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Background: Fucoxanthin is a carotenoid found in seaweed. Its unique chemical

structure gives it a variety of properties. Thus fucoxanthin have attracted the

attention of companies and researchers.

Methods: Scientific papers were collected from the database. Duplicates and

unavailable literature were excluded first. Then the remaining literature was

categorized for referencing in the review.

Results: This article contains a summary of the microalgae species producing

fucoxanthin and their progress in breeding and cultivation modes. Additionally,

the review summarized the progress of research on physiological activities and

organized the experimental models used in these studies.

Conclusions: These present findings may provide information for the upstream

production of fucoxanthin from algal species selection to process optimization.

The analysis of the physiological activity results will help advance subsequent

physiological and biochemical experiments. Furthermore, it intends to pique

researchers’ enthusiasm for fucoxanthin and enrich related research data to

accelerate the development of this natural product.
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1 Introduction

Fucoxanthin, a carotenoid, is a significant component of carotenoids found in nature,

accounting for more than 10% (Matsuno, 2001). This natural product contains multiple

functional groups, as depicted in Figure 1, enabling it to bind to a wider range of disease

targets. It has shown biological activity and has good nutritional and health care value.

Fucoxanthin nutraceuticals have gained approved from the Food Standards Agency of
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Australia and New Zealand (Abu-Ghosh et al., 2021), resulting in a

high demand for this compound. However, it’s supply remains

limited. A Flow chart illustrating the culture and product

application of microalgae producing fucoxanthin is presented

in Figure 2.

As of 2021, the price of high-purified fucoxanthin ranges from

40,000 to 80,000 USD/kg (Market Watch, 2020). This elevated price

significantly hiders the commercialization, progress of fucoxanthin,

necessitating the exploration of new approaches for industrialingze

the production of fucoxanthin raw materials. Fucoxanthin products

are primarily extracted from macroalgae such as kelp and sea

mustard. However, macroalgae have several drawbacks, including

a lengthy growth cycle, low fucoxanthin content (0.02~0.58 mg/g

fresh weight) (Mori et al., 2004), and other shortcomings, such as

thick algal cell walls, high content of polysaccharides, and

difficulties in crushing, which contribute to high production costs

(Kim et al., 2011; Joel, 2016). On the other hand, marine microalgae

have been found to be rich in fucoxanthin and easy to obtain. These
Frontiers in Marine Science 02
microalgae have a fucoxanthin content about 100 times higher than

that of macroalgae. For example, the fucoxanthin content in

Synurophyceae is as high as 26.6 mg/g dry weight (Petrushkina

et al., 2017). Diatoms have a fucoxanthin content of up to 25.5 mg/g

dry weight (Wang et al., 2018), and Prymnesiophyceae have a

fucoxanthin content of 18.23 mg/g dry weight (Petrushkina

et al., 2017).

This marine natural substance has gained increased attention in

recent years for its potential in various diseases related to

inflammation and oxidative stress reactions. These include skin

inflammation (Rodrıǵuez-Luna et al., 2018; Spagolla Napoleão

Tavares et al., 2020), ulcerative colitis (Yang et al., 2020), and

contact hypersensitivity (Sakai et al., 2011). It has also been a

research hotspot for its anti-diabetic (Maeda et al., 2007; Sakai et al.,

2011; Kong et al., 2019) and anti-obesity (Abidov et al., 2010; Hu

et al., 2012; Hitoe and Shimoda, 2017; Gille et al., 2019; Koo et al.,

2019) efficacy. Non-alcoholic steatohepatitis (Takatani et al., 2020;

Shih et al., 2021; Ye et al., 2022), Alzheimer’s disease (Lin et al.,
FIGURE 1

Chemical structure diagram of fucoxanthin.
FIGURE 2

Flow chart of culture and product application of microalgae producing fucoxanthin.
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2017; Xiang et al., 2017; Alghazwi et al., 2019; Shih et al., 2021; Yang

et al., 2021; Zhu et al., 2021), and other biological activities [e.g.,

antiviral (Tsushima et al., 1995; Tamama, 2021)] have also

been proven.

Microalgae-produced fucoxanthin is green and environmentally

friendly, which is in line with the development trend. However, the

current production of fucoxanthin from microalgae is constrained

by traditional technologies. The precise pharmacological targets and

signaling mechanisms of fucoxanthin remain unclear. Therefore,

there is a need to further develop research on the upstream and

downstream of fucoxanthin.

This review focuses on the production of fucoxanthin by

microalgae and its pharmacological activity. It provides a

summary of fucoxanthin-rich microalgae and their culture modes.

The review also discusses the recent developments in investigating

the pharmaceutical properties of fucoxanthin.
2 Results

2.1 Microalgae producing fucoxanthin and
its biological properties

2.1.1 Microalgae producing fucoxanthin
Fucoxanthin in microalgae often binds to chlorophyll to form a

fucoxanthin chlorophyll a/c protein complex (FCP), which can

respond quickly to changes in the light environment

(Xia et al., 2013). While fucoxanthin can be chemically

synthesized, it is more efficient to extract it from microalgae.

Compared with plants, microalgae grow quickly, often doubling

their number per hour. Their productivity is measured in days,

whereas plants often take months or years to produce. Microalgae

isolated from nature are small and easily viable, making them

suitable for cultivation in closed systems in laboratories or

factories. There do not require arable land and are unaffected by

seasonal climate and the marine environment. Moreover, the high

fucoxanthin content of microalgae, the relative ease of the

extraction and preparation process compared to macroalgae, and

the variery of strain sources make microalgae an ideal cellular

factory for the sustainable, large-scale production of fucoxanthin.

2.1.2 Synthesis pathway of fucoxanthin
in microalgae

The biosynthesis of fucoxanthin was studied using

Phaeodactylum tricornutum as a common model species, with

high photosynthetic efficiency (Figure 3). The process begins with

the generation of isopentenyl pyrophosphate (IPP) through the

mevalonate pathway, which is the rate-limiting step in the synthesis

of b-carotene. Geranylgeranyl diphosphate (GGPP) is produced by

IPP under the action of geranyl pyrophosphate synthase (GGPS)

(Xia et al., 2013). Subsequently, octahedron lycopene synthase

(PSY) enzyme converts GGPP to produce the first carotenoid,

phytoene (Kadono et al., 2015). Phytoene undergoes continuous

dehydrogenation by octahydron lycopene desaturase (PDS), z-
carotene desaturase (ZDS), carotenoid isomerase (CRTISO),
Frontiers in Marine Science 03
resulting in the formation of lycopene (Kadono et al., 2015).

Lycopene can produce a-carotene or further forms b-carotene
from g-carotene. Under the action of b-carotene hydroxylase

(BCH), b-carotene generates zeaxanthin. Zeaxanthin epoxidase

(ZEP) cyclizes zeaxanthin to form violaxanthin through two-step

catalysis (Coesel et al., 2008). Ultimately, fucoxanthin can be

synthesized from Diadinoxanthin (Lohr and Wilhelm, 1999) or

also from Neoxanthin (Kadono et al., 2015). There are two

hypothetical pathways for fucoxanthin synthesis, Figure 3. These

are the currently known pathway for fucoxanthin synthesis.

Clarifying of the pathway of fucoxanthin synthes is also

important for biomolecular experiments and molecular level

studies. It is evidant that the enzymes involved in key synthetic

pathways are not yet known and fuether research is needed to

investigate potential branching pathways for synthesis.

2.1.3 Selection and breeding of fucoxanthin-
producing microalgae

In the field of research and development of microalgae

resources, one of the key problems that must be solved is the

screening and breeding of excellent algal strains. Most of the

microalgae cultured in current times are isolated directly from the

natural environment. They are wild-type algae, which have single

traits and poor adaptability to the environment. As a result, they are

prone to trait degradation and are not suitable for industrial

production and conditions (Benemann, 2013). Natural selection,

is time-consuming and laborious. Hence, there is a need for effective

breeding methods. Mutagenic breeding, an ideal method for

microalgal breeding, is outstanding and easy to operate.

Researchers screened a mutant of Phaeodactylum tricornutum

using a fluorescence-based high-throughput method (Yi et al.,

2018). The mutant showed a 69.3% increase in fucoxanthin

compared to wild type, making it an industrially useful

fucoxanthin-producing algal strain. UV mutagenesis is also an

effective breeding strategy. Yi et al. used stress mutagenesis

induced by UV light to enhance the accumulation of fucoxanthin

in Phaeodactylum tricornutum and produced mutant strains with

improved growth rates (Yi et al., 2015). Furthermore, mutagenesis

has the advantage of not being classified as a method producing

genetically modified organisms, which exempts it from regulatory

issues in many places such as the EU (Tillich et al., 2012). However,

there are curenthly challenges in microalgae mutation breeding.

Such as obtaining ideal mutant strains, optimizing mutation

conditions, and screening efficiency. It is necessary to adopt

appropriate mutation methods for different algal strains. A

combination of different mutation methods can also be used by

applying higher mutation pressures in order to obtain the desired

mutant strain.

2.1.4 Culture of fucoxanthin
producing microalgae

Culture parameters for microalgae are typically species-specific,

requiring individualized culture processes for each microalgae

strain to achieve high-quality algal cultures. While most

microalgae cultures adopt a one-stage culture mode. The culture
frontiersin.org
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conditions have no change during the whole process from

microalgae growth to fucoxanthin accumulation (Heo et al., 2010;

Petrushkina et al., 2017; Lu et al., 2018; Wang et al., 2018; Li et al.,

2019; Marella and Tiwari, 2020; Mc et al., 2020; Kanamoto et al.,

2021; Zhu et al., 2021; Jin et al., 2022), as shown in Supplementary

Table 1.

However, the one-stage mode cannot solve the contradiction

between biomass and metabolite production accumulation. It

cannot fulfill the demands of industrial production. Microalgae

metabolites are often produced under extreme conditions that may

inhibit their growth. If the conditions for metabolite accumulation

are met, it can lead to the death of the algal cells, while the

conditions for microalgal growth are not satisfied for

pigment accumulation.

In contrast, the two-stage culture mode separates periods of

microalgal growth and product accumulation. In Stage I, provided

sufficient cell factories are provided, while and Stage II optimizes
Frontiers in Marine Science 04
growth conditions (e.g, autotrophic, heterotrophic, batch

sequential, nutrient conditions) to enhance metabolite production

(Wan et al., 2015), as shown in (Chang et al., 2018; Chiang et al.,

2020; Dambek et al., 2012; Erdogan et al., 2021; Fierli et al., 2022;

Gao et al., 2020; Kim et al., 2010b; Lakey-Beitia et al, 2019; Li et al,

2000; Li et al, 2021; Masse et al, 2004; Okcu et al., 2021; Qin et al.,

2013; Tachihana et al., 2020; Wei et al., 2022; Wu et al., 2011; Yang

and Wei, 2020; Zhu et al., 2021) Table 1. Compared to separate

cultivation, the two-stage mode offers advantages such as high

product yield, energy saving, environmental protection and a

wide range of applications (Liyanaarachchi et al., 2021).

Researchers have successfully improved the fucoxanthin contents

and b lue l i gh t amp l ifica t ion y i e ld us ing two-s tage

photofermentation techniques. Yang et al. (Yang et al., 2023).

raised the fucoxanthin content and yield by 45.98% and 48.3%

reperceiving a two-stage culture technique. The highest recorded

fucoxanthin yield among available results was obtained by Yang
FIGURE 3

Schematic diagram of the biosynthetic pathway of fucoxanthin in diatoms. fucoxanthin is mainly generated in plastids. The MEP pathway provides
the material prerequisites for fucoxanthin synthesis, which is then followed by GGPS to obtain GGPP. GGPP is processed by PSY to generate
phytoene, the first carotenoid substance synthesized. And g-Carotene continues to generate b-Carotene. Eventually, Violaxanthin synthesizes
fucoxanthin via Neoxanthin and possibly fucoxanthin synthesized from Diadinoxanthin. Dashed arrows indicate that some synthesis steps
were omitted.
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et al., measuring 8.22 mg/d·L (Yang et al., 2020). Li et al. achieved a

fucoxanthin yield of 16.5 mg/d·L by employing a two-stage culture

technique involves in high-density fermentation in the dark and

blue-white light as a light source (Lu et al., 2018). The two stages of

cultivation are detailed in Table 1. In conclusion, the two-stage

culture method is considered to be a viable approach.
2.2 Physiological activity of fucoxanthin

2.2.1 Anti-inflammatory activity
Similar to other anti-inflammatory drugs, fucoxanthin has been

found to play an anti-inflammatory role through the down-

regulation of the release of relevant inflammatory mediators. It’s

inhibition of the enzymatic activities, which are associated with

inflammation induction in macrophages RAW264.7 (Heo et al.,

2010; Kim et al., 2010a). Fucoxanthin has demonstrated beneficial

effects in various conditions, such as ulcerative colitis (Yang et al.,

2020), uveitis (Shiratori et al., 2005), and contact hypersensitivity

(Sakai et al., 2011; Namkoong et al., 2012). In a colitis model using

mice, fucoxanthin inhibited NF-kB and COX-2 expression,

resulting in significant improvement of histological damage in the

colon (Yang et al., 2020). Fucoxanthin has also been shown efficacy

in treating uveitis in an LPS-induced inflammation rat model (Li

et al., 2020). Moreover, fucoxanthin has been shown effectively

alleviate dinitrofluorobenzene-induced contact hypersensitivity in

BALB/c mice (Sakai et al., 2011). And prevent allergic diseases by

inhibiting IgE-antigen complex-stimulated RBL-2H3 cells

(Namkoong et al., 2012).

In previous studies, mechanistic studies of fucoxanthin have

focused on the classical NF-kB and MAPK-related pathways.

Fucoxanthin treatment has been shown to dose-dependently reduce

the inflammatory factor expression levels of tumor necrosis factor-a
(TNF-a), interleukin-1b (IL-1b), and interleukin-6 (IL-6) by

inhibiting the MAPK and NF-kB pathways (Heo et al., 2010; Kim

et al., 2010a). There are other related signaling pathways, such as the

inflammasome, which is composed of NOD-like receptor thermal

protein domain associated protein (NLRP), apoptosis-associated
Frontiers in Marine Science 05
speck-like protein (ASC), and cysteinyl aspartate specific protein

(caspase). Li et al (Li et al., 2020). found that fucoxanthin attenuated

palmitate-induced transcriptional of NLRP3 inflammasomes for anti-

inflammatory efficacy. Similarly, the union of fucoxanthin and

rosmarinic acid has been shown to reduce the inflammatory

response by downregulating inflammasome components including

NLRP3, ASC, and caspase-1, as well as interleukin IL-1b production,

according to Rodrguez-Luna et al., (Rodrıǵuez-Luna et al., 2019).

According to these studies, the product may have a protective impact

by downregulating the inflammasome and inflammatory factors.

In this line, due to its anti-inflammatory activity, this carotenoid

has been proposed as a protective compound. Given its promising

anti-inflammatory effect, fucoxanthin holds potential as an

independent anti-inflammatory drug or as a synergizedstic agent

with other therapeutic drugs for other diseases to exert anti-

inflammatory effect treatment of various diseases.
2.2.2 Antioxidant activity
Fucoxanthin is a very powerful antioxidant. Its six-oxygen-

atom propylene structure makes fucoxanthin extremely reactive to

free radicals. Oxidative stress is brought on by an increase in

reactive oxygen species (ROS). Heo et al., (Heo et al., 2008).

induced oxidative stress in Vero cells using H2O2, and the

addition of fucoxanthin significantly reduced intracellular ROS

production while also dose-dependently inhibiting oxidative-

induced cellular damage. Fucoxanthin may scavenge ROS and

free radicals by means of a three-step process that involves

electron transfer, dehydrogenation, and addition (Rao and Rao,

2007). Additionally, fucoxanthin has demonstrated its efficacy in

modifiedying skin inflammation and skin damage caused by UV-

induced photo-oxidative stress (Ichihashi et al., 2003; D’Orazio

et al., 2013). When fucoxanthin isolated from algae was

incorporated into sunscreen at 0.5% (w/v), it inhibited the

formation of ROS significantly in reconstructed skin cells and

HaCaT cells (Tavares et al., 2020). Furthermore, intracellular ROS

and oxidative stress were lower in cells exposed to UV-B radiation

than in cells without different concentrations of fucoxanthin
TABLE 1 Two-stage culture of microalgae for the production of fucoxanthin and its yield.

Strain Medium Light condition Photobioreactors Trophic
modes
and

Strategies

Fucoxanthin Reference

Diatom Phaeodactylum
tricornutum

Modified F/2,
nitrogen

supplementation
(stage 1 and 2)

Red-blue light (stage 1),
red- blue light with blue

light enhancement
(stage 2)

Light fermenter Two-stage
culture,

heterotrophy

19.62 mg g-1 (Yang
et al., 2023)

Phaeodactylum
tricornutum

Modified F/2,nitrogen
supplementation

(stage 2)

Red-blue light (stage 1),
red- blue light with blue

light enhancement
(stage 2)

Light fermenter Two-stage
culture,

heterotrophy

13.26 mg g-1 (Yang
et al., 2020)

Nitzschia laevis Modified LDM,
nitrogen

supplementation
(exponential
growth stage)

Dark (stage 1), blue-
white light (stage 2)

Light fermenter Two-stage
culture,

heterotrophy

16.5
mg L-1 day-1

(Lu
et al., 2018)
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(Heo and Jeon, 2009). Its powerful anti-oxidant qualities protect the

skin from oxidative stress-related skin damage and aging.

Other than directly interacting with free radicals, fucoxanthin

enhances the synthesis of related proteins and antioxidant enzymes.

Resulting in increased plasma antioxidant enzyme activity, total

antioxidant capacity, and mRNA levels of Nrf2 (Liu et al., 2011; Ha

et al., 2013). It also promotes the synthesis of antioxidant proteins

such as heme oxygenase-1 (HO-1) and (NAD(P)H): quinone

oxidoreductase 1 (NQO-1) through activation of the Nrf2/ARE

system, thereby exerting its antioxidant activity in BNL CL2 cells

from murine hepatic (Liu et al., 2011). Similarly, fucoxanthin

activates the Nrf2 pathway and the gene NQO1, which reduced

oxidative stress under high-fat diet feeding1 (Ha et al., 2013).

Moreover, fucoxanthin has been found to alleviate oxidative stress

by retinol deficiency in rats by modifying the Na(+)-K(+)-ATPase,

catalase (CAT) and glutathione S-transferase (GST) activities (Ravi

Kumar et al., 2008).

Collectively, these findings highlight the potent antioxidant

activity of fucoxanthin. Specifically, fucoxanthin, a microalgal

product, is a natural green substance. It is expected to become a

valuable antioxidant in the food, pharmaceutical, and cosmetics

industries in the future.
2.3 Pharmacological activity of fucoxanthin

2.3.1 Antitumor activity
Fucoxanthin can exhibit direct antitumor effects or work in

conjunction with antitumor drugs to enhance their efficacy.

Experimental studies have demonstrated that fucoxanthin impacts
Frontiers in Marine Science 06
various types of cancer by promoting apoptosis (Jin et al., 2018; Yu

et al., 2018). Yu et al., (Yu et al., 2018). suggested that fucoxanthin

may decrease proliferation and induce apoptosis through the JAK/

STAT signaling pathway, leading to cell arrest at the S phase in

gastric cancer cells (SGC-7901) and at the G2/M phase in gastric

cells (BGC-823). It also inhibits proliferation of cancer cells and

blocking the cell cycle (Das et al., 2008) (Das et al., 2008; Hou et al.,

2013; Liu et al., 2013; Long et al., 2020). Liu et al (Liu et al., 2013).

found tha t fucoxanth in pre t rea tment increased the

chemotherapeutic efficacy of cisplatin on human hepatoma

HepG2 cells by potentially altering the DNA repair system

associated with ERK, p38, and PI3K/AKT pathways, which

subsequently increased cisplatin-induced apoptosis in cancer cells.

Das conducted surveys showing that fucoxanthin-rich methanolic

extract reduced the viability of HepG2 cells and induced G0/G1 cell

cycle arrest through proteasomal degradation and inhibition of cell

cycle protein D synthesis (Das et al., 2008). The effects of

fucoxanthin on antitumor activity are illustrated in Figure 4.

Therefore, it has a therapeutic effect on cancers. Fucoxanthin

has shown potential in treating nasopharyngeal cancer

(Long et al., 2020), cervical cancer, cervical cancer (Hou et al.,

2013; Jin et al., 2018), lung cancer (Moreau et al., 2006), breast

cancer (Wang et al., 2019) and other cancers to promote apoptosis

and inhibit of tumor cells proliferation. In addition to its direct

pharmacological effects, the anti-inflammatory and antioxidant

properties of fucoxanthin contribute to its anti-tumor activity.

Shin et al., (Shin et al., 2020). revealed that fucoxanthin may

improve the efficacy of targeted anticancer drug therapy by

reduce oxidative stress on tumor cells, while increasing oxidative

stress on tumor cells.
FIGURE 4

Mechanism of action of antitumor activity of fucoxanthin. Fucoxanthin causes cell cycle arrest in M, G2, and S cancer cells. Fucoxanthin promotes
cancer cell apoptosis through different mechanisms: inhibiting STAT-3 expression, regulating the Bax/Bcl-2 ratio, targeting the PI3K/Akt/NF-kB
signaling pathway to inhibit p-Akt expression, and energizing with TRAIL. Downward arrows indicate downregulation, and vice versa for
upregulation. Dotted lines indicate omitted steps.
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Therefore, fucoxanthin can be used in anti-cancer treatment

and in combination with anti-cancer drugs to assist anti-cancer

treatment. At the same time, it can be used in combination with

some anti-cancer drugs to improve the targeting of tumor cells and

prevent damage to healthy cells.

2.3.2 Antimetabolic syndrome
2.3.2.1 Anti-obesitys

Studies on the anti-metabolic disease activity of fucoxanthin

have focused on the anti-obesity direction. Fucoxanthin exerts its

anti-obesitys effect by affecting white adipose mitochondrial

uncoupling protein1 (UCP1) (Maeda et al., 2007; Kang et al.,

2011; Gammone and D ’Orazio, 2015), suppressed lipid

accumulation (Marchesini et al., 2003; Woo et al., 2010; Takatani

et al., 2020) and adipocyte differentiation (Kang et al., 2011).

In the clinical experimental group, overweight male and female

Japanese adults were administered capsules containing fucoxanthin

or placebo capsules for 4 weeks (Hitoe and Shimoda, 2017). The

study showed a significant reduction in relative body weight and

BMI with no observed abnormalities (Hitoe and Shimoda, 2017).

Another clinical trial revealed an increase in resting energy

expenditure (REE), in obese patients who were supplemented

with 4 mg of fucoxanthin per day (Abidov et al., 2010). It was

observed that 8 mg fucoxanthin demonstrated an even higher REE

expenditure, suggesting that its efficacy may be dose-dependent

(Abidov et al., 2010).

Being overweight has become a general problem for the world’s

citizens and can lead to other diseases. The current results of clinical

trials show that the administration of fucoxanthin can help mildly

obese adults regain their normal weight. These facts highlight the

potential of fucoxanthin as a valuable natural product with health-

promoting and anti-obesity properties.

2.3.2.2 Anti-nonalcoholic steatohepatitis

Nonalcoholic fatty liver disease (NAFLD) is a signiciant cause of

chronic liver disease, and fucoxanthin has been provern to effective in

alleviate NAFLD and preventing its progression to hepatic fibrosis.

First ly , NAFLD is closely associated with obesity

(Marchesini et al., 2003). Thus, fucoxanthin may exert anti-NAFLD

effects by preventing hepatic lipid accumulation. Fucoxanthin has dual

roles in preventing hepatic lipid accumulation: maintaining

mitochondrial homeostasis, reducing lipid synthesis, and accelerating

lipid degradation. Ye et al (Ye et al., 2022). demonstrated that

upregulation of Sirt1/AMPK expression by fucoxanthin accelerated

fatty acid b-oxidation. Fucoxanthin supplementation decreases

the activities of lipid synthesis-related enzymes [e.g. ,

hydroxymethylglutaryl-coenzyme A reductase (HMG-CoA)] and

modulates hepatic antioxidant activity and insulin sensitivity to

achieve hepatic lipid metabolism in mice (Kang et al., 2010).

Additionally, the anti-inflammatory and antioxidant activity of

fucoxanthin can help alleviate free fatty acid-induced liver

inflammation, stopping the progression of NAFLD. Activation of the

Nrf2 antioxidant signaling pathway by fucoxanthin inhibited the

TLR4-mediated inflammatory pathway and the production of

inflammatory factors IL-6, IL-8, and TNF-a (Ye et al., 2022).
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Furthermore, fucoxanthin prevents the progression of hepatitis to

liver fibrosis. Takatani et al., (Takatani et al., 2020). revealed that

dietary fucoxanthin also prevents the early phase of fibrosis in

NAFLD model. Hepatic Stellate Cells (HSC) are considered as the

primariy effector cells of liver fibrosis and are susceptible to activation

by inflammation or oxidative stress. Fucoxanthin downregulates the

activation markers of HSC, including a-smooth muscle actin (a-
SMA). Transforming growth factor b1 (TGFb1), fibrillar collagen 1

(Col1a1), matrix metalloproteinases-1 (Timp1) expression, and other

fibrogenic factors, thus inhibiting hepatic fibrosis in mice (Takatani

et al., 2020). Kim et al., (Kim et al., 2019). suggested that fucoxanthin

exerts an anti-fibrogenic effect in HSCs. It primarily prevents pro-

fibrogenic gene expression by inhibiting the activation of SMAD3

and quiescent HSCs (Kim et al., 2019).

In this context, fucoxanthin could serve as a natural product to

protect liver health and shows great potential for the treatment of

liver fibrosis and NAFLD treatments. It is important to know that

there is no drug for NAFLD at the moment. This activity of

fucoxanthin definitely brings a viable approach to the treatment

of fatty liver and subsequent liver fibrosis. The effects of fucoxanthin

on anti-nonalcoholic steatohepatitis are illustrated in Figure 5.
2.3.2.3 Antidiabetic

Studies have shown that fucoxanthin has excellent

pharmacological effects on diabetes treatment, as it is able to

lower blood glucose levels through multiple pathways.

Firstly, fucoxanthin has been found to have a strong effect on

suppressor of cytokine signaling (SOCS-3) (Sakai et al., 2011),

Monocyte Chemotactic Protein-1 (MCP-1) (Maeda et al., 2009)

plasminogen activator inhibitor-1 (PAI-1) (Hosokawa et al., 2010)

to alleviate insulin resistance in an in diabetes experiment models.

While inflammation also affects the level of insulin release in

adipocytes and hepatocytes (Ye, 2013). Due to the anti-

inflammatory activity of fucoxanthin, it is possible to alleviate

inflammation-induced insulin resistance and thus restore

glucose consumption.

Other factors, leptin also affects insulin sensitivity. In an in vivo

experiment, hyperglycamia and low plasma insulin concentrations

were alleviated by fucoxanthin in KK-Ay mice, and TNF-a and

leptin mRNA were also down-regulated (Maeda et al., 2007).

In addition, fucoxanthin also lowers blood glucose by affecting

glucose uptake in normal tissues. Maeda et al., (Maeda et al., 2009).

found that fucoxanthin promoted mRNA expression of b3-adrenergic
receptor (Adrb3) and glucose transporter 4 (GLUT4) mRNA in

skeletal muscle tissues to promote muscle glucose uptake in mice.

Diets that contain fucoxanthin may help treat insulin resistance as well

as alterations in lipid metabolism. Kang et al., (Kang et al., 2011). found

that fucoxanthin differing effects on 3T3-L1 cells according to

differentiation stage and inhibits glucose uptake in mature adipocytes

by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1).

In diabetic/obese KK-Aymice, fucoxanthin induced GLUT4 expression

in flounder and toe extensor muscles and ameliorated symptoms of

hyperglycemia by activating insulin expression for lowering blood

sugar (Nishikawa et al., 2012).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1357425
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Gong et al. 10.3389/fmars.2024.1357425
Aside from antidiabetic, fucoxanthin also acts on the

complications of diabetes. Chiang et al., (Kong et al., 2019).

demonstrated that fucoxanthin was effective in improving diabetic

retinopathy. While fucoxanthin has also shown promise in treating

therapeutic effects on diabetes-induced male dysfunction

(Sakai et al., 2011).

The most well-known pharmacological action of fucoxanthin is

its antidiabetic efficacy, which has been demonstrated in numerous

research. Fucoxanthin may provide therapeutic help to diabetics as

well as treatment for the symptoms of diabetic complications.

2.3.3 Anti-Alzheimer’s
Alzheimer disease (AD) is a devastating neurodegenerative

disorder (Shih et al., 2021). Fucoxanthin has shown potential

neuroprotective effects against these diseases.

There is often associated with the binding of amyloidogenic

fibers (e.g., Ab, tau proteins) in Alzheimer’s disease. Drug design

analysis and molecular docking simulations conducted by Lakey-

Beitia et al., (Shih et al., 2021). revealed the action of carotenoids on

Ab amyloidogenic fibers. They found that carotenoids can bind to

Ab through hydrogen bonding and van der Waals interactions.

These findings are consistent with the findings ofstudies by Xiang

et al., (Xiang et al., 2017). and Yang et al., (Yang et al., 2021),which

also showed that fucoxanthin inhibits Ab assembly.

Additionally, Ab deposition furthermore results in many issues

that induce oxidative stress and neuronal cell death. In the mouse

hippocampal regions, fucoxanthin has been shown to reduce

oxidative stress in neuronal cells, increase brain-derived

neurotrophic factor expression, and expand ChAT-positive areas

(Xiang et al., 2017). This helps to maintain neuronal cell viability
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(Xiang et al., 2017). Fucoxanthin also prevented neuronal apoptosis

and intracellular reactive oxygen stress by Ab oligomer through

activating the PI3K/Akt cascade and inhibiting the ERK pathway in

SH-SY5Y cells (Lin et al., 2017). Zhu et al., (Zhu et al., 2021). in vitro

research showed that 5-10 mM fucoxanthin reduced the activity of the

senescence marker SA-b-galactosidase. Another in vitro study

demonstrated that fucoxanthin modulated antioxidant enzymes

such as superoxide dismutase (SOD) to exert antioxidant effects on

neuronal cells, inhibited Ab1-42 induced apoptosis (Zhu et al., 2021).

The available evidence supports the neuroprotective effects of

fucoxanthin and highlights the potential marine-derived carotenoids

as novel strategies for preventing or treating dementia. Figure 6

illustrates the mechanism of its anti-Alzheimer activity.
2.4 Other active

2.4.1 Antimicrobial
Fucoxanthin can be a natural antimicrobial agent. Although it

has antibacterial activity against both Gram-positive and negative

bacteria, it does not show activity against strict anaerobic bacteria

(Karpiński and Adamczak, 2019). Liu Z et al., (Liu et al., 2019).

reported the antimicrobial properties of fucoxanthin against human

pathogens (Streptococcus agalactiae, Staphylococcus epidermidis,

and Staphylococcus aureus), indicating that fucoxanthin effectively

inhibits their growth. Peraman M et al (Peraman and Nachimuthu,

2019). screened methanolic extracts of marine microalgae

fucoxanthin for antimicrobial activity. Among them, both the

extract of Dunaliella salina and Thalassiosira extract showed

better antibacterial activity against bacteria and fungi (minimum
FIGURE 5

Mechanism of action of fucoxanthin in the treatment of nonalcoholic steatohepatitis. Fucoxanthin reduces HMG-CoA activity and inhibits cholesterol
synthesis. Upregulation of Sirt1/AMPK expression promotes free fatty acid b-oxidation increasing expression of ACOX1-acyl-CoA oxidase 1 (ACOX1)
gene, carnitine palmitoyltransferase 1 (CTP1). Activating the Nrf2 antioxidant signaling pathway increases antioxidant enzyme activity [superoxide
dismutase (SOD), NAD(P)H: quinone acceptor oxidoreductase 1, and heme Heme oxygenase 1 (HO-1)], followed by a decrease in ROS pro-oxidative
mediators. Inhibition of the TLR4-mediated inflammatory pathway and production of inflammatory mediators, such as IL-6 and IL-8, prevent the
activation of hepatic stellate cells. Downward arrows indicate downregulation, and vice versa for upregulation. Dashed lines indicate omitted steps.
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inhibitory concentration MIC: 40 mg/mL), whereas the bacterial

species acted were different. Transmission electron microscopy was

applied for determining the morphological changes in bacterial

after fucoxanthin treatment (El Shafay et al., 2016). Perforation of

cell wall, leakage of cytoplasmic contents, severe distortion of outer

cell shape, inner chromatin mild scattered cytoplasmic vacuolation,

rupture of cell wall, and decreased cell size for bacteria treated with

fucoxanthin-containing seaweed extracts (El Shafay et al., 2016).

And carotenoids induce the accumulation of a lysozyme that can

digest bacterial cell walls. The antimicrobial mechanism of

fucoxanthin may be associated with it (Abu-Ghannam and

Rajauria, 2013).

Based on these findings, fucoxanthin is expected to contribute

to addressing the issue of bacterial drug resistance.

2.4.2 Antiviral
In terms of antiviral activity, fucoxanthin has been found to

inhibit the activation of Epstein-Barr Virus at lower concentrations

(Tsushima et al., 1995). Additionally, there is a hypothesis that the

consumption of fucoxanthin-containing dietary seaweeds may

provide resistance against COVID-19 damage through various

mechanisms, but further investigation is needed to understand its

pharmacological activity and mechanism (Tamama, 2021).
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2.4.3 Anti-angiogenic
During the process of angiogenesis, the vascular endothelium

releases proteases and migrates through the extracellular matrix in

order to proliferate and differentiate into new blood vessels.

Ponesakki G et al (Ganesan et al., 2013). conducted a study using

human umbilical vein endothelial cells (HUVEC) to clarify the

molecular mechanisms of fucoxanthin, an antivascular compound.

Their findings revealed that fucoxanthin inhibits FGF-2-mediated

intracellular signaling proteins, thereby suppressing the migration

of endothelial cells. Their differentiation into tubular structures was

also inhibited. In in vitro angiogenesis assays, fucoxanthin in doses

more than 10 mM demonstrated significant suppression of HUVEC

tube formation and proliferation (Sugawara et al., 2006). Moreover,

in an ex vivo angiogenesis assay, fucoxanthin exhibited a dose-

dependent suppression of microvessel outgrowth (Sugawara

et al., 2006).

Angiogenesis is crucial for both the healing of wounds and the

advancement of illnesses like rheumatoid arthritis and cancer.

Many pathological conditions, such as tumors, atherosclerosis,

and SARS-CoV-2, are known to be associated with angiogenesis

(Viallard and Larrivée, 2017). Studies indicate that fucoxanthin is a

potentially useful product that can be used to treat angiogenesis-

related illnesses in a secure and efficient manner.
FIGURE 6

Mechanism of fucoxanthin in the treatment of Alzheimer’s disease. Fucoxanthin blocked Ab assembly preventing Ab deposition and inhibited the
production of Ab oligomers, which also caused the inhibition of b-Galactosidase (b-Gal) activity, a marker of cellular senescence. Fucoxanthin
reduced Ab deposition-induced neuronal cytotoxicity and inhibited neuronal apoptosis by activating the PI3K/Akt pathway, inhibiting the ERK
pathway, and modulating antioxidant enzymes, such as SOD and catalase (CAT), to reduce inflammation oxidative stress. In addition, fucoxanthin
enhanced the expression of brain-derived neurotrophic factors and increased the positive region of choline acetyltransferase (ChAT). Downward
arrows indicate downregulation, and vice versa for upregulation.
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2.4.4 Osteoprotective
Osteoclasts and osteoblasts work in tandem to regulate the

process of bone development and formation. Treatment with 2.5

mM fucoxanthin inhibited osteoclast RAW264.7 differentiation and

induced osteoclast apoptosis to inhibit osteoclast formation.

Notably, fucoxanthin induced apoptosis effect on osteoclasts was

stronger compared to osteoblasts (Das et al., 2010). You-Jung et al

(Ha et al., 2021). investigated the effects of fucoxanthin on

osteoblast differentiation and its regulatory pathways. Their

results demonstrated that fucoxanthin altered the expression of

mitogen-activated protein kinase and Nrf2, leading to a significant

inhibition of osteoclast differentiation and bone resorption.

Therefore, fucoxanthin potentially holds promise as a

therapeutic agent for skeletal diseases, for example, rheumatoid

arthritis and osteoporosis.
3 Methods

The scientific literature was primarily searched from two

databases: Web of Science and PubMed. The search words are

not limited to “fucoxanthin” AND “fucoxanthin anti-” OR

“microalage”. If the article contains relevant citations of interest,

the paper will also be included in the section to be searched. The

obtained material was then screened. Articles that were inaccessible,

irrelevant to the review’s direction, or duplicates.

To determine whether to include a review, the abstract and

discussion sections of the article were read. Additionally, the full

text was examined to extract information about microalgae species,

culture process parameters, and models used in cellular experiments

for subsequent tabulation.
4 Summary and outlook

Fucoxanthin has demonstrated its value in various applications

due to its ability to bind to a wider range of targets, thanks to the

presence of multiple functional groups. Its anti-inflammatory activity

and antioxidant properties make it effective in alleviating diseases

associated with inflammation and oxidative stress, such as skin

inflammation, ulcerative colitis, and contact hypersensitivity.

Additionally, fucoxanthin has been a subject of research interest for

its potential anti-diabetic and anti-obesity effects, as well as its proven

biological activities in non-alcoholic steatohepatitis and Alzheimer’s

disease. The discovery of fucoxanthin-rich microalgae has opened up

possibilities for industrial production. Furthermore, natural products

are generally more preferable to chemically synthesized drugs.

However, the industrial production of fucoxanthin is still a

distant goal, primarily due to the challenge of obtaining superior

algal strains. Gene editing can be used for breeding, but the

synthetic pathway needs to be clarified first. Currently, new

physical and chemical mutagenesis technologies provide a

convenient method for breeding without molecular alteration,

although issues related to excessive unpredictability and poorly

directed mutation must be considered. In terms of culture

techniques, microalgae culture still relies on traditional cultivation
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methods. The optimization of cultivation processes can accelerate

the commercial development of fucoxanthin, but researchers also

need to address the challenges of transitioning from small trials to

factory production.

Considerable advancements have been achieved in the study of

the biological properties and activity of fucoxanthin. Notably,

fucoxanthin extracts have shown no indications of drug toxicity

in both in vivo and ex vivo experiments. However, the specific

pharmacological targets and signaling mechanisms of fucoxanthin

are still not fully understood and require further investigation.

Additionally, it is crucial to ensure the safety and effectiveness of

high-purity fucoxanthin obtained through biorefining methods for

its incorporation in pharmaceuticals, food, and cosmetics.
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Massé, G., Belt, S. T., Rowland, S. J., and Rohmer, M. (2004). Isoprenoid biosynthesis
in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen).
Proc. Natl. Acad. Sci. 101, 4413–4418. doi: 10.1073/pnas.0400902101

Matsuno, T. (2001). Aquatic animal carotenoids. Fisheries Sci. 67, 771–783.
doi: 10.1046/j.1444-2906.2001.00323.x

Mc, G., Archer, L., Fleming, G. T., Gillespie, E., and Touzet, N. (2020). The effect of
nutrient and phytohormone supplementation on the growth, pigment yields and
biochemical composition of newly isolated microalgae. Process Biochem. 92, 61–68.
doi: 10.1016/j.procbio.2020.03.001

Moreau, D., Tomasoni, C., Jacquot, C., Kaas, R., Le Guedes, R., Cadoret, J. P., et al.
(2006). Cultivated microalgae and the carotenoid fucoxanthin from Odontella aurita as
potent anti-proliferative agents in bronchopulmonary and epithelial cell lines. Environ.
Toxicol. Pharmacol. 22, 97–103. doi: 10.1016/j.etap.2006.01.004

Mori, K., Ooi, T., Hiraoka, M., Oka, N., Hamada, H., Tamura, M., et al. (2004).
Fucoxanthin and its metabolites in edible brown algae cultivated in deep seawater.Mar.
Drugs 2, 63–72. doi: 10.3390/md202063
Frontiers in Marine Science 12
Namkoong, S., Joo, H. M., Jang, S. A., Kim, Y. J., Kim, T. S., and Sohn, E. H. (2012).
Suppressive effects of fucoxanthin on degranulation in igE-antigen complex-stimulated
RBL-2H3 cells. Korean J. Plant Resour. 25, 339–345. doi: 10.7732/kjpr.2012.25.3.339.

Nishikawa, S., Hosokawa, M., and Miyashita, K. (2012). Fucoxanthin promotes
translocation and induction of glucose transporter 4 in skeletal muscles of diabetic/
obese KK-A(y) mice. Phytomed: Int. J. Phytother Phytopharmacol 19, 389–394.
doi: 10.1016/j.phymed.2011.11.001

Okcu, G. D., Eustance, E., Lai, Y. S., and Rittmann, B. E. (2021). Evaluation of co-
culturing a diatom and a coccolithophore using different silicate concentrations. Sci.
Total Environ. 769, 145217. doi: 10.1016/j.scitotenv.2021.145217

Peraman, M., and Nachimuthu, S. (2019). Identification and quantification of
fucoxanthin in selected carotenoid-producing marine microalgae and evaluation for
their chemotherapeutic potential. Pharmacognosy Magazine 15, S243–S249.
doi: 10.4103/pm.pm_64_19.

Petrushkina, M., Gusev, E., Sorokin, B., Zotko, N., Mamaeva, A., Filimonova, A., et al.
(2017). Fucoxanthin production by heterokont microalgae. Algal Res. 24, 387–393.
doi: 10.1016/j.algal.2017.03.016

Qin, Y., Meng, L., and Wang, F. (2013). Complex enzymatic extraction of kelp
fucoxanthin and its antioxidant activity analysis. Food Sci. 16), 279–283. doi: 10.7506/
spkx1002-6630-20136057

Rao, A. V., and Rao, L. G. (2007). Carotenoids and human health. Pharmacol. Res. 55,
207–216. doi: 10.1016/j.phrs.2007.01.012

Ravi Kumar, S., Narayan, B., and Vallikannan, B. (2008). Fucoxanthin restrains
oxidative stress induced by retinol deficiency through modulation of Na(+)K
(+)-ATPase [corrected] and antioxidant enzyme activities in rats. Eur. J. Nutr. 47,
432–441. doi: 10.1007/s00394-008-0745-4
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A., Motilva, V., et al. (2018). Fucoxanthin-containing cream prevents epidermal
hyperplasia and UVB-induced skin erythema in mice. Mar. Drugs 16, 378.
doi: 10.3390/md16100378
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