwan, with the trawl fishery having a higher catch

proportion in recent years (> 60% in general; Fisheries Agency,

2022). Two distinct stocks were identified in the north and

southwest (Hwang and Chen, 1984), and this study concentrates

on the southwestern stock due to its higher prevalence in the overall

catch. The species is captured alongside nearly 200 demersal species

throughout the year by the trawl fishery (refer to Section 2.2.1.2),

with a moderate higher in catch during the spawning season from

January to May (Hsiao et al., 2017). Mitochondrial cytochrome b

gene analyses on 59 samples from five locations in the southwestern

waters confirm that blackmouth croakers in this region belong to

the same stock (unpublished project report by author SK Chang).

The majority of blackmouth croaker caught by the trawl fishery in

the southwestern waters (> 90%) is landed at Keziliao Fish Market

in Zihquan, Kaohsiung City, the primary market for vessels

operating in this region, particularly those engaged in coastal

trawl fishing (Huang et al., 2022).

Daily vessel-specific landing data, including species-specific

weights spanning from 2011 to 2021, were obtained from the

market. The data were from all fisheries (no separation of fishing

gears) and included a total of 268,176 landing events (annual average =

24,380) for all species and 33,907 landing events (annual average =

3,082) for blackmouth. Interviews with fishers indicated that, given the

species’ high market value in auction markets for whole fish, at-sea

discards or dumping are unlikely. This observation supports the

reliability of using individual vessels’ landing data as a representative

source for their catch information (Chang et al., 2019).
2.2 Fishing effort and nominal CPUE

Most small-scale offshore fishing vessels in Taiwan have

installed simplified VDR to evaluate fuel subsidies from the active
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moving hours of the vessels at sea (Chang, 2016). Akin to the “Black

Box” on airplanes, the VDR is an equipment-fitted onboard ships

that record the various data on a ship which can be used for

reconstruction of the voyage details and vital information during an

accident investigation (Bhattacharjee, 2019). It was required to be

installed on passenger ships and ships other than passenger ships of

3,000 gross tonnage and upwards constructed on or after 1 July

2002, under International Maritime Organization (IMO)

regulations that entered into force on 1 July 2002 (IMO, n.d.).

The simplified device provides high-resolution temporal position

and speed data like that of VMSs (Figure 1), not in real time but

with lower device cost, no data transmission fee, and higher

resolution at 3-min intervals. This information incidentally can be

used to estimate fishing effort through a general criteria of 2–5 knots

for Taiwanese trawl fishery that was developed by a five-step

procedure for reviewing fishing patterns and defining speed

criteria (Chang, 2016). Constrained by the restriction of the VDR

data provision policy of the Fisheries Agency (FA), VDR data of

vessels with a 5-year average of blackmouth catch exceeding 1.5 mt

were obtained. A total of 29 coastal trawlers (about 25% of the

vessels that have landed blackmouth for the past 5 years) were used

for this study (the sample vessels), ranging from 20 to 100 gross

registered tonnage, whose blackmouth catch during 2011–2021 was
Frontiers in Marine Science 04
381,743 mt, 62% of the total blackmouth catch, from 20,756 trips.

Annual number of sample vessels ranged from 22 to 28.

Based on the work of Chang (2016) and interviews with

fishermen, the following rules were established and applied to the

VDR data to estimate fishing effort through an automated

algorithm: (1) the VDR records that leaving from and later

returning to the fishing port were marked as a trip. The number

of VDR records between leave and return must be over 40 (about

2h). The VDR records located continuously in port were excluded.

(2) The records with a speed of 2–5 knots for at least ten consecutive

records (approximately 30 min) were considered as fishing. The

short period of slow speed leaving and returning the port was

considered as navigating. (3) The location in a resolution of 0.1°

square that the vessel stayed longest during the fishing day was

defined as the representative fishing location. (4) The records with

speed > 5 knots were assumed to be navigating (e.g., transiting to

fishing grounds).

The spatial distributions of VDR records identified as fishing

according to rule (2) are illustrated in Figure 2. It is important to

note that the VDR record distribution may cover a larger area than

the CPUE distribution used for standardization analyses, as only

one location in a trip was chosen to represent fishing according to

rule (3).
FIGURE 1

VDR position and vessel speed of a Taiwanese coastal trawler fishing for blackmouth croaker in southwestern Taiwan during January 16–17 of 2011.
The upper panel indicates vessel tracks with latitude on the Y axis and longitude on the X axis, and the bottom panel indicates vessel speeds with
time and date on the X axis and speed (knots) on the Y axis. The two panels include corresponding color dots to indicate which points on the map
(top panel) correspond to which points in the speed time series (bottom panel). The colors rotate, and dots may overlap in the same position in the
upper panel. More descriptions on the plots can be found in Supplementary Material.
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Following the outlined procedures, a comprehensive dataset of

trip records was collected from the sampled vessels. Multiple sets

were deployed during each trip, as illustrated in Figure 1. However,

the fishing hours per trip exhibited variability based on fishing

conditions and weather. Therefore, fishing effort was calculated as

fishing hours. Subsequently, the trip-basis effort data (measured in

fishing hours) were integrated with the corresponding market

landing data of the trip for the sample vessels, to construct a trip-

basis logbook-like data with time and location information for the

calculation of nominal CPUE (kg per hour). On average, these

sample vessels undertook approximately 1,887 trips with 3.5 mt of

blackmouth annually, each spanning an average of 5.3 fishing hours

per trip (excluding transition time). Since the multispecies feature of

the trawl fishery and the relatively low abundance of blackmouth

stock, about 60% of the trips contained zero blackmouth catch.
2.3 CPUE standardization

2.3.1 Key effects considered
2.3.1.1 Environmental effect

The spatial distribution of marine fishes is strongly influenced

by environmental factors. The studied region encompasses cold

water from the China Coastal Current and warm water from the

Kuroshio Branch Current in different seasons, so examining the

environmental effect should be necessary. Blackmouth is distributed

in a depth of 40 m–200 m (Shao, 2023). Hydrological data including

sea temperature at depth of 109 m (tem109), salinity at depth of 109

m (sal109), density ocean mixed layer thickness (mlt), chlorophyll

(chl), and seafloor potential temperature (sft) were collected from

the Copernicus Marine Environment Monitoring Service (CMEMS)

(https://resources.marine.copernicus.eu/products), for the region

ranging from 117°E to 121°E and 21°N to 24°N (Figure 2). The

environmental data were obtained from CMEMS Global Ocean

Physics Reanalysis (https://doi.org/10.48670/moi-00021) for 2000–

2019 and from the Operational Mercator global ocean analysis and
Frontiers in Marine Science 05
forecast system (https://doi.org/10.48670/moi-00016) for 2020–

2021. These data were cross-checked with similar datasets from

the Ocean Data Bank that were sponsored by the National Science

and Technology Council, Taiwan, with higher resolution around

Taiwan but a shorter time period (2000–2018) (http://

www.odb.ntu.edu.tw/odb-services/). While there were differences

between the two datasets in absolute values, the trends were

basically similar.

Temperature and salinity data exhibit variations at different

depths, which can complicate the analysis process. To ensure a

standardized analysis, a fixed depth of approximately 109 m was

chosen. This depth corresponds to the estimated habitat water

depth of the blackmouth croaker (Shao, 2023). Fixing the depth

at a specific level allows for consistent comparisons and

interpretations of temperature and salinity data across different

sampling points, reducing the influence of depth-related variations

in the analysis.

Considering the small geographic size of the studied area and

small within-month variation of the environmental data observed,

these remote-sensing environmental data were computed as

monthly averages on a spatial resolution of 0.1° to be consistent

with the spatial resolution of the fishery data, using R Statistical

Software (v4.2.2; R Core Team, 2021).

2.3.1.2 Targeting effect

Many fisheries catch multiple species simultaneously. When

fishers specifically target a species during a fishing trip, they may

employ fishing operations or techniques that are not optimized for

catching other species (Okamura et al., 2018). This fishing

strategy (i.e., targeting) may affect the catchability and the

representativeness of CPUE as the abundance index and thus

requires to be addressed in the standardization process (Maunder

and Punt, 2004; Chang et al., 2011, Chang et al., 2019).

Two methods were used to generate targeting covariates. The

first one was the k-means clustering method, which is a non-

hierarchical clustering technique (Tan et al., 2006). The desired
FIGURE 2

Spatial distribution of VDR records (considered as fishing) of the 29 sample vessels for this study from 2011 to 2021.
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number of clusters (k) was chosen according to the “elbow method”

(Kassambara, 2017) with scree plots (Chang et al., 2019). The

species composition of the catch data was partitioned into k

groups using this method, and the group ID was subsequently

utilized as a categorical variable in the standardization model.

Winker et al. (2013), Winker et al. (2014) suggested a different

approach to address the targeting effect in CPUE standardization

for multispecies fisheries by employing PCA to calculate continuous

principal components (PCs) of catch composition. This study

applied the same approach and used these PC scores, which were

assigned to each CPUE record, as predictors (continuous variables)

in the standardization model to account for changes in fishing

tactics over time (i.e., shifts in target species). More information on

the approach can be found in the cited works (Winker et al., 2013,

2014; Chang et al., 2019).

Taiwanese offshore trawl fishery in the southwestern region is a

multispecies fishery that includes nearly 200 species. Major commercial

species such as Loliginidae, Carangidae, Centrolophidae, Priacanthidae,

Trichiuridae, and Sciaenidae (including blackmouth croaker and

bighead croaker that were targeted simultaneously) were selected and

grouped as the primary targets of the fishery, and the remaining fish

species (approximately 150 species, including many valuable species to

some trawlers) are categorized as the fish group of “others” fishes.

Catches of the seven species groups were aggregated by trip and

transformed to catch composition in percentage before applying PCA.

2.3.1.3 Spatial effect

Fishery-dependent CPUE data are often characterized by high

heterogeneity in the spatial distribution of habitat quality and fishing

effort (Hsu et al., 2022; Pourtois et al., 2022). Therefore, considering

spatial factors in statistical models can compensate for the limitations

of traditional analysis methods. The presence of spatial

autocorrelation in fishing catch data can be assessed using the

Moran’s I test, where a significant result indicates the presence of

spatial effects (Cliff and Ord, 1981). Description of the computation

of Global Moran’s I is provided in Supplementary Section 1.

2.3.2 Statistical models
This study adopts a two-stage procedure (delta procedure),

which consists of a PCM and a ZPM to address the high probability

of zero catch values in the fishery data (Lo et al., 1992; Chang et al.,

2019). For the PCM, ln(CPUE) are modeled assuming a normal

distribution, while the ZPM predicts the presence or absence of

blackmouth using logistic regression. The standardized index was

the product of these model-estimated components.

2.3.2.1 Delta-GLM and delta-GAM

GLM and GAM were used for the CPUE standardization. For

the PCM, the GLM assumes that the expected value of a

transformed response variable is a linear combination of

exploratory variables (Guisan et al., 2002) (see Supplementary

Section 1). The GLM of this study specifies the response variable

to be the natural logarithm of blackmouth CPUE.

The GAM (Hastie and Tibshirani, 2017) (Supplementary Material)

is a semi-parametric extension of GLM, with the underlying
Frontiers in Marine Science 06
assumption that the response variable is related to smooth additive

functions of the explanatory variables. GAM was used because of the

concern that GLM cannot handle potentially nonlinear relationships

between CPUE and PC covariates (Winker et al., 2013).

The covariates considered in the models included: year (2011–

2021), quarter (Q1–Q4), targeting factor (k-means or PCs),

environmental factor, spatial factor (0.1° × 0.1° grid cell), and

vessel factor. Vessel factor, in terms of vessel identification (vessel

ID), was considered because each fishing vessel has its own unique

characteristics, experience, and fishing capability, in addition to

vessel size, which can impact catchability and the representativeness

of CPUE as a resource indicator. The factors of year, quarter, vessel

size, and target factor of k-means were treated as categorical

variables, and the rest were treated as continuous variables. The

environmental and principal component variables were modeled as

smoothers in the GAM.

Spatial factor was treated as a random effect for all

standardization models. Vessel factor was treated as a fixed effect

in some models and a random effect in others. All remaining factors

were treated as fixed effects. Helser et al. (2004) recommended

treating the vessel factor as a random effect as it allows the data from

various vessels to be combined and a single continuous time series

of biomass indices to be developed. When random effects were

considered, the mixed-effect models (i.e., GLMM and GAMM) were

used for the CPUE standardization (Su et al., 2008; Forrestal et al.,

2019; Grüss et al., 2019). A list of all model structures, as specified in

the input to R, was provided in the Supplementary Material.

The ZPM predicts the presence or absence of blackmouth using

logistic regression in GLM or logistic regression additive model in

GAM (Supplementary Material).

The GLM/GAMs (without random effects) and GLMM/GAMMs

(with random effects) were constructed using R Statistical Software

(v4.2.2; R Core Team, 2021) and the function of the mgcv (Wood and

Wood, 2015) and gamm4 package (Wood et al., 2017).

2.3.2.2 Spatiotemporal model (VAST)

R package VAST (version 3.10.0) (https://github.com/James-

Thorson-NOAA/VAST) developed by Thorson (2019) was applied

in this study. By default, VAST is a delta-generalized linear mixed

modeling (GLMM) framework that separately estimates the

probability of encounter (ZPM) and the mean catch rate of

positive catches (PCM) (Supplementary Material).

Both the spatial and spatiotemporal random effects are assumed to

be correlated in space; specifically, we smooth the spatial random effect

by assuming that residuals at nearby sites are more similar than those at

remote sites. The correlation between the spatial and spatiotemporal

residuals at two locations (s and s’) is assumed to decrease as the

distance between them increases. This decrease in correlation is

modeled using the Matérn function (Supplementary Material).
2.3.2.3 Nonlinear-featured VAST

By default, VAST assumes a linear effect for each covariate, but

it might be enhanced to perform nonlinear features. GAM is

suitable for handling potentially nonlinear relationships between

CPUE and covariates (e.g., PCs) (Winker et al., 2013). We,
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therefore, utilize the outcomes from GAM and polynomial basis

expansion to capture the nonlinear impact of environmental factors

and PCs on CPUE. The model was arbitrarily termed as “VAST

(nonlinear)” here, in contrast to “VAST (linear),” and can be

expressed as:

logit(pi) = b1(ti) + Lw1
w1(si) + Le1e1(si, ti) + Ld 1

d 1(vi)

+o
np

p=1
o
nk

k=1

g 1,k(p)f 1,k(X(si, ti, p)) +o
nj

j=1
o
nk

k=1

l1,k(j)g1,k(Q(i, j))

and

log(ui) = b2(ti) + Lw2
w2(si) + Le2e2(si, ti) + Ld 2

d 2(vi)

+o
np

p=1
o
nk

k=1

g 2,k(p)f 2,k(X(si, ti, p)) +o
nj

j=1
o
nk

k=1

l2,k(j)g2,k(Q(i, j))

where b(ti) is the intercept for year ti, w(si) denotes time-

invariant spatial variations at location si, e(si,ti) denotes time-

varying spatiotemporal variations at location si in year ti, and

d(vi) denotes the effect of vessel vi on catchability and is normally

distributed (dl(vi)~N(0,1),l=1,2), Lw and Le are the scaling

coefficients of the spatial and spatiotemporal random effect

distributions. In addition, the g(p) is the pth habitat covariate X(si,
ti,p) at location si in year ti (i.e., the impact of environmental factors

on observed blackmouth CPUE) and the l(j) is the jth catchability
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covariates Q(i,j) for observation i (i.e., the impact of target

factor (k-means or PCs) on observed blackmouth CPUE and the

quarter factor) (Thorson, 2019). The nonlinear features are denoted

by f1,p(·), f2,p(·), g1,j(·) and g2,j(·), which are the results from a GAMM

that uses a polynomial spline for the basis. R-codes of this approach

are provided in the Supplementary Material.

Calculations of abundance indices for the statistical models are

provided in Supplementary Material.
2.4 Models design and explanatory
power evaluation

This study constructed a model structure with 15 model designs

(M1–M15) to compare the influences of the three statistical models

(GLM, GAM, and VAST) and the four key factors: environment factor

(with or without), vessel factor (treated as fixed or random effect),

spatial factor (with or without), and target factors (addressed by k-

means or PCA methods) (Table 1). A flowchart showing the

compositions of the models investigated is shown in Figure 3. Each

model has a corresponding model to compare with; for example, M1 is

to compare withM0 to see the effect of environmental factor, andM2 is

to compare with M1 to see the effect of treatment of target factor using

k-means versus PCA (the last column of Table 1). The study performed
TABLE 1 The 15 CPUE standardization models designed in this study to compare the influences of three statistical models and four key factors.

Model code Stat. model Envir. factors Vessel factor Spatial factor Target factor Versus

Set 1 (S1)

M1-glm_fk GLM Fixed k-means

M2-glm_efk GLM ☆ Fixed k-means M1

M3-glm_fp GLM Fixed PCA M1, M2

M4-glm_efp GLM ☆ Fixed PCA M2, M3, M7, M12

M5-gam_fp GAM Fixed PCA* M3, M12

Set 2 (S2)

M6-glmm_erk GLMM ☆ Random k-means M2

M7-glmm_erp GLMM ☆ Random PCA M4

Set 3 (S3)

M8-VAST_efsk VAST (linear) ☆ Fixed ☆ k-means M9

M9-VAST_efsp VAST (linear) ☆ Fixed ☆ PCA M8, M11

M10-VAST_ersk VAST (linear) ☆ Random ☆ k-means M8

M11-VAST_ersp VAST (linear) ☆ Random ☆ PCA M9

Set 4 (S4)

M12-gam_efp GAM ☆* Fixed PCA* M4, M14

M13-glmm_efsp GLMM ☆ Fixed ☆ PCA M14

M14-gamm_efsp GAMM ☆* Fixed ☆ PCA* M12, M13

M15-VAST_efspn
VAST
(Nonlinear)

☆* Fixed ☆ PCA* M9
The “☆” symbol indicates that the respective factor has been considered in the model. The last column of “Versus” shows the model to be compared with. The “*” symbol indicates that the
respective factors have been smoothed in the model.
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four sets of comparisons: the first set (S1) compared M1–M5 for

environment factor and treatment of target factor. Including

environment factor in the rest models, the second set (S2) compared

M6–M7 for vessel factor and target factor, without consideration of

spatial factor, and the third set (S3) compared M8–M11 for vessel

factor and target factor under the consideration of spatial factor. With

fixed vessel factor and PCA-treatment of target factor, the fourth set

(S4) compared M12–M15 for statistical models. QQ plots of all the

models are provided in Supplementary Material and suggested that

they all conformed with the lognormal distribution assumption,

affirming the appropriateness of the assumption regarding the error

distribution for the CPUE standardization.

The study examined the predictive capability of two categories

of methods introduced by Hinton and Maunder (2004) for CPUE

model evaluation. The first category applied pseudo-R2 (higher

value preferred), a log-likelihood–based measurement representing

the improvement in model likelihood over a null model (Faraway,

2016; Chang et al., 2019).

The second category was the cross-validation (CV) method.

The study applied a stratified random sampling approach using year

and vessel as strata in the fivefold CV procedure. After repeated 20

times, the CV-R2 that determines the overall correlation between

the actual and predicted value (Li et al., 2011; Chang et al., 2017;

Zhang et al., 2023) was calculated and averaged. CV-R2 was used to

evaluate model’s EP.

Although the Akaike information criterion (AIC), falling into the

second category, is also a valuable and widely employed tool for model

comparison, it is crucial to recognize that its values are impacted by

the sample size, because they are derived from a likelihood function.

Therefore, as elucidated in Chang et al. (2019) and the citation,
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caution is warranted when comparing one-stage GLMs and two-

stage delta-GLMs with different sample sizes using AIC. Additionally,

specifying the variance parameters of the likelihood function in two-

stage delta-GLM or delta-GAM cases is a complex undertaking.

Therefore, this study used CV-R2 when evaluating model EP.
3 Results

3.1 Fishing effort

Figure 1 provides an example of a VDR data track for effort

estimation; an explanatory plot modified from Chang (2016) is

provided in Supplementary Material. The 2011–2021 data obtained

from the FA of Taiwan contains 29 vessels and 45,000 records in the

study area. Using the procedures described in Section 2.1, about 43,530

trips with 210 tons of blackmouth catch and 230,809h of fishing effort

were constructed from the data. Figure 2 shows the distribution of the

fishing efforts, which were used for the following analyses.
3.2 CPUE standardizations

3.2.1 Targeting effect
Catch composition data were used for the targeting effect

analyses, representing potential targeting strategies. For the k-

means method, which minimizes the sum of squares from points

to the cluster centers, there is no clear number of clusters suggested

by the scree plot from the elbowmethod, but an ad hoc choice offive

clusters could be a compromise option between smaller
FIGURE 3

Flowchart showing compositions of the models investigated in this study. Orange diamonds are factors (FA), yellow and light green ovals are
decisions to the factors, light blue squares are statistical models applied (the best model M15 using nonlinear VAST was marked in purple), and blue
circles are model codes as shown in Table 1.
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improvement of within-cluster sum of square and not too large

number of clusters. Each of the clusters has different dominant

species compositions (Figure 4), indicating five different types of

target trips by the sample vessels: the dominant species of Cluster 1

is Sciaenidae, Cluster 2 Carangidae, Loliginidae, and “others” (other

fishes), Cluster 3 Centrolophidae and “others,” Cluster 4 mainly

“others,” and Cluster 5 Priacanthidae, Trichiuridae and “others.”

Cluster 1 has the highest blackmouth catch composition, and the

size of this cluster varied by year and was higher in 2011–12 and

2015. The cluster numbers were treated as categorical variables in

the standardization model.

Supplementary information on how the PCA results compare to

the clustering is provided in the Supplementary Material.

For the PCA method, the scree plot shows that more than 70%

of the total variance can be explained by the first four principal

components. Figure 5 displays the weights of different species in the

first four principal components. PC1 is dominated by “others”

fishes, PC2 by Carangidae species, PC3 by Loliginidae species, and

PC4 by Trichiuridae and Sciaenidae species. The correlation biplots

expressing the loadings of the species composition on the PCs

(Figure 6) suggested that, for example, PC2 has a strong positive

correlation with both Carangidae and Loliginidae but a weak

negative relationship with Sciaenidae. PC2 is the variable with the

strongest (negative) effect; higher scores on PC2 indicate a

considerable increase in the catch composition of Carangidae and

Loliginidae but a relatively lower composition of Sciaenidae.

Furthermore, PC4, with a slightly lower effect than PC2,

demonstrates a strong negative correlation with the composition

of Sciaenidae and a strong positive correlation with Trichiuridae.

Higher scores on PC4 signify a substantial increase in the

composition of Trichiuridae and a considerable decrease in the

composition of Sciaenidae.

3.2.2 Spatial effect
The Spatial Autocorrelation (Global Moran’s I test) tool was

used to assess spatial autocorrelation by considering both the

locations and response variables of features simultaneously. It
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examines whether the observed pattern of the features is

clustered, dispersed, or random. The values of Moran’s I were

statistically significant (I = 0.0047, P< 0.001) in this study, and the

spatial factor was included in GLMM and GAMM to test the EPs of

spatial and non-spatial models that will be presented in

the followings.

In VAST, both the spatial and spatiotemporal random effects

for a grid cell are assumed to come from the closest knot in space.
FIGURE 5

The weights of contributing species for each principle component
(PC) of the PCA on the market landing data from coastal trawlers
fishing in the southwestern waters of Taiwan. The size of the points
represents the magnitude of the weights, with larger points
indicating higher weights.
FIGURE 4

Species composition by cluster from k-means clustering method applied to market landing data from coastal trawlers fishing in the southwestern
waters of Taiwan. Left panel: the species group composition by cluster; right panel: change of cluster membership through time.
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This assumption simplifies the computational calculations involved

in the model. All the spatiotemporal models successfully converged

in the study, which was confirmed by the fact that the Hessian

matrix was positively definite, and the maximum gradient

component was smaller than 0.001. The spatiotemporal

distribution of the predicted density of blackmouth showed a

stable or slightly increasing pattern before 2016; thereafter,

however, the density showed a continuous declining pattern,

especially in the coastal areas of Taiwan and some offshore

regions, with a rebound in 2018 mainly in the northern region of

the coast (Figure 7, based on results of M15).
3.3 Model explanatory power evaluation

Two R2 (pseudo-R2 and CV-R2) of the 15 models (M1–M15)

are shown in Tables 2 (for model sets S1–S3) and Table 3 (for S4).

The environmental effect was evaluated through S1 comparison

under the consideration of vessel factor as a fixed effect: the R2

between M2 (including environment factors) and M1 (without

environment factors) are not much different. The same

observation was noted for M3/M4 that used PCA for the target

factor, compared to M1/M2 that used k-means. Another pair of

tests (M5 and M12) using GAM instead of GLM showed that the

model with environment factors (M12) has better EP (i.e., higher

R2) than without (M5), although the differences were not

substantial. The EP of M12 were much better than M2 and M4,
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which might suggest that the nonlinear features of environment

factors could be better explained by the nonlinear GAM model.

The effect of the method in addressing target factor was

explored by comparing M1/M2 with M3/M4 and M8 with M9

when considering vessel factor as a fixed effect and by comparing

M6 with M7 and M10 with M11 when considering vessel factor as a

random effect (Table 2). All these comparisons suggested that the

PCA method performed better than the k-means method.

The effect of the treatment of vessel factor was evaluated by

comparing of M2 with M6, M4 with M7, M8 with M10, and M9

with M11 (Table 2). These comparisons suggested that models

perform slightly better when the vessel factor is considered as a fixed

effect instead of a random effect.

The spatial effect and EP of different statistical models were

evaluated through comparisons with models of M4 and M12–14

that included environment factors, treated vessel factor as a fixed

effect, and addressed target factor by PCA (Table 3). The results

suggested that considering spatial random effect (delta-GLMM or

delta-GAMM, M13–M14) resulted smaller R2 than compared to

those without (delta-GLM and delta-GAM, M4 and M12), and the

M12 using GAM type model (delta-GAM) without consideration of

spatial effect has the second-best EP (highest R2: pseudo-R2 = 0.604

and CV-R2 = 0.594).

The above comparisons using traditional GLM/GAM type

statistical models showed that spatial effect might not be important in

the standardization. However, when applying VAST and including

spatial and spatiotemporal effects, the EPmeasures ofM9 andM15were
FIGURE 6

Correlation biplots showing the loadings of the fish species composition on the principle components. The color bar indicates the expected average
contribution of a variable for two principal components.
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much higher than those of M13 and M14, which applied GLM/GAM

(linear and nonlinear) approaches. It might imply that spatial effect was

important but needed a better approach to handle. The nonlinear-

featured VAST (M15) demonstrated to have the best EP among all

model designs (pseudo-R2 = 0.613 and CV-R2 = 0.601, Table 3).

Table 4 was created for explanatory purposes on the significance

of the factors. Table 4 indicates that all the main effects were
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significantly different from zero at a significance level of a = 0.05

for M4 and M12, except for the chlorophyll factor that was not

significant for the PCM sub-model of delta-GLM. Sea temperature

and salinity at a depth of 109 m were excluded from PCM but were

included and statistically significant in ZPM in the process of model

selection. Figure 8 shows the estimates of fixed-effect factors of the

year, quarter, and vessel fromM12 (GAM), along with the smoothers
FIGURE 7

Spatiotemporal distributions of log-transformed blackmouth density in southwestern Taiwan from 2011 to 2021. The density was estimated from
VAST (model M15), including those extrapolated over the unsampled area for some years.
TABLE 2 Summary statistics of CPUE standardization models M1–M12 fitted to blackmouth croaker data off southwestern Taiwan during 2011–2021.

Stat.model
Sub-
model

Envir.
factors

Target
factor

Vessel - Fixed effect Vessel - Random effect

Code
Pseudo-
R2 CV-R2 Code

Pseudo-
R2 CV-R2

GLM ZPM No k-means M1 0.395 0.394 (0.036)

PCM

GLM ZPM Yes k-means M2 0.393 0.391 (0.036) M6 0.391 0.388 (0.035)

PCM

GLM ZPM No PCA M3 0.566 0.575 (0.001)

PCM

GLM ZPM Yes PCA M4 0.566 0.574 (0.001) M7 0.563 0.571 (0.001)

PCM

GAM ZPM No PCA M5 0.599 0.591 (0.002)

PCM

GAM ZPM Yes PCA M12 0.604 0.594 (0.002)

PCM

VAST Yes k-means M8 0.401 0.395 (0.002) M10 0.397 0.391 (0.002)

Yes PCA M9 0.569 0.557 (0.002) M11 0.558 0.556 (0.003)
f

This table evaluates the explanatory power of the models with/without environmental factors, and with different treatments of target factors (k-means or PCA) and vessel effects (fixed or
random). Refer to each model code in Table 1 for complete model specifications.
The models with the highest R-squared values when using the GLM/GAM and VAST methods are shown in bold.
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for the PCA target factor and environment factor. The figure

suggested that the highest CPUE occurred in the third and fourth

quarters and that the variation among vessels is high. The effect of

environmental factors seemed not very strong (Table 4) and without

clear patterns (Figure 7). Most of the variation could be explained by

the targeting effect, especially the PC1, PC2, and PC4 (Table 4):

blackmouth CPUE has general positive (but nonlinear) correlation

with PC1 (Figure 7) which was negatively correlated with “others”

fishes (Figure 6) (i.e., higher PC1 value has lower “others” fishes

composition and higher Sciaenidae composition), and was

nonlinearly negative correlation with PC2 and PC4 (Figure 7),

which was negatively correlated with Sciaenidae (Figure 6).
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3.4 Trends of standardized indices

The standardized relative CPUE indices are shown for all the 15

models in Figure 9A and a subset of specifically selected eight

models in Figure 9B. The general trend shows a decrease to 2013, an

increase in 2014 and 2015 that was coincident with a weak to very

strong El Niño event (Golden Gate Weather Services, 2023), and a

continuous decline since then (although somemodels, especially the

models used VAST, showed a noticeable increase in 2018 and then

declined again). In the last year of the analysis in 2021, the indices

show an increase to various degrees for all models using GLM- and

GAM-type approaches but a continuous decline for models using
TABLE 4 Analysis of variance table for the model M4 (linear delta-GLM) and M12 (nonlinear delta-GAM).

Delta-GLM (M4) Delta-GAM (M12)

Predictors

ZPM PCM

Predictors

ZPM PCM

Chi.sq Pr(>Chi) F Pr(>F) Chi.sq Pr(>Chi) F Pr(>F)

year 3433.7 <0.05 113.1 <0.05 year 845.4 <0.05 59.3 <0.05

quarter 539.0 <0.05 98.5 <0.05 quarter 177.4 <0.05 76.4 <0.05

vessel ID 614.1 <0.05 22.3 <0.05 vessel ID 398.5 <0.05 22.9 <0.05

PC1 7416.5 <0.05 1852.7 <0.05 s(PC1) 5710.4 <0.05 230.4 <0.05

PC2 3113.9 <0.05 4173.9 <0.05 s(PC2) 3640.4 <0.05 343.9 <0.05

PC3 769.4 <0.05 517.3 <0.05 s(PC3) 724.9 <0.05 58.4 <0.05

PC4 6633.4 <0.05 10110.4 <0.05 s(PC4) 4439.9 <0.05 1396.8 <0.05

tem_109 39.0 <0.05 – – s(tem_109) 82.2 <0.05 – –

sal_109 42.8 <0.05 – – s(sal_109) 45.9 <0.05 – –

mlt 77.1 <0.05 231.7 <0.05 s(mlt) 168.3 <0.05 26.1 <0.05

sft 18.3 <0.05 6.9 <0.05 s(sft) 153.8 <0.05 7.9 <0.05

chl – – 1.7 0.192 s(chl) – – 12.4 <0.05
f

The covariates include year, quarter, vessel identification (vessel ID), target factors (four principal components from PCA, PC1–PC4), and environment factors: sea temperature at depth 109
meters (tem_109), salinity at depth 109 meters (sal_109), density ocean mixed layer thickness (mlt), seafloor potential temperature (sft), and chlorophyll (chl).
TABLE 3 Summary statistics of CPUE standardization models M4, M9, and M12–M15 fitted to blackmouth croaker data off southwestern Taiwan
during 2011–2021.

Stat.model Sub-model
Without spatial random effect With spatial random effect

Code Pseudo-R2 CV-R2 Code Pseudo-R2 CV-R2

GLM ZPM M4 0.566 0.574 (0.001) M13 0.426 0.438 (0.001)

PCM

GAM ZPM M12 0.604 0.594 (0.002) M14 0.444 0.451 (0.004)

PCM

VAST
M9
(GLMM-linear) 0.569 0.557 (0.002)

VAST
M15
(GAMM-nonlinear) 0.613 0.601 (0.004)
The models considered environmental factors, treated vessel factor as a fixed effect, and utilized a PCA-generated target factor. This table evaluates the explanatory power of models with or
without spatial random effects and employing different statistical methods. Refer to each model code in Table 1 for complete model specifications.
The models with the highest and second-highest R-squared values when using the GLM/GAM and VAST methods are shown in bold and underlined text. These two models have the best and
second-best explanatory power out of the 15 models that were tested.
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the VAST approach except for models M8 and M10 that used k-

means for targeting effect.

For the specifically selected subset of the CPUE series (Figure 9B):

(1) M8 and M9 employ different approaches to handle the target

factor, with M8 utilizing k-means and M9 employing PCA, resulting

in significant differences in the observed trends. M9 has higher EP

than M8. (2) M9 and M11 differ in the way of treating vessel factors,

and they are almost identical. (3) M5 and M12 differ in whether the

environmental factor is considered, and the trends were basically

similar with some years of variations. (4) M12 and M14 differ in

whether a spatial factor is considered, and the results were very

similar. (5) M4 and M12 differ in the statistical model used (GLM or

GAM), and the indices were very different. Finally, (6) M9, M11, and

M15 all used VAST but differ in linear or nonlinear treatment of

nonlinear factors (environment and PCs). The index of M15 differs
Frontiers in Marine Science 13
from the M9/M11 only in the beginning period and shows a slightly

stronger decline in the last year. All these models exhibit different

trends of indices from GLM/GAM type models. M12 and M15

utilized a nonlinear approach with the GAM and VAST methods

to address nonlinear environmental factors, and exhibited higher EP

compared to M4, M9, and M11, which employed methods featuring

linear GLM and VAST.
4 Discussion

4.1 Nominal CPUE construction

Logbooks play a crucial role in providing essential catch and

effort data for calculating the index of stock abundance. However,
A B

FIGURE 9

Relative CPUEs of all the 15 tested standardization models (A) and of the best two models (M15 and M12) with the nominal CPUE (B) for blackmouth
croaker from southwestern Taiwan during 2011–2021. The dash lines are 95% confidence intervals for the M15.
FIGURE 8

Impact of some of the main effects on the CPUE of blackmouth off southwestern Taiwan, from the results of model M12.
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numerous coastal and small-scale fisheries are exempted from

logbook submissions. In such cases, particularly for high-

commercially valued species, which are more susceptible to intense

exploitation, landing data, including date information and vessel

identity, serves as a viable alternative to represent the “catch”.

Additionally, auxiliary data such as VMS, CSRS, VDR, or the

automatic identification system (AIS) can be employed to estimate

fishing efforts through fishery-specific algorithms (Gerritsen and

Lordan, 2011; Chang, 2014, Chang, 2016; Sonderblohm et al., 2014).

Although VMS data have been extensively utilized for scientific

purposes, the associated installation and transmission costs are high,

making them less feasible for small-scale coastal vessels with limited

capital. CSRS has its application limitations, such as the special

system requirements to identify fishing vessels from the port and

the potential degradation of radar data quality by environmental

effects (Chang, 2014).

AIS, introduced by the IMO to enhance maritime safety and

prevent ship collisions, offers comparable data to VMS but with

improved temporal resolution at a significantly lower cost and can be

used to derive fishing efforts and inform fisheries management

(Natale et al., 2015; James et al., 2018). This study conducted a

preliminary investigation into the utilization of AIS from Taiwanese

coastal fishing vessels for scientific purposes, revealing challenges

such as the short data period (since the AIS was introduced to fishing

vessels late), low data coverage (because installation and operation of

AIS are not compulsive for small-scale coastal vessels), and difficulties

in identifying fishing vessels (due to the absence of a cross-reference

template for AIS databases and fisheries management systems). These

challenges are likely prevalent in other coastal countries.

In contrast, the VDR system proves more manageable for the

Taiwanese case. The IMO’s Maritime Safety Committee mandated

passenger ships and large vessels to carry a standard VDR for accident

investigations since 2000, with a 2006 amendment introducing a

requirement for a simplified VDR (IMO, 2006). Recognizing the

potential for fraud in fuel cost subsidies, the FA of Taiwan

mandated the installation of simplified VDR in 2010 (Chang, 2016).

This cost-reduced VDR, which records date, time, GPS position,

speed, and direction of the vessel at 3-min intervals, not only

addresses fraudulent activities but also provides data for scientific

use at minimal additional cost. The affordability of installation and

transmission makes it feasible for sample vessels to carry VDRs for

independent research purposes. This study demonstrates the

feasibility of using VDR data to construct nominal CPUE and

derive an abundance index for declining fish stocks.
4.2 Key factors and statistical models

Confounding factors inherent in the nominal CPUE data need

to be carefully addressed before the CPUE can represent the

abundance. This study designed 15 models to examine the effect

of targeting, vessel, and environmental and spatial factors and

explore the best model specification for the blackmouth stock off

southwestern Taiwan.
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4.2.1 Targeting effect
Target tactics of the fishers are one of the most important

factors influencing the CPUE for a multispecies fishery (Okamura

et al., 2018). Of the two commonly used methods to address the

target factor (Campbell et al., 2017), this study showed that the PCA

approach offered significantly higher EP than the k-means approach

in terms of CV-R2 (CV-R2 = 0.391 vs. 0.575, refer to Section 3.3 and

Table 2), regardless of how other factors were treated (CV-R2 =

0.391 vs. 0.575, refer to Section 3.3 and Table 2). Moreover,

noticeable differences in relative CPUE trends were observed

between the two approaches (Figure 9B, M8 vs. M9). This

observation aligns with the findings by Chang et al. (2019) during

their CPUE standardization research on dolphinfish stock.

Although this difference might be driven by the additional

flexibility implied by the model structure using PCA, the PCA

procedure has been highlighted for its effectiveness in mitigating the

impact of targeting on multispecies CPUE (Winker et al., 2014). It

achieves this by avoiding the need to determine an optimal number

of clusters with rather artificial boundaries, as well as allowing the

combinations of different proportions of targeting tactics to be

modeled as a continuum of all possible combinations (Winker

et al., 2013).
4.2.2 Vessel effect
Vessel factor (estimated using individual vessel ID) combined

the effects of vessel features and the skill/experiences of the skipper,

which have been demonstrated to be a major influential variable in

CPUE studies (Bentley et al., 2012; Chang et al., 2019; Hsu et al.,

2022). The vessel features may include the size of the vessel, which is

usually associated with fishing power and capacity of the vessel and

is an important characteristic of trawl vessels. For the Taiwanese

case, the first digit of the vessel ID represents the size of the vessel

and, thus, vessel size has been considered in the factor. The study

showed that treating it as a fixed effect has slightly better EP than as

a random effect (Table 2), but the difference is small, and the trends

of relative CPUE are similar (Figure 9B, M9 vs. M11). This should

be expected as there is more flexibility to fit a covariate to a fixed

effect than a random effect, which is (by definition) constrained to

be normally distributed with an estimated variance. The lack of

difference in the indices may simply point out the fact that the vessel

with effects that were shrunk (in the mixed framework) must not

have represented a high number of records.

Vessel factor is statistically significant in model M12 (the

second-best model in Table 4), although the F value is

comparatively small. The coefficient of variation (cv) of the

average blackmouth landings among the vessels was 60.2%,

showing a high variation among vessels. Also, removing the vessel

factor from M12 produced R2 = 0.576, about 3% decline from the

original M12, suggesting that the vessel factor was influential in

the standardization.

4.2.3 Environmental effect
Environmental factors are supposed to have an impact on the

CPUE of demersal species (Kempf et al., 2022). The three pairs of
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model comparisons (Table 2) suggested that including environment

factors performed slightly better than without when using GAM

type model (M5 and M12), and on the contrary, performed equally

or even slightly worse than without ones when using GLM type

model (M1–M4). This suggested that the importance of

environmental factors for this study was not high, although two

or three of the studied factors showed statistical significance

(Table 4). This was speculated owing to the small size, hence less

variation, of the studied area (Figure 2). Both the temperature (cv =

5.6%) and salinity (cv = 0.3%) factors were not significant just

because of their small variation in this area.

4.2.4 Spatial effect
Spatial factor, the significance of which was tested using

Moran’s I, was included as independent and identically

distributed random effect in the mixed model analyses (GLMM

and GAMM) or directly addressed using the spatiotemporal

VAST model as a spatially autocorrelated random effect. The

comparison of model EP (Table 3) suggested that including spatial

factor did not perform better than those without, and the trends

were very similar (Figure 9B, M12 vs. M14). Fish density

distributed separately in four regions (Figure 7), and each region

featured with different target species (in clockwise): (1) coastal

region off Taiwan in the southeastern, targeting Sciaenidae,

Priacanthidae, Trichiuridae, Centrolophidae in the southern part

of this region, and Sciaenidae, Loliginidae, and “others” in the

northern part; (2) South China Sea Slope in the south targeting

“others”; (3) Xiapeng Depression in the northwestern targeting

Loliginidae; and (4) Chang-Yuen Ridge in the northeastern

targeting “others” and some Loliginidae. This suggested that the

spatial effect might have largely been explained by the targeting

effect in GLM/GAM type models (e.g., high F values for PC1–PC4

in Table 4).

There might be an issue with confounding among spatial,

targeting, and environmental effects in the data analysis. It is

concerning if the confounding did occur, because the spatial effect,

unlike the targeting effect, should not be standardized out of the

index, as it reflects true abundance. If the model is unable to

distinguish the spatial effect from the targeting effect, it raises

questions about the reliability of the standardized index. However,

addressing confounding between abundance and catchability

covariates is a complex challenge in CPUE standardization.

The spatial area depicted in Figure 2 exhibits some data

coverage gaps. Since there is no published study defining the full

range of the blackmouth croaker’s habitat and the southwestern

region is regarded as a single stock (Hwang and Chen, 1984), this

research encompassed the vessels’ entire distribution area as its

study area. The reasons behind these data gaps are unclear, and the

representativeness of the predictions in these sparsely covered

regions remains uncertain. However, a significant data gap in the

central section of Figure 7 could be linked to the presence of the

Penghu Archipelago and Taiwan Bank.

When delineating the study area for CPUE analysis, it is

important to consider the peripheral regions of the fishery that are
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rarely fished. It is uncertain whether these areas are unfished due to

low CPUE or other reasons. Including such regions in the modeling

process will introduce additional uncertainty since estimating

abundance in these areas will rely on limited data (Hoyle et al.,

2024). One approach to mitigate this concern is to confine the spatial

scope to a “core” fishery, comprising the regions where the majority

of the catch is obtained (Campbell, 2015; Hoyle et al., 2024).

The significance of spatial factors’ interpretation could vary

depending on the statistical model employed. When incorporating

spatial effects, the EP measures of M9 with VAST surpassed those of

M13 (GLMM) and M14 (GAMM) (Table 3), implying that the

additional flexibility provided by the Gaussian Markov Random

Field in VAST allows for a better representation of spatial effects

than a traditional random effect structure. Introducing a new model

design (M15) that enables VAST to handle nonlinear features like

M12 resulted in even higher EP compared to M12 without spatial

effects. This suggests that spatial effects played an important role in

standardization, with VAST showcasing their importance more

effectively than GLM/GAM models, as indicated above.

Spatial effects are able to smooth the effect of multiple

unaccounted drivers and can be modeled using geostatistics

(INLA) and 2D smoothing splines of GAM (Paradinas et al.,

2023). Modeling spatial effects in continuous space is one of the

key appeals of the GAM approach for CPUE standardization

(Table 2 of Hoyle et al., 2024). However, as indicated in Section

2.3.2.1, spatial factor was treated as a random effect for all analyses

of this study. Exploring models where spatial factors are considered

as a continuous 2-D surface may add complexity to the model

investigation structure (Figure 3) but holds promise for

future investigations.

4.2.5 Statistical models
Three types of statistical models were tested in the study. The

models used nonlinear-featured GAM (or GAMM) all have better

EP over linear-featured GLM (GLMM) and VAST (GLMM-based)

(Tables 2 and 3). This was because the targeting effect is the most

influential factor in this study (Table 4), and this factor was better

represented by the nonlinear predictors allowed by the GAM.

The advantages of VAST have been successfully demonstrated in

many CPUE standardization studies on pelagic and demersal species

with spatiotemporal considerations (Grüss et al., 2019; Xu et al., 2019;

Hsu et al., 2022; Kawauchi et al., 2023). The advantages, however, did

not manifest in this study if using the default linear feature of the

model (M9), as the VAST has a limited ability to include nonlinear

relationships beyond general quadratic ones compared to GAMs or

boosted regression trees (Brodie et al., 2020). This study designed a

nonlinear-featured VAST, expanding the approach to include a

nonlinear feature (M15) by taking advantage of the inputs from

GAM to deal with nonlinear-featured environmental factors and PCs.

The result has demonstrated substantial improvement in its

predictive EP and, thus, was suggested to be applied to situations

with nonlinear covariates.

One key advantage of spatiotemporal models such as VAST is

that they allow a straightforward computation of “predict-then-
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aggregate” indices of relative abundance (sensu Hoyle et al., 2024).

Since VAST imputes fish density in unsampled locations informed

by a distance-based covariance function, the index can be computed

from the entire spatial domain at each time step. It uses the area-

weighting approach to compute the index of relative abundance.

Providing interpolation of fish density distribution across the years

(Figure 7) can also facilitate the interpretation of the spatiotemporal

change of fish abundance. In comparison, traditional approaches to

derive the index based on the year-effect only do not account for

spatiotemporal variation in fish density over the entire spatial

domain. Since fishing locations usually change over time, the

index computed from the traditional year-effect approach may

not be representative of the whole population, and, consequently,

be proportional to the abundance of the whole population

(Maunder et al., 2020).

The main finding from the model comparison exercise revealed

that the model configurations with the highest EP, whether related to

vessels, targets, or spatial aspects, tended to be the most complex ones.

This outcome is not surprising considering the multifaceted nature of

the fisheries system, which is influenced by a wide range of factors such

as biology, economics, and the environment. As such, it is imperative

to consider the nonlinear relationships that arise from these complex

drivers when modeling such diverse systems (Glaser et al., 2014).
4.3 Abundance index

This study utilized two R2 as EP metrics. However, it is crucial

to emphasize that a higher R2 do not necessarily equate to a more

accurate index of relative abundance. The index of relative

abundance, a pivotal input for stock assessment models, directly

reflects changes in population abundance over time (Francis, 2011).

The primary aim of CPUE standardization is to mitigate the

influence of all factors except fish density on CPUE, ensuring that

the standardized index of relative abundance approximates

population abundance (MaunderTan and Punt, 2004). While a

higher R2 suggests a better fit and more accurate predictions for

nominal CPUE data, they do not confirm whether the model

accurately identifies and addresses other factors impacting

catchability. Therefore, a careful consideration of the history of

the fishery and the stock (e.g., in terms of fleet dynamics, possible

changes in fishing gear configurations, economic incentives, shifts

in species distribution) is required when selecting the best models to

use for CPUE standardization.

The abundance indices derived from the best model (M15) and

the second-best model (M12) both exhibited a general declining

trend for the southwestern blackmouth stock. This marks the first

abundance index developed for demersal fish species in the region.

Limited academic studies on the stock status of fish resources in the

region exist in the literature due to a scarcity of catch and effort data

(Liao et al., 2019). Although abundance indices for other demersal

fish species are unavailable, their landings indicate a similar

declining trend, suggesting a broad degradation of fisheries
Frontiers in Marine Science 16
resources in the region (based on fisheries statistical yearbooks,

Fisheries Agency, 2022; Shao, 2023). Indirect methods, such as

trophic models (Liu et al., 2009) or fishermen surveys (Liao et al.,

2019), along with numerous gray literature sources, caution that

overfishing has occurred to Taiwanese coastal blackmouth

resources due to the overcapacity of fishing vessels and illegal

fishing (Chang et al., 2010; Liao et al., 2019). Comparisons of

growth parameters over a decade also imply high fishing pressures

on blackmouth, resulting in elevated growth coefficients and smaller

asymptotic lengths (Huang et al., 2022).

In addition to overfishing, environmental pollution is asserted

to contribute to the degradation of the fishery environment in the

region. Repeated pollution events in rivers flowing into the area

have been documented for years without complete remediation (Liu

et al., 2015; Wang et al., 2021; Liang et al., 2024). However, further

studies are required to establish the impact of contaminations on

fisheries resources.
5 Conclusions

Indices of relative abundance are one of the most essential data

for stock assessments and consequent management advice. For data-

limited small-scale coastal fisheries that are exempted from logbook

submission, the abundance indices can be established through proper

standardization on vessel-specific landing data and trip-based fishing

effort estimated from geo-referenced position data.

This study utilized unique data sourcing from VDRs to estimate

fishing effort, in combination with landing data to estimate the CPUE

data for the blackmouth croaker in southwestern Taiwan (Figure 2),

which demonstrated the potential application in global data-limited

fisheries. The study also assessed alternative approaches for

predictors of fishery targeting practices to condition effort for

producing more accurate metrics of relative abundance. Fifteen

models were designed for CPUE standardization, employing three

statistical approaches. Model comparisons were conducted to

scrutinize the impacts and treatments of targeting, vessel,

environmental, and spatial factors. The results indicated that, in

this multispecies fishery, the target factor explained the most

variability in the observed catch rates, recommending the

utilization of the PCA approach to address the target effect. It was

advised to consider the vessel factor in the standardization process,

either as a fixed effect with consistent specifications of sample vessels

over years, or as a random effect following recommendations from

Bentley et al. (2012) and Hsu et al. (2022). The inclusion of

environmental factors did not notably enhance model EP,

potentially due to the limited fishing area in this study. However,

for fisheries with a broader spatial range, this factor should still be

thoroughly examined. Because of the nonlinear feature of the PCA

approach and environment data, GAM performed better than the

linear-based models. However, with the expansion of VAST to

include nonlinear features, the model surpassed GLM/GAM-type

models in handling spatial random effects.
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The best model (Model M15) exhibited a consistent declining

trend in CPUE since 2015, with a brief rebound in 2018 (Figure 9B).

The second-best model (M12) displayed a similarly sharp decline

since 2015 but diverged in 2021. Despite this variation, the overall

declining trend across all models signals the potential decline of the

blackmouth stock, prompting the consideration of further

management measures.
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