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Introduction: In order to explore the impact of climate factors on bigeye tuna

catch, monthly data of nine climate factors, including El Niño-related indices

(Niño1 + 2, Niño3, Niño4, and Niño3.4), Southern Oscillation Index (SOI), North

Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), North Pacific Index

(NPI), and global sea–air temperature anomaly index (dT), were combined with

the annual data of global bigeye tuna catch.

Methods: The relationship between low-frequency climate factors and bigeye

tuna catch was studied using long short-term memory(LSTM) model, random

forest (RF) model, BP neural network model, extreme gradient boosting tree

(XGBoost) model, and Sparrow search optimization algorithm extreme gradient

boosting tree (SSA-XGBoost) model.

Results: The results show that the optimal lag periods corresponding to the

climate change characterization factors Niño1 + 2, dT, SOI, NPI, NAO, and PDO

are 15 years,12 years, 12 years, 1 year, 14 years, and 4 years, respectively. The SSA-

XGBoost model have the highest prediction accuracy, followed by XGBoost, BP,

LSTM, and RF. The fitting degree between the predicted values and the actual

values of the SSA-XGBoost model is 0.853, the mean absolute error is 0.104, the

root mean square error is 0.124.

Discussion: The trend between the predicted values and the actual values of the

SSA-XGBoost model is generally consistent, indicating good model fitting

performance, which can provide a basis for the management of bigeye

tuna fisheries.
KEYWORDS

climate factors, bigeye tuna catch, machine learning model, prediction, SSA-
XGBoost model
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1 Introduction

Bigeye tuna (Thunnus obesus) is widely distributed in the deep

waters of tropical and subtropical regions across the three major

oceans and represent a significant economic species for pelagic

fisheries (Sun et al., 2019). Current global research on bigeye tuna

primarily focuses on analyzing the spatial distribution of fishing

grounds and resource abundance in relation to marine

environmental and climatic factors. For example, Song et al.

(2023) utilized ensemble learning models to identify key marine

environmental factors affecting the distribution of bigeye tuna

fishing grounds, yet failed to consider the impact of climate

change. Lu et al. (2001) found that catch rates of bigeye tuna

increased during El Niño periods compared to La Niña periods.

However, other climate factors besides El Niño, such as the Pacific

Decadal Oscillation, also influence bigeye tuna catch rates. Yang

et al. (2013) explored the temporal and spatial variability of the

thermocline in bigeye tuna fishing grounds, concluding that bigeye

tuna predominantly inhabit waters below the thermocline, but only

discussed the effects of temperature and depth, neglecting other

environmental and climatic factors. Huang et al. (2020) identified

mixed layer depth and temperature as primary factors affecting

bigeye tuna catch rates, although climatic factors are also crucial.

Cao et al. (2009) observed that the center of bigeye tuna fishing

grounds shifts southwest during El Niño and northeast during La

Niña, without specifying the relevant El Niño indicators.

Several studies have developed models to predict bigeye tuna

distribution based on environmental factors, such as those by Song

et al. (2007) and Feng et al. (2009), which constructed

comprehensive index models for calculating habitat indices.

However, these models are limited by the quality of the data and

the challenges of handling long-term climate trends. Traditional

models for sequence prediction in existing research have high data

quality requirements, and inappropriate historical values can lead to

significant prediction errors. Most machine learning methods

employed in these studies use single learning models, which

struggle with nonlinear and unstable long-term periodic time

series, offering only rough trend estimations. Given that climate

change typically spans several decades or longer, current research

on bigeye tuna primarily focuses on marine environmental factors

rather than regional or global climate variables (Pachauri et al.,

2014; Xiao, 2021). Most studies cover short-term periods of <10

years, limiting their ability to reveal the impacts of climate change

on fisheries (Xiao and Huang, 2021; Ding et al., 2021a). For

example, Xu et al. (2023) utilized LSTM to predict tuna CPUE,

achieving high prediction accuracy, while Hashem et al. employed

ARIMA and neural network (NN) models for yellowfin tuna catch

prediction. Mao et al. (2016) demonstrated that using

backpropagation (BP) neural networks based on CPUE data

could accurately predict albacore tuna fishing grounds in the

South Pacific. Additionally, random forest (RF) and XGBoost

models have been widely applied in fishing ground prediction due

to their high prediction accuracy (Duparc et al., 2020; Gilman and

Chaloupka, 2024). However, a comparative study of the predictive
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capabilities of models like LSTM, RF, BP neural networks, and

XGBoost for bigeye tuna catch volumes based on climate factors has

yet to be conducted.

This study fills this gap by employing long-term series data of

low-frequency climate change parameters for correlation analysis.

Based on this, a prediction model optimized by the sparrow search

algorithm (SSA) for Gradient Boosting Decision Tree (XGBoost)

was proposed to explore the long-term impacts of climate change

on bigeye tuna catch rates. This model excels in self-learning the

relationships between multiple factors and demonstrates high

prediction accuracy and stability when handling large datasets.

Additionally, long short-term memory (LSTM) models, random

forest (RF) models, BP neural networks, and XGBoost models were

constructed to compare and identify the most effective prediction

model. The aim of this study is to provide scientific references for

the sustainable development of bigeye tuna fisheries in the

open ocean.
2 Materials and methods

2.1 Data sources

The global annual catch data of bigeye tuna were obtained from

the Western & Central Pacific Fisheries Commission (WCPFC,

https://www.wcpfc.int/doc/wcpfc-tuna-fishery-yearbook-2021) for

the period from 1960 to 2021. While the data are considered

global, it is essentially derived from the three major oceans

(Pacific, Atlantic, and Indian Oceans).

Climate change characterization factor data, including El Niño-

related indices (Niño1 + 2, Niño3, Niño4, and Niño3.4), Southern

Oscillation Index (SOI), North Atlantic Oscillation (NAO), Pacific

Decadal Oscillation (PDO), and North Pacific Index (NPI), were

obtained from the National Oceanic and Atmospheric

Administration (NOAA) of the United States (https://

www.esrl.noaa.gov). The global sea–air temperature anomaly

index (dT) was obtained from the Hadley Centre of the UK

Meteorological Office (https://www.metoffice.gov.uk). All climate

factor data were monthly data for the period from 1960 to 2021.
2.2 Methods

2.2.1 Data normalization
Fisheries management organizations in various oceans have

implemented stringent production and management measures for

bigeye tuna. Vessels fishing for tuna need to register with specific

regional fisheries management organizations and obtain quotas

(MacDonnell and Vandergeest, 2024). Hoshino et al. (2024) argue

that when fisheries are subject to rigorous input-control

management, the level of catch can serve as an indicator of

population abundance. Fish catch can represent population

abundance in certain contexts (Yang et al., 2019; Friedland et al.,

2023). Therefore, this study used catch to represent abundance.
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Due to the different scales of climate change characterization

factor data and bigeye tuna catch data, they may have different

impacts on the accuracy of predictions when input into the model for

training. In this study, climate factor data and catch data were

normalized. The annual average data of climate factors were

calculated using Equation 1 (Xiao, 2021), and Equation 2 (Song

et al., 2022) was used to normalize the climate change

characterization factor and bigeye tuna catch data. The calculation

formula (Song et al., 2022; Zhang et al., 2022) is as follows:

Di =
1
12 o

12

j=12
Dij (1)

X̶i =
Xi − Xmin

Xmax − Xmin
(2)

where i is the transformed factor data, Xmax is the maximum

value of the factor data, Xmin is the minimum value of the factor

data, D i is the annual average data of climate change

characterization factor i, and Dij is the data of climate change

characterization factor i in month j of the year.

2.2.2 Selection of climate factors
Spearman’s rank correlation analysis ranks the factors between

two variables from largest to smallest and studies the correlation

between variables based on the ranking position instead of the

actual numerical value, which can better analyze whether variables

have significance in statistics (Zhou et al., 2020). In this study,

Spearman’s rank correlation coefficient was used to measure the

correlation between the catch of bigeye tuna and climate factors,

and the calculation formula (Gan et al., 2019) is as follows:

P = 1 −
6od2i

n(n2 − 1)
(3)

where di is the difference in ranking position between the two

variables, and n is the sample size. P is the Spearman’s rank

correlation coefficient between the two variables, generally |P|≤1,

and the stronger the correlation between bigeye tuna catch and

climate factors, the larger the absolute value of P.
2.2.3 Lagged years of bigeye tuna
Cross-correlation analysis can calculate the time difference

when the climate change characterization factor is most similar to

the catch of bigeye tuna (Gan et al., 2019), which represents the

optimal lagged years of climate factors for bigeye tuna catch. In this

study, the maximum lagged years was set to 15 (Xiao and Huang,

2021), and the absolute values of the cross-correlation coefficients

between each factor and the catch were calculated at different lag

orders. The lag order corresponding to the maximum absolute

cross-correlation coefficient is the optimal lag order of the climate

change characterization factor for bigeye tuna catch.

Cross-correlation analysis can describe the correlation between

the values of random variables X (·) and Y (·) at any two different

time points, reflecting the degree of similarity between the two

variables at different relative positions. Its expression (Xiao, 2021) is

as follows:
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R(t) = E(XS+TYS) (4)

where t is the delay, X(·) and Y(·) are time series, and E(·) is the

expectation function. R(t) describes the degree of similarity between

time series XS+T and YS at the delayed variable t. If the correlation

between the two is large, then R(t) is large.

2.2.4 The importance analysis of various
climate factors

The Spearman correlation coefficient between the lagged data of

climate factors and the catch of bigeye tuna was calculated to

determine the relative importance of each climate factor in

affecting the catch of bigeye tuna. The formula for calculating the

relative importance is given as follows (Song et al., 2022):

Di =
Pij j

o
i=m

Pij j (5)

Where Di represents the relative importance of climate factor i

on the catch of bigeye tuna, Pi represents the Spearman correlation

coefficient between climate factor i and the catch of bigeye tuna, and

m represents the total number of climate factors.
2.2.5 Prediction model establishment
and validation
2.2.5.1 LSTM model

LSTM improves the efficiency of information transfer from the

previous cell to the next cell in the same layer by adding a “gate” data

structure (Wang et al., 2023; Zhou et al., 2023). The main structure of

the model is composed of forget gate, input gate, and output gate, and

the internal structure of the model is shown in Figure 1. In the forget

gate, except that the initial value of the cell at the first time is manually

set, the cell at other times needs to obtain the cell state Ct−1 of the

previous cell, and then compare it with the current input vector

information Xi, and the value range [0,1] is obtained by activating the

function sigmoid. If the corresponding position of the vector is 0, it

means that the corresponding position information of the previous

time is forgotten, and if it is 1, the information memory of the

corresponding position is performed. The forget gate filters the input

data and passes it to the input gate. The relevant formulas for the

LSTM prediction model refer to Xu et al. (2023).
2.2.5.2 RF model

RF is an ensemble learning algorithm that constructs multiple

decision trees as base learners using the bootstrap aggregating

(bagging) strategy to classify and predict outcomes. By randomly

selecting subsets of features, RF effectively addresses high-

dimensional data, thereby reducing dimensionality and enhancing

model efficiency. Additionally, RF’s feature importance ranking

further improves the model’s generalization ability. Random

forest (RF) model (Yang et al., 2015) is a learning method based

on classification decision tree, with the minimum number of leaves

set to 1, the minimum number of splits set to 1, and the number of

decision trees set to 500. The fundamental workflow of the RF

algorithm is illustrated in Figure 2, with detailed principles and

steps described by Hou (2024).
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2.2.5.3 BP neural network model

A BP neural network typically consists of multiple layers,

including an input layer, hidden layers, and an output layer. Its

learning process operates in two stages: forward propagation of

signals and backward propagation of errors. During forward

propagation, input data passes through the input layer, is

processed by the hidden layers, and then reaches the output layer.

If the actual output deviates from the expected output, backward

propagation is triggered, where the output error is propagated

backward through the network. This error is distributed across all

units in each layer, providing the basis for adjusting the weights of

the network. The process of forward signal propagation, backward

error propagation, and weight adjustment repeats iteratively until

the network output error reaches an acceptable threshold or a

predetermined number of learning iterations is completed. The

topological structure of the BP neural network is shown in Figure 3,
Frontiers in Marine Science 04
while the underlying principles and algorithmic steps are detailed in

Xiao (2021).

2.2.5.4 XGBoost model

The XGBoost model, an enhancement of the gradient boosting

decision tree model, consists of multiple decision trees arranged

iteratively. During the tree-building process, the XGBoost algorithm

automatically determines the optimal splitting directions, making it

highly effective in handling missing values often present in fisheries

production data. The detailed principles and methodology of the

XGBoost algorithm can be found in Zhang et al. (2024).

2.2.5.5 SSA-XGBoost model

The sparrow search algorithm simulates the foraging and anti-

predation behaviors of sparrow populations (Xu and Zhao, 2023),

taking inspiration from Particle Swarm Optimization (PSO) and

Ant Colony Optimization (ACO). Unlike ACO, which has a slower

search speed, and PSO, which is prone to premature convergence,

SSA offers superior performance in terms of search accuracy,

convergence speed, stability, and the ability to avoid local optima.

The principles and steps of the SSA-XGBoost model are detailed in

Yuan et al. (2022).

2.2.5.6 Validation of model prediction results

In this study, the lagged data of climate factors were used as

training data, and the catch data of bigeye tuna were used as

prediction data. To achieve this, cross-validation method was

employed. Of the data, 70% were randomly selected as training

set and 30% were used as test set. LSTM, RF, BP, XGBoost, and

SSA-XGBoost models were used for prediction. The accuracy of the

predicted values was verified and compared by using mean absolute

error (MAE) and root mean squared error (RMSE). MAE is the

average absolute error between the predicted values and the actual

values, and the smaller the value, the higher the prediction accuracy.

RMSE is the sample standard deviation between the predicted
FIGURE 2

Flow chart of random forest.
FIGURE 1

Network structure of LSTM.
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values and the actual values, and the smaller the value, the smaller

the dispersion. The error calculation formula (Yuan et al., 2022) is

as follows:

XMAE =
1
n
�o

n

t=1
Dt − Ptj j (6)

XRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
�o

n

t=1
(Dt − Pt)

2

s
(7)

where XMAE is the mean absolute error, XRMSE is the root mean

squared error, Dt is the predicted catch of bigeye tuna at time t, Pt is

the actual catch of bigeye tuna in year t, and n is the number of

test sets.
3 Results and analysis

3.1 Data and data preprocessing

Global bigeye tuna catch data (Figure 4) indicate that the catch

volume of bigeye tuna has shown a linear increase since 1960,
Frontiers in Marine Science 05
reaching a historical peak in 1999. Subsequently, the catch volume

has exhibited a fluctuating decline, continuing through to 2021.

The time series of climate change characterization factors are

shown in Figure 5. It is evident that over the period from 1960 to

2021, dT exhibits an undulating upward trend. The PDO shows an

alternating pattern of warm and cold phases with a cycle of

approximately 40 years. The other climate change indicators

demonstrate shorter variation cycles. The results indicate that,

apart from the dT data, the remaining factors primarily oscillate

around a parallel baseline.
3.2 Correlation analysis of climate change
characterization factors

From Table 1, it can be seen that the correlation coefficients

among Niño1 + 2, Niño3, Niño4, and Niño3.4 are high, with the

exception of Niño1 + 2 and Niño4, which have a correlation

coefficient of 0.603. The absolute values of the correlation

coefficients among the other factors exceed 0.7, indicating a high

correlation. The SOI also has correlation coefficients with Niño3,

Niño4, and Niño3.4 that exceed 0.7, further indicating high

correlation. To select representative factors from the highly

correlated climate indices, Niño1 + 2, Niño3, Niño4, and Niño3.4

were considered as one set, and SOI, Niño3, Niño4, and Niño3.4 as

another. Given that Niño3, Niño4, and Niño3.4 appear in both sets,

Niño1 + 2, SOI, NAO, PDO, NPI, and dT were chosen as the six

relatively independent climate indices to ensure the independence

of the factors.
3.3 Lag years of climate change
characterization factors

The optimal lag for each climate change indicator is determined

by the lag at which the cross-correlation coefficient reaches its

maximum absolute value. As shown in Table 2, the optimal lag

years for the climate change indicators Niño1 + 2, SOI, NAO, PDO,

NPI, and dT are 15 years, 12 years, 12 years, 1 year, 14 years, and 4

years, respectively. The ratios of the absolute cross-correlation

coefficients at the optimal lag years to those at 0 years are as

follows: Niño1 + 2 is 1.15 times, SOI is 1.55 times, NAO is 4.09

times, PDO is 1.06 times, NPI is 1.95 times, and dT is 1.09 times.

The absolute values of the cross-correlation coefficients between

Niño1 + 2, SOI, NAO, PDO, NPI, and bigeye tuna are all below 0.3.

The results indicate that the influence of the climate change

indicators at their optimal lag years on bigeye tuna catch is

greater than that with a 0-year lag.
3.4 Relative importance of climate change
characterization factors

From Figure 6, it is evident that the relative importance of

climate change indices on catch follows the order: Niño1 + 2, SOI,

dT, PDO, NPI, and NAO. There is a significant difference between
FIGURE 4

Time series of bigeye tuna catch.
FIGURE 3

Topological structure of three-layer BP neural network.
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the importance of Niño1 + 2, SOI, dT, and that of PDO, NPI, and

NAO. The combined importance of the climate indices Niño1 + 2,

SOI, and dT accounts for approximately 70%. Therefore, the

climate indices Niño1 + 2, SOI, and dT can be considered the key

climate factors affecting the catch of bigeye tuna.
3.5 Model comparison and validation of
predicted catch of bigeye tuna

The error statistics from different models (Figure 7) indicate

that the SSA-XGboost model has the lowest MAE and RMSE

compared to other prediction models, demonstrating its superior

predictive performance. The RF model has the highest MAE and
Frontiers in Marine Science 06
RMSE among the five models, indicating its relatively poor

predictive performance. The predictive performance of the LSTM

and BP models is similar, but slightly inferior to that of the XGboost

model. Overall, the SSA-XGboost model exhibits the best predictive

performance for bigeye tuna catch among the five models.

As illustrated in Figure 8, the predicted catch trend of bigeye

tuna closely aligns with the observed trend over the analyzed period,

capturing significant features such as the increase in catch around

2000 and its subsequent peak. Both the predicted and actual data

display a consistent pattern of rising catch levels followed by a

decline. While the predicted values exhibit larger fluctuations than

the actual catch data, the overall variation range remains

reasonable. Specifically, the ratio of the maximum to minimum

values for actual catches is approximately 6, while the predicted
FIGURE 5

Time series of characterization factors of climate.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1344966
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ding et al. 10.3389/fmars.2024.1344966
values have a similar ratio of 7.6. This numerical similarity supports

the model’s effectiveness in capturing the overall range of

catch data.

To further validate the model’s predictive accuracy, a linear

regression between the predicted and actual catch values was

performed, as shown in Figure 9. The results reveal a strong

linear correlation between the predicted and actual values, with

points closely clustering around the fitted line. This relationship

highlights the close alignment between predicted and observed

catch levels. Additionally, the R2 value of 0.853, with a

significance level of <0.001, underscores the high predictive

capability of the SSA-XGBoost model for bigeye tuna catch. The

regression equation, y=0.968x+20324, further demonstrates the

model’s robustness in predicting catch values.
4 Discussion

In this study, the Spearman rank correlation analysis was used

to select six independent climate change characterization factors,

including Niño1 + 2, SOI, NAO, PDO, NPI, and dT. The optimal

lag years of these factors in relation to the catch of bigeye tuna were

found to be 15 years, 12 years, 12 years, 1 year, 14 years, and 4 years,

respectively. The longest lag year was for Niño1 + 2 (15 years), while

the shortest was for PDO (1 year). This is different from the 3-
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month lag years of ENSO observed in Lu’s study (Lu et al., 2001),

which might be due to the long duration and wide range of the catch

of bigeye tuna used in this study. This also confirms the lag effect of

climate change on fisheries, which may be due to the indirect

impact of climate change on fisheries through changes in the

marine environment (Yu and Wen, 2022). The lag phenomenon

may be attributed to the lag effects of climate change on marine and

climate factors, food supply, survival rate of larvae, and habitats,

which subsequently influence the spawning and recruitment of

bigeye tuna (Fang et al., 2008), thus affecting their catches.

Furthermore, studies have found that the distribution (Hampton,

1997; Hampton et al., 1999), reproduction (Bakun and Parrish,

1990), catch yield (Torres-Orozco et al., 2006; Deary et al., 2015),

and spatial distribution (Ding et al., 2024) of fish populations are

closely related to these factors.

The three main climate change characterization factors that

affect the catch of bigeye tuna are Niño1 + 2, dT, and SOI,

accounting for approximately 70% of the six climate change

characterization factors. These findings are generally consistent

with the results of other scholars (Zhou et al., 2004), indicating

that the El Niño-Southern Oscillation phenomenon has a

significant impact on the bigeye tuna fishery. This may be

attributed to the fact that bigeye tuna is a warm-water species

that is greatly influenced by temperature (Huang et al., 2020),

having specific requirements for water temperature during their

habitat and spawning periods. During El Niño, the upper boundary

of the thermocline is shallower and weaker compared to La Niña,

resulting in a smaller suitable habitat, which leads to higher catch of

bigeye tuna in La Niña years. Meanwhile, during El Niño, the

reproduction of plankton decreases, reducing the nutrient content

in the water column (Huang et al., 2020), resulting in less nutrition

for bigeye tuna and lower catches. Conversely, in La Niña years, the

proliferation of plankton increases, improving the nutrient content

of the water column, allowing bigeye tuna to obtain more nutrition,

and leading to higher catches. In terms of the sea–air temperature

anomaly index (dT), climate change affects the recruitment of fish

populations by influencing sea water temperature (Sirabella et al.,

2001; Ottersen and Stenseth, 2001). The lag phenomenon may be

due to the indirect effects of climate factors on the catch of bigeye
TABLE 1 Spearman rank correlation coefficient result.

dt 1

NPI -0.102 1

PDO 0.236 -0.674 1

NAO 0.026 0.067 0.139 1

SOI -0.099 0.408 -0.586 -0.145 1

Niño3.4 0.158 -0.3 0.492 0.124 -0.928 1

Niño4 0.368 -0.307 0.547 0.135 -0.868 0.912 1

Niño3 0.22 -0.312 0.467 0.132 -0.837 0.948 0.81 1

Niño1+2 0.185 -0.297 0.405 0.179 -0.678 0.783 0.603 0.912 1

dt NPI PDO NAO SOI Niño3.4 Niño4 Niño3 Niño1+2
The darker the color, the stronger the correlation. Bold fonts represent the optimal cross-correlations coefficients of climate change characterization factors.
FIGURE 6

Relative importance of climate change characterization factors.
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tuna through influencing marine and climate factors, recruitment,

habitats, and spatial–temporal distribution, thus exhibiting a certain

degree of lag.

Numerous researchers have applied various models to predict

fisheries trends, with most relying on traditional regression models.

For example, the BP neural network model (Ding et al., 2021a, 2021b)

achieves predictions by iteratively adjusting the weights between

neurons and increasing the number of hidden layers based on

empirical knowledge. The Bayesian method (Chen et al., 2013)

imposes strict requirements on the dependent variable, and the

complex, non-linear relationships between environmental and

climate factors and fisheries can greatly influence prediction

accuracy. Additionally, models like GLM and GAM require
Frontiers in Marine Science 08
researchers to have a thorough understanding of the error

distribution in fisheries data and the transformation of predictive

variables (Guan and Chen, 2009), as any misinterpretation can easily

affect the results. In contrast, the XGBoostmodel used in this study is a

modern ensemble learning approach (Li et al., 2023) that effectively

mitigates overfitting, even with small sample sizes and numerous

variables. Unlike traditional decision tree models, XGBoost has the

advantage of automatically learning optimal splitting directions. The

enhanced SSA-XGBoost model further reduces data complexity and

achieves rapid convergence by incorporating climate change factors,

enabling accurate predictions of bigeye tuna catches. Results indicate

that the optimized predictions using the SSA were significantly better

than those of the standalone XGBoost model, with a reduction in

RMSE by 0.058 and MAE by 0.055. This study provides valuable

insights into the integration of different regression models for fisheries

prediction and presents a novel approach to modeling fisheries data.

This study explored the impact of climate change

characterization factors as the only influencing factors on the

catch of bigeye tuna, highlighting the importance of climate

factors in fisheries. This is consistent with the proposal by some

scholars (Ormaza-González et al., 2016) to use climate factors to

help manage fisheries and plan for the industry in the long term.

The climate factors selected in this study, including Niño1 + 2, SOI,

NAO, PDO, NPI, and dT, have significant impacts on fisheries, as

reported by previous studies. For example, Yang et al. (2019). found
TABLE 2 Mutual correlation between climate change characterization
factors and catch.

Lagging
years

Niño1 + 2 SOI NAO PDO NPI dT

0 0.108 −0.115 −0.045 0.24 −0.149 0.783

1 0.084 −0.06 −0.109 0.255 −0.167 0.806

2 0.1 −0.027 −0.07 0.207 −0.103 0.813

3 0.13 −0.012 −0.1 0.158 −0.075 0.838

4 0.12 0.005 −0.099 0.087 −0.044 0.85

5 0.091 0.045 −0.114 0.061 −0.03 0.823

6 0.097 0.03 −0.135 0.061 0.014 0.806

7 0.107 0.001 −0.137 0.033 0.054 0.798

8 0.092 0.066 −0.135 −0.037 0.103 0.785

9 0.076 0.112 −0.17 −0.077 0.165 0.747

10 0.084 0.075 −0.168 −0.053 0.115 0.741

11 0.119 0.106 −0.117 −0.081 0.141 0.731

12 0.105 0.178 −0.184 −0.158 0.231 0.699

13 0.069 0.153 −0.169 −0.207 0.269 0.655

14 0.11 0.167 −0.153 −0.239 0.291 0.631

15 0.124 0.167 −0.154 −0.211 0.253 0.59
Bold fonts represent the optimal cross-correlations coefficients of climate change
characterization factors.
FIGURE 7

Statistical results of prediction errors of different models.
FIGURE 8

Comparison between predicted and actual catch.
FIGURE 9

Linear fitting relationship between predicted and actual catch.
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that the ENSO phenomenon has a significant impact on the spatial

distribution and resource abundance of Chilean jack mackerel;

Sirabella et al. (2001) found that NAO affects the recruitment of

cod by influencing sea water temperature, and Ottersen and

Stenseth (2001) reached similar conclusions. Li et al. (2020)

reported a close relationship between the population abundance

of yellow croaker and PDO, while Carey et al. (2017) found a strong

correlation between the migration duration of red salmon and NPI.

The IPCC report (Intergovernmental Panel on Climate Change

(IPCC), 2007) also points out that the continuous increase in ocean

temperature during the period of 1971–2010 has led to an increase

in atmospheric temperature. By discussing the long-term impact of

climate change on the catch of bigeye tuna from the angle of climate

change with a long time series, this study can provide scientific

evidence for the sustainable development of the bigeye tuna fishery

and understand the long-term impact of climate change on bigeye

tuna. This study investigates the effect of climate change factors as

the sole influencing factor on the catch of bigeye tuna, highlighting

the climatic reasons behind the variations in the abundance of

bigeye tuna resources and fishing grounds. This approach differs

from those that consider climate change characterization factors as

one of the influencing factors or discuss the issue during climate

transitions. Moreover, the use of long-term (low-frequency) climate

change parameters to study the impact on bigeye tuna is distinct

from short-term research focusing on marine environmental

factors. The findings of this study can provide a reference for

China to develop scientific and effective fishery management

measures for bigeye tuna. However, it is worth noting that due to

the lack of data such as fishing gear information and operating

hours, there are limitations in calculating catch per unit effort

(CPUE). Future research could continue to delve deeper into this

area after supplementing relevant data.
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