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Sperm cryopreservation technique has been published in many farmed bivalve

species. One of the key factors preventing its application in aquaculture and/or

cryobanking is the knowledge gap on the performance of resultant progeny at

late developmental stages and subsequent generations. An effective strategy to

overcome these challenges is to use a model species with a short generation

interval, such as the dwarf surfclam Mulinia lateralis (three months). This study

evaluated the parameters key to the development of a non-programmable

sperm cryopreservation technique in this species, with a D-stage larval rate

similar to control being achieved when the sperm were cryopreserved under the

conditions (cryoprotectant agent: 8% dimethyl sulfoxide; equilibration period: 10

min; rack height: 4 cm; thawing temperature: 60°C and sperm to egg ratio:

1100:1) optimized. This technique is themost commonmethod applied in bivalve

and the results from this study were all within the ranges published for other

bivalve species, indicating this species would be an ideal bivalve model species

for addressing cryopreservation evaluation issues that need a long extended time

to collect data and/or challenging field experiments.
KEYWORDS
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1 Introduction

Seafood supplied by fishery and aquaculture has been generally

recognized as the key alternative protein source for the increasing

global population (Zhang et al., 2022). Currently, the global fishery

has reached the roof for sustainable production, whereas the

aquaculture is in constant growth (Zhang et al., 2022). However,

the acceleration of this growth will be needed to keep the pace of

population growth in the world which is anticipated to be achieved

through systemic approaches to address key issues identified in

different species. So far, the application of many research findings

has been compromised due to lack of information on late

developmental stages or subsequent generations, especially in

species with a long generation interval. In finfish, this issue has

been alleviated by the introduction of model species. For example,

zebrafish Danio rerio has been used as a model species to investigate

issues with broader implications in aquaculture and fishery as this

species has a short life cycle and could be easily maintained in

laboratory conditions (Aleström and Winther-Larsen, 2016). In

addition, zebrafish has also long been the model species for oocyte

cryopreservation in fish and has recently been recommended as a

model to study generation effects of sperm cryopreservation (Dong

et al., 2008).

Molluscs represent the second largest farmed group worldwide,

accounting for 20.2% of total world aquaculture production in 2020

(FAO, 2022). The main species currently farmed are oysters, clams,

cockles, scallops and mussels, which all belong to bivalve (FAO,

2022). Although sperm cryopreservation techniques have been

published in many of these species (Liu et al., 2015), their

application in commercial productions and/or cryobanking has

been restricted due to the lack of information on their potential

long-term impacts (Fernández-Dıéz and Herráez, 2018; Bøe et al.,

2021). These concerns have been further stressed recently as

negative effects of sperm cryopreservation on progeny fitness have

been reported in fish and mammalian species, such as brown trout

Salmo trutta (Nusbaumer et al., 2019), Japanese eels Anguilla

japonica (Müller et al., 2018), horses (Ortiz-Rodriguez et al.,

2019) and mice (Jia et al., 2015), and a urgent study to address

these knowledge gaps was recommended at the development of

Atlantic salmon gene banking (Bøe et al., 2021). However,

investigations on performance of economic important traits and

generations are time-consuming and challenging in farmed marine

bivalve species because of (1) their long generation interval, from

one year in Pacific oysters Crassostrea gigas (Yang et al., 2021) to

multiple years in scallop Patinopecten yessoensis (Silina, 2018); and/

or (2) high costs and challenges to manage the experiments in the

open marine environments (Heres et al., 2022). All these obstacles

could be addressed if a model species could be applied.

The dwarf surfclam Mulinia lateralis is a dioecious marine

bivalve species and has all the characters as a model species: a short

generation interval (approximately three months), well established

laboratory cultivation technique, and accessibility of genomic

information (Yang and Guo, 2006; Li et al., 2022; Guo et al.,

2023). In fact, this species has already been used as a model

species in some studies, such as the optimization of tetraploid
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production methods (Yang and Guo, 2006) and the elucidation of

shell formation mechanisms for bivalves (Guo et al., 2023). In order

to use M. lateralis as a model species to investigate the effects of

bivalve sperm cryopreservation on the performance of resultant

progeny and/or subsequent generations, the first step is to develop a

non-programmable sperm cryopreservation technique commonly

used in this group. In this study, the parameters (type and

concentration of cryoprotectant agent, equilibration period, rack

height, thawing temperature and sperm to egg ratio) key to this

technique have been optimized.
2 Materials and methods

2.1 Broodstock preparation and
gamete collection

The mature M. lateralis were supplied by the Ministry of

Education Key Laboratory of Marine Genetics and Breeding, Ocean

University of China (Qingdao, China). They were about three

months old and 0.25 ± 0.06 g in total body weight (n = 30). The

genders of mature broodstock were identified according to their

gonad colors observed directly through the shell, with males being

white and females red or orange (Yang et al., 2021). The spawning

was induced individually by the thermal shock method described by

Yang et al. (2021). After the sperm debris were removed with a 24 µm

sieve, a subsample was used to assess the sperm motility under a light

microscope. Sperm with a motility rate of > 85% were pooled equally

from at least 10 males in each experiment and kept on ice directly.

The pooled sperm were then centrifuged (Centrifuge 5430R,

Eppendorf, Germany) at 2000 rcf (4°C) for 5 min to increase the

concentration by discarding the supernatant. The concentrated

sperm were placed on ice again after their concentration was

standardized to 1 × 108 cells mL-1. The eggs were gently poured

into a 24 µm sieve with a 90 µm sieve on top to remove the debris.

They were gently rinsed and then washed into a settlement beaker.

After 20 min, a subsample of eggs on the bottomwas assessed under a

light microscope to ensure non-fertilized eggs (no polar body or

dividing cells) being used in the subsequent experiments. The eggs

collected from at least 5 individuals were mixed in each experiment

and the egg density was standardized to 1 × 104 cells mL-1 in this

study. Different batches of males and females were used in

different experiments.
2.2 Chemicals

2.2.1 Cryoprotectant agent
Dimethyl sulfoxide (DMSO), ethylene glycol (EG) and propylene

glycol (PG) used in this study were AR grade and purchased from

Sigma-Aldrich Pty Ltd. The cryoprotective stock solution was

prepared in 5 µm filtered seawater (FS) at a concentration twice

that of the final concentration required. Therefore, when the same

volume of stock solution and sperm were mixed, the required final

chemical concentration was produced.
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2.2.2 Fluorescent agent
The LIVE/DEAD sperm viability kit (L-7011) and LysoTracker

green DND-26 (LYSO-G) kit (L-7526) were purchased from

Invitrogen China to evaluate the integrities of plasma membrane

(PMI) and acrosome (AI), respectively. Rhodamine 123 (Rh123) for

mitochondrial membrane potential (MMP) evaluation and

propidium iodide (PI) for AI and MMP evaluations were

purchased from Sigma-Aldrich Pty Ltd. The working solutions of

these fluorescent agents were modified according to Liu et al.

(2014). For the PMI evaluation, both 4 µM SYBR14 and 200 µM

PI were prepared with FS using the stock solutions provided in the

kit. LysoTrack green DD-26 kit was used directly. FS was used to

prepare the 10 µM Rh123 for MMP, and the 130 and 3000 µM PI

for MMP and AI evaluations, respectively.
2.3 Equipment setup

The equipment used in this study was modified according to Liu

et al. (2014), consisting of an esky (39.0 × 29.5 × 30.0 cm) and a

foam rack with different heights (3 cm, 4 cm, 5 cm, 6 cm and 7 cm).

At the start of the experiment, liquid nitrogen (LN) was added into

the esky to a depth of about 5 cm and the rack was then floated on

the LN surface. After 0.25 mL straws containing the sperm +

cryoprotective solution mixture were placed at the required

heights on the rack, the lid of esky was closed partially to

maintain the constant flow of vaporized LN during cooling.

Two 10 L seawater baths were used to thaw and recover the

cryopreserved sperm. The required temperatures (30 to 70°C) in the

thawing bath were achieved by mixing ambient and boiled seawater.

The 21°C temperature required in the recovery bath was achieved

by mixing ambient and cold seawater.
2.4 Sperm quality evaluation methods

The quality of fresh and post-thaw sperm was assessed by

measuring the motility, D-stage larval rate, activity of enzymes,

lipid peroxidation level, and/or integrity or potential of sperm

ultrastructure, components or organelles.

The motility was determined by diluting the sperm suspension

to 1 × 107 cells mL-1 and expressed as the percentage of active sperm

out of 100 under a microscope at 200 × magnification (Gwo et al.,

2002; Dong et al., 2005). Sperm moving forward progressively were

counted as active sperm while those vibrating or not moving at all

were counted as dead sperm (Gwo et al., 2002; Dong et al., 2005).

Each sample was assessed by two independent observers.

For the D-stage larval rate assessment, 1 mL concentrated eggs

(10000 eggs) was taken into a 10 mL tube using a pipette and

mixed gently with sperm to reach the predetermined sperm to egg

ratio in the experiments. After mixing with sperm for 15 min, the

eggs were washed gently on a 24 µm sieve by FS before being

cultured in a 500 mL container at 21°C. The D-stage larval rate

was determined 24 h post-fertilization and calculated as the

percentage of eggs that developed into D-stage larvae. The
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controls were established with fresh sperm at a sperm to egg

ratio of 5:1 (Yang et al., 2021).

Sperm PMI, MMP and AI were evaluated by SYBR14/PI,

Rh123/PI and LYSO-G/PI methods, respectively. After the post-

thaw sperm were diluted to 1 × 107 sperm/mL, the sperm were

stained in 1 mL subsamples. For PMI and MMP evaluations, 100 µL

SYBR14 or Rh123 were added for 20 min and then 100 µL PI for

further 10 min. For AI evaluation, 5 µL LYSO-G was added for 30

min, and then 9 µL PI for further 10 min. All staining was carried

out at the room temperature. The sperm quality was then assessed

under a Leica DMi8 fluorescence microscope with viable sperm

emitting green fluorescence, while dead sperm emitting red

fluorescence. Their integrity or potential was expressed as the

percentage of viable sperm in 200 sperm assessed randomly.

The activity of superoxide dismutase (SOD), catalase (CAT) or

glutathione (GSH) was measured using a commercial kit (Thermo

Fisher Scientific, USA) according to the manufacturer’s

instructions. The sperm samples (2.5 × 107 cells/mL) were

centrifuged at 250 × g for 10 min at 4°C to obtain sperm pellets

first. (1) For the SOD activity assessment, the pellets were

resuspended in 750 µL ice-cold PBS and centrifuged at the same

condition before being sonicated for 1 min. The supernatant from

each sample was transferred into another microcentrifuge tube after

being centrifuged at 1500 × g for 10 min at 4°C. The level of SOD

activity was then determined by the kit (EIASODC). The SOD

concentration (U/mL) at 450 nm were measured using a microplate

reader (Infinite 200 PRO, Thermo Fisher Scientific, USA). The final

values were calculated from standard curves. (2) For catalase (CAT)

activity analysis, the pellets were resuspended with 1 mL ice-cold 1

× assay buffer before being sonicated for 1 min. After being

centrifuged at 10000 × g for 15 min at 4°C, the supernatant from

each sample was collected. The level of CAT activity was then

determined by the kit (EIACATC). The concentration (U/mL) of

CAT was measured at 560 nm using a microplate reader. (3) For the

glutathione (GSH) activity assessment, the pellets were

homogenized with 5% aqueous 5-sulfosalicylic acid in 250 µL ice-

cold PBS and incubated for 10 min at 4 °C. The homogenized

samples were then centrifuged at 14000 rpm for 10 min at 4 °C to

collect the supernatant for analysis. The GSH assay was performed

using the kit (EIAGSHC). The GSH activity (mM) was measured at

405 nm using a microplate reader.

The lipid peroxidation (LPO) level in sperm (2.5×107 cells/mL)

was detected using the LPO assay kit (ab118970, Abcam, UK)

following the manufacturer’s protocol. Briefly, the samples were

homogenized using the 300 µL LPO lysis buffer provided and

centrifuged at 13000 × g for 10 min at 4 °C to remove the

insoluble material. Then 200 mL supernatant was incubated with

600 mL thiobarbituric acid for 60 min at 95 °C. After being cooled to

room temperature in an ice bath, 300mL n-butanol and 100mL 5 M

sodium chloride were added to the sample and mixed with a vortex

mixer. Subsequently, the samples were centrifuged at 16,000 × g for

3 min at room temperature. The supernatant was collected and

heated to 55 °C to evaporate the n-butanol. The residue was

resuspended in 200 µL ddH2O and then the sample was used to

measure the absorbance of LPO at 532 nm with a microplate reader.
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The sperm ultrastructure was observed under a scanning or

transmission electron microscope. (1) Scanning electron

microscopic observation. The sperm samples were fixed with 0.1

M PBS, and then post-fixed in 1% osmic acid for 2 h at room

temperature. The samples were subsequently dehydrated with an

increasing ethanol series of 30%, 50%, 70%, 80%, 90%, 95% and

100% with a 15 min duration at each concentration, followed by

another 100% ethanol for 15 min and finally immersed in 100%

isoamyl acetate for 15 min. The samples were dried using a K850

Critical Point Dryer (Quorum, UK) and coated with gold for 30 s in

a metallizer. The samples were examined under the scanning

electron microscope (Tescan, Czech Republic) at various

magnifications. (2) Transmission electron microscopic

observat ion. The sperm samples were fixed in 2.5%

glutaraldehyde for 15 min, and then post-fixed in 0.1% osmic

acid prepared in 0.1 M PBS for 2 h at room temperature. The

samples were subsequently dehydrated with an increasing ethanol

series of 30%, 50%, 70%, 80%, 95% and 100% for 20 min at each

concentration, followed by another 100% ethanol for 20 min and

finally immersed in 100% acetone twice at a 15 min interval. After

being embedded into the resin, the ultrathin sections (80 nm) were

obtained using an ultracut ultramicrotome (Leica UC7). The

sections were collected on 150 mesh copper grids, stained with

lead citrate and uranyl acetate before being examined and

photographed under the HT7700 (Hitachi) transmission

electron microscope.
2.5 Experiments

2.5.1 Effects of CPA types and concentrations on
D-stage larval rate

In this experiment, DMSO, EG and PG were evaluated at six

final concentrations (4%, 6%, 8%, 10%, 12% or 14%). Ice-cold fresh

sperm were mixed with ice-cold DMSO, PG or EG stock solution at

a 1:1 ratio, resulting in a final concentration required. After 10 min

equilibration on ice, fertilization was conducted at a sperm to egg

ratio of 300:1 and the D-stage larval rate was assessed 24 h post-

fertilization. Each treatment was replicated three times using sperm

from different pools.

2.5.2 Effects of equilibration periods on D-stage
larval rate

DMSO and PG at a final concentration of 6%, 8% or 10% were

selected for this experiment according to the results from the

previous experiment. In this experiment, three equilibration

periods (10, 20 or 30 min) were assessed on D-stage larval rate.

Other procedures were the same as in section 2.5.1.
2.5.3 Effects of rack heights on post-thaw
D-stage larval rate

Ten minutes equilibration was selected in this and subsequent

experiments. In this experiment, rack height of 3 cm, 4 cm, 5 cm, 6

cm or 7 cm above the LN surface was evaluated. After equilibration
Frontiers in Marine Science 04
on ice, the sperm and cryoprotective solution mixture was

transferred into 0.25 mL straws and placed on a rack at required

height. The straws were then exposed to LN vapour for 10 min

before being stored in LN for at least 12 h. The sperm were thawed

in a 60°C seawater bath for 5 s and then recovered in a 21°C

seawater bath. Subsamples of post-thaw sperm were used for

fertilization at a sperm to egg ratio of 900:1. Other procedures

were the same as in section 2.5.2.

2.5.4 Effects of different thawing temperatures
on post-thaw D-stage larval rate

In this experiment, sperm cryopreserved at 4 cm rack height

with 8% or 10% DMSO were used to evaluate the effects of different

thawing temperatures at 30 (8 s), 40 (7 s), 50 (6 s), 60 and 70 (4 s) °C

on post-thaw D-stage larval rate. Other procedures were the same as

in section 2.5.3.

2.5.5 Effects of different sperm to egg ratios on
post-thaw D-stage larval rate

The highest post-thaw D-stage larval rate was achieved when the

sperm were cryopreserved in 8% DMSO and thawed at 60°C. Thus,

these parameters were used in this and subsequent experiments. In

this experiment, the effects of different sperm to egg ratios (300:1,

500:1, 700:1, 900:1 or 1100:1) on post-thaw D-stage larval rate were

compared. Other procedures were the same as in section 2.5.4.

2.5.6 Effects of cryopreservation on sperm quality
When the sperm were cryopreserved with the parameters

(cryoprotective solution: 8% DMSO, equilibration period: 10 min,

rack height: 4 cm and thawing temperature: 60°C) optimized in

previous sections, a D-stage larval rate similar to the control group

was achieved at a sperm to egg ratio of 1100:1. In this experiment,

the sperm quality, including sperm motility, ultrastructure, activity

of enzymes, lipid peroxidation level and integrity/potential of sperm

components or organelles, was compared between the fresh and

post-thaw sperm in order to improve the knowledge of cryodamage

on sperm.
2.6 Statistical analysis

Results in this study were presented as mean ± standard

deviation (SD). The original data in percentage were arcsine

transformed before analysis with SPSS 22. Two-way analysis of

variance (ANOVA) was applied to analyze the data on the effects of

CPA type and concentration, equilibration period, rack height or

thawing temperature on the D-stage larval rate. One-way ANOVA

was used to analyze the data on the effects of different sperm to egg

ratios on post-thaw D-stage larval rate. The Least Significant

Difference (LSD) comparison was used when a significant

difference was observed. A t-test was applied to compare the

activity of enzymes, the level of lipid peroxidation, percentage of

motility, PMI, MMP or AI between the fresh and post-thaw sperm.

Differences were considered statistically significant at P < 0.05.
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3 Results

3.1 Effects of CPA types and
concentrations on D-stage larval rate

Results from this experiment showed that theM. lateralis sperm

were more sensitive to EG than other two CPAs evaluated as < 60%

D-stage larval rate was produced at the concentration of 6%

(Figure 1). For DMSO and PG, there was no significant difference

in D-stage larval rate among concentrations lower than 10% (P >

0.05; Figure 1). At the higher final concentration of 12% or 14%,

both PG and DMSO produced a D-stage larval rate of < 70%,

although the rate in PG was significantly higher than that in DMSO

(P < 0.05; Figure 1).
3.2 Effects of equilibration periods on D-
stage larval rate

The D-stage larval rate decreased with the increase in the

equilibration period of all the CPAs evaluated. At 10 min

equilibration period, CPA at 6% or 8% final concentration

produced no significant difference in D-stage larval rate in

comparison with control group (P > 0.05; Figure 2), whereas at

10% both CPAs produced a significantly lower D-stage larval rate

than the control (P < 0.05; Figure 2). When the equilibration period

extended to 20 min, only CPAs at the 6% final concentration

produced a D-stage larval rate similar to the control (P > 0.05;

Figure 2). At 30 equilibration period, although significant lower D-

stage larval rate was produced in the treatment than that in the

control (P < 0.05; Figure 2), there was no significant difference on

D-stage larval rate between DMSO and PG at the same

concentration (P > 0.05; Figure 2).
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3.3 Effects of rack heights on post-thaw D-
stage larval rate

Results showed that at the same concentration, DMSO

produced significantly higher D-stage larval rate than that in PG

(P < 0.05; Figure 3). The highest post-thaw D-stage larval rate of

80.00 ± 5.00% was achieved when the sperm were cryopreserved

with 8% DMSO at 4 cm rack height (Figure 3). Although there was

no significant difference in post-thaw D-stage larval rate between

8% and 10% DMSO at 4 cm rack height (P > 0.05; Figure 3), they

were significantly lower than that in the control group (86.67 ±

2.89%, P < 0.05; Figure 3).
3.4 Effects of different thawing
temperatures on post-thaw D-stage
larval rate

No significant difference in D-stage larval rate was observed

between 8% and 10% DMSO at the same thawing temperature (P >

0.05; Figure 4). Although the highest D-stage larval rate of 80.00 ±

5.00% was achieved when the sperm were thawed at 60°C, it was

significantly lower than that in the control group (88.33 ± 4.04%;

P < 0.05; Figure 4).
3.5 Effects of different sperm to egg ratios
on post-thaw D-stage larval rate

The D-stage larval rate increased with the increase in sperm to

egg ratios with the highest rate of 86.00 ± 5.29% being achieved at a

sperm to egg ratio of 1100:1 (Figure 5). This rate did not

significantly differ from those produced at a ratio of 900:1 and
FIGURE 1

D-stage larval rates (%) after exposure to PG, DMSO or EG at different final concentrations for 10 min on ice, n = 3. Bars with different capital letters
within each CPA type differ significantly between concentrations (P < 0.05). Bars with different lowercase letters within each concentration differ
significantly between CPA types (P < 0.05).
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the control group (P > 0.05; Figure 5). However, the rate at the 900:1

ratio was significantly lower than that in the control (P <

0.05; Figure 5).
3.6 Effects of cryopreservation on
sperm quality

The images produced by the scanning electron microscope

showed that the fresh sperm in M. lateralis had three distinct parts:

head, midpiece and flagellum. The head was round with the acrosome

being located at the anterior part, while the midpiece and a long
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flagellum being connected at the posterior end (Figures 6A, B).

Scanning electron images of post-thaw sperm showed

morphological changes in some sperm, including the flagellum

damages, absence of acrosome, swollen head and decoupled

midpiece (Figures 6C–F).

The images produced by the transmission electron microscope

showed that the fresh sperm possessed a spherical head and a short

midpiece. The dense nucleus covering by the nuclear envelope

occupied most of the head and exhibited an anterior depression at

the sub-acrosomal zone and a posterior depression at the basal pole.

The proximal centriole was inserted centrally into a ring comprising

four mitochondria which composed of normal cristae structures.
FIGURE 3

D-stage larval rates (%) after sperm cryopreservation at different rack heights with various cryoprotective solutions, n = 3; Bars with different capital
letters within each rack height differ significantly between cryoprotective solutions (P < 0.05). Bars with different lowercase letters within each
cryoprotective solution differ significantly between rack heights (P < 0.05).
FIGURE 2

D-stage larval rates (%) after exposure to selected cryoprotective solutions at different equilibration periods, n = 3; Bars with different capital letters
within each equilibration period differ significantly between cryoprotective solutions (P < 0.05). Bars with different lowercase letters within each
cryoprotective solution differ significantly between equilibration periods (P < 0.05).
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The distal centriole located in the midpiece, near the base of

flagellum. The flagellum was enveloped with the plasma

membrane and axoneme was covered by flagellum plasma

membrane and made up of microtubules that were arranged in a

9 + 2 microtubular pattern (Figures 7A–D). Transmission electron

images of post-thaw sperm showed that the morphologies and

ultrastructure have been altered in some sperm. The main changes

included the swollen and/or disrupted plasma membrane and the

enlargement in the gap between plasma membrane and nuclear.

The membrane of mitochondrion was wrinkled and its cristae was

impaired. In the flagellum, its membrane was wrinkled as well, and

the peripheral and central microtubule architectures were damaged

(Figures 7E–H).

The post-thaw sperm percentages of motility, PMI, MMP and

AI (fluorescent images in Figure 8) were significantly lower than
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those in the fresh sperm (P < 0.05; Figure 9). Similarly, the activities

of SOD, CAT and GSH in the post-thaw sperm were also

significantly lower than those in the control (P < 0.05; Table 1).

On the contrary, the level of lipid peroxidation in post-thaw sperm

was significantly higher compared with the fresh counterpart (P <

0.05; Figure 10).
4 Discussion

Maintaining sperm capability to fertilize eggs is the most

important goal in the development of sperm cryopreservation

techniques (Martıńez-Páramo et al., 2017). In bivalves, although

sperm motility is the common method to assess the post-thaw

sperm quality, the published papers have suggested that the post-
FIGURE 5

D-stage larval rates (%) at different sperm to egg ratios, n = 3. Different letters indicate significant difference.
FIGURE 4

D-stage larval rates (%) after cryopreservation in 8% or 10% DMSO with different thawing temperatures, n = 3; Bars with different capital letters within
each thawing temperature differ significantly between cryoprotective solutions (P < 0.05). Bars with different lowercase letters within each
cryoprotective solution differ significantly between thawing temperatures (P < 0.05).
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thaw D-stage larval rate would be more reliable to predict the

further development of progeny produced by the cryopreserved

sperm (Gwo et al., 2003; Ieropoli et al., 2004; Adams et al., 2008;

Hassan et al., 2015). In addition, data on performance of D-stage

larvae are easy to collect as the period required for fertilized eggs to

develop into this stage is short (< one day) and they have not

started feeding.
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This study has developed a non-programmable sperm

cryopreservation technique in the dwarf surfclam M. lateralis,

resulting in a post-thaw D-stage larval rate similar to the fresh

control with the optimized cryopreservation parameters. This result

suggested that the technique commonly used in the bivalve sperm

cryopreservation studies is suitable for M. lateralis. Therefore, this

species could be used as a model to accelerate the investigation of
FIGURE 7

Transmission electron images of sperm in M. lateralis. (A–C) Longitudinal section of fresh sperm showing different structures; (D) Cross section of
fresh sperm flagellum showing axoneme with proximal “9 + 2” microtubular structure; (E, F) Longitudinal section of post-thaw sperm with some
damaged structures; (G) Cross section of post-thaw sperm midpiece; (H) Cross section of post-thaw sperm flagellum. c, centrosome; f, flagellum; h,
head; m, mitochondria; n, nucleus; v, vesicle; ax, axoneme; dc, distal centriole; mc, mitochondrial crista; ne, nuclear envelope; nv, nuclear vacuole;
pc, proximal centriole; pm, plasma membrane; cdm, central doublets of microtubules; pdm, peripheral doublets of microtubules.
FIGURE 6

Scanning electron images of sperm in M. lateralis. (A) Fresh sperm showing different structures; (B) Magnified view of a single fresh sperm; (C) Post-
thaw sperm at the low magnification; (D–F) Magnified view of post-thaw sperm showing damaged morphology and structure. a, acrosome;
f, flagellum; h, head; mp, midpiece.
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sperm cryo-impact on the performance of resultant progeny at late

developmental stages and/or subsequent generations, as these

questions are the key concerns limiting the application of this

technique in marine bivalve aquaculture and germplasm cryobanking.

Permeable CPAs could protect the cells intracellularly and

extracellularly and are the essential ingredient for sperm

cryopreservation in aquatic species (Martıńez-Páramo et al.,

2017). EG was found to be the most toxic to the sperm of M.

lateralis in this study as a lower D-stage larval rate was produced in

comparison with other CPAs at each concentration assessed. This

result was in agreement with the findings in most marine

molluscan, fish and crustacean sperm cryopreservation (Liu et al.,

2015; Magnotti et al., 2018; Morales-Ueno and Paniagua-Chávez,
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2020). However, it should note that this chemical has often been

selected as a suitable CPA for oocyte and larvae cryopreservation in

some aquatic and domestic animals (Tervit et al., 2005; Cirino et al.,

2019; Tharasanit and Thuwanut, 2021; Zhu et al., 2023).

The equilibration time is the period for CPAs to enter into the

sperm without or with limited toxicity prior to the initiation of

cryopreservation process. In the current study, the D-stage larval rate

was decreased with the increase in the equilibration period in all the

CPAs evaluated. Except for 8% DMSO, there was no significant

difference in the D-stage larval rate between 10 and 20 min

equilibration periods in all other CPAs. This result agreed with the

findings in oysters, abalone and mussels, where 10 min was normally

identified as the optimal equilibration period (Liu et al., 2015).
FIGURE 9

Comparison of motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP) and acrosome integrity (AI) between fresh and
cryopreserved sperm, n = 3. The asterisk at each parameter indicates significant difference.
FIGURE 8

Photographs of sperm stained with fluorescents in M. lateralis (400 × magnification). (A-C) Fresh sperm - plasma membrane, mitochondria and
acrosome, respectively; (D-F) Post-thaw sperm - plasma membrane, mitochondria and acrosome, respectively.
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Cooling is a key step for cryopreservation. Its rate should be fast

enough to reduce the exposure time of sperm to the concentrated

CPAs and also slow enough for dehydration to avoid the formation

of intracellular ice crystals (Demoy-Schneider et al., 2020). In this

study, the highest D-stage larval rate was achieved when the sperm

were cryopreserved at 4 cm above the LN surface. This height was

lower than those found in abalone H. laevigata and H. rubra (Liu

et al., 2015), mussels M. galloprovincialis (Liu et al., 2016), pearl

oysters Pinctada fucata martensii (Kawamoto et al., 2007) and P.

margaritifera (Acosta-Salmόn et al., 2007), and great scallops Pecten

maximus (Suquet et al., 2014), but higher than those in greenshell

mussels Perna canaliculus (Smith et al., 2012) and pearl oysters P.

margaritifera (Hui et al., 2011).

Thawing temperature is a critical factor to manage the risk of

water recrystallization and its impact on sperm (Demoy-Schneider

et al., 2020). Among the thawing temperatures evaluated in this study,

60°C produced the highest D-stage larval rate, although it did not

differ significantly from 50°C. This temperature was the same as used

in abalone H. laevigata and H. rubra (Liu et al., 2015). However, it

was lower than those in oysters C. gigas (Gwo et al., 2003) and C.

virginica (Paniagua-Chávez and Terisch, 2001), and abalone H.

diversicolor (Gwo et al., 2002), but higher than those in oysters C.

gigas (Adams et al., 2004; Dong et al., 2005) and O. edulis (Vitiello

et al., 2011), abalone H. rufescens (Salinas-Flores et al., 2005), pearl

oysters (Acosta-Salmόn et al., 2007; Kawamoto et al., 2007; Narita

et al., 2008; Hui et al., 2011), mussels (Matteo et al., 2009; Smith et al.,

2012) and scallops P. maximus (Suquet et al., 2014). These suggest

that the thawing temperature might be species specific and also be

related to the cooling methodology used in the same species.
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It is generally accepted that cryodamge on sperm is inevitable,

resulting in a higher sperm to egg ratio being required for the post-

thaw sperm fertilization (Martıńez-Páramo et al., 2017; Yánez-Ortiz

et al., 2022). In this study, a ratio of 220 times higher than the fresh

control was needed to produce a similar D-stage larval rate. This

ratio was higher than that in oysters C. gigas (Ieropoli et al., 2004)

and scallops P. maximus (Suquet et al., 2014), but lower than studies

in most marine molluscan species, such as oysters (Paniagua-

Chávez and Terisch, 2001; Gwo et al., 2003; Adams et al., 2004),

abalone (Liu et al., 2015), pearl oysters (Hui et al., 2011) and

mussels (Smith et al., 2012; Liu et al., 2016).

The assessment of post-thaw sperm quality could provide useful

information for understanding cryodamage to further improve the

sperm cryopreservation protocol (Yánez-Ortiz et al., 2022). The

cryopreservation process could compromise the cellular structures

and organelles, such as plasma membrane, mitochondria, acrosome

and flagellum (Partyka et al., 2012; Peris-Frau et al., 2020; Xin et al.,

2020), which have been clearly revealed by the electronic

microscope images in this study. Sperm membranes are the

primary sites of cryoinjury (Partyka et al., 2012). One of the key

reasons responsible for altering the membrane integrity is the lipid

peroxidation products generated from the oxidative stress, which

has been shown in horse (Nelid et al., 2005), fish (Cabrita et al.,

2010), fowl (Partyka et al., 2012) and boar (Guo et al., 2021) sperm

cryopreservation. In this study, the increased lipid peroxidation

level in post-thaw sperm would also contribute the reduced plasma

membrane integrity in M. lateralis.

Acrosome reaction is the key event bringing together the

fusogenic areas of sperm and egg during fertilization in marine

bivalve species (Longo and Scarpa, 1991; Rosati, 1995). It involves in

the fusion of plasma membrane of both sex gametes and the release

of hydrolytic enzymes from sperm for penetrating the egg envelop

(Rosati, 1995). Therefore, maintaining the acrosome integrity is

vital during the cryopreservation. In the current study, the

acrosome integrity of post-thaw sperm was significantly

decreased, which might be due to the acrosomal membrane injury

by the increased level of lipid peroxidation after cryopreservation as

discussed previously or the formation of ice crystals. This

phenomenon has also been reported in the fowl (Partyka et al.,

2012) and bull (Jakop et al., 2023) sperm cryopreservation.

Mitochondria are highly susceptible to the changes in

intracellular reactive oxygen species which could be increased by

the electron leakage from the uncoupled mitochondria oxidative

phosphorylation during cryopreservation (Partyka et al., 2012).

Consequently, as less number of post-thaw sperm could maintain

the high MMP, their ATP production and motility rate would be

compromised (Partyka et al., 2012). In this study, the post-thaw

sperm motility was significantly compromised and this reduction

has often been reported in other marine molluscan species (Liu

et al., 2015). In this study, the significant decrease in the post-thaw

spermMMPmight also be associated with the enhancement of lipid

peroxidation level. Similar phenomena have been reported in the

sperm cryopreservation in fowls (Partyka et al., 2012) and fishes

(Figueroa et al., 2019).

Antioxidants are molecules capable of preventing, delaying or

inhibiting the oxidation of other molecules, thus mitigating the
TABLE 1 Comparison of activities of superoxide dismutase (SOD),
catalase (CAT) and glutathione (GSH) between fresh and cryopreserved
sperm, n =3.

Treatment
Enzyme activity

SOD (U/mL) CAT (U/mL) GSH (mM)

Fresh sperm 11.23 ± 0.23 7.50 ± 0.72 4.28 ± 0.08

Cryopreserved sperm 5.78 ± 0.54* 5.15 ± 0.25* 2.16 ± 0.10*
The asterisk at each enzyme indicates significant difference.
FIGURE 10

Comparison of lipid peroxidation levels between fresh and
cryopreserved sperm, n = 3. The asterisk indicates
significant difference.
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oxidative damage [56]. In general, the antioxidant defense of

biological systems could be mediated by either enzymatic or non-

enzymatic antioxidants (Amidi et al., 2016; Sandoval-Vargas et al.,

2021). GSH is a non-enzymatic and the most abundant antioxidant

in almost all cell types (Len et al., 2019), participating directly in the

neutralization of oxidative damage (Amidi et al., 2016). Both SOD

and CAT belong to the enzymatic antioxidant and could quickly

neutralize any reactive molecules by different reactions (Amidi

et al., 2016; Sandoval-Vargas et al., 2021). In the current study,

the activities of these enzymes were all significantly decreased in

post-thaw sperm which agreed with the studies in fowls (Partyka

et al., 2012), Pacific cods Gadus microcephalus (Wang et al., 2016).

These results also indicate that the activities of intracellular

antioxidant enzymes might not be enough to neutralize the

damages produced by the oxidative stress during the sperm

cryopreservation in M. lateralis.
5 Conclusions

The knowledge gap in cryo-impacts on resultant progeny at late

developmental stages and/or next generations has constrained the

application of sperm cryopreservation technique in bivalve

aquaculture industry for different purposes, such as assistances in

commercial production, selective breeding and cross breeding. The

gap mainly resulted from the long generation interval, and challenges

and high costs of maintaining experiments in the open marine

environment where most bivalve species are farmed. These issues

could be addressed if a model species, such as M. lateralis, could be

used as this species has a very short generation interval (three

months) and well established laboratory culture technique. The

development of a non-programmable sperm cryopreservation

technique in M. lateralis in this study is a cornerstone to bridge the

knowledge gap as this technique is commonly used in bivalve species.
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