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Assessing the impact of
subsurface temperature
observations from fishing
vessels on temperature and
heat content estimates in shelf
seas: a New Zealand case
study using Observing System
Simulation Experiments
Colette Kerry1*, Moninya Roughan1

and Joao Marcos Azevedo Correia de Souza2†

1Coastal and Regional Oceanography Lab, School of Biological, Earth and Environmental Sciences, UNSW
Sydney, Sydney, NSW, Australia, 2Meteorological Service of New Zealand, Raglan, New Zealand
We know that extremes in ocean temperature often extend below the surface,

and when these extremes occur in shelf seas they can significantly impact

ecosystems and fisheries. However, a key knowledge gap exists around the

accuracy of model estimates of the ocean’s subsurface structure, particularly in

continental shelf regions with complex circulation dynamics. It is well known that

subsurface observations are crucial for the correct representation of the ocean’s

subsurface structure in reanalyses and forecasts. While Argo floats sample the

deep waters, subsurface observations of shelf seas are typically very sparse in

time and space. A recent initiative to instrument fishing vessels and their

equipment with temperature sensors has resulted in a step-change in the

availability of in situ data in New Zealand’s shelf seas. In this study we use

Observing System Simulation Experiments to quantify the impact of the recently

implemented novel observing platform on the representation of temperature

and ocean heat content around New Zealand. Using a Regional Ocean Modelling

System configuration of the region with 4-Dimensional Variational Data

Assimilation, we perform a series of data assimilating experiments to

demonstrate the influence of subsurface temperature observations at two

different densities and of different data assimilation configurations. The

experiment period covers the 3 months during the onset of the 2017-2018

Tasman Sea Marine Heatwave. We show that assimilation of subsurface

temperature observations in concert with surface observations results in

improvements of 44% and 38% for bottom temperature and heat content in

shelf regions (water depths< 400m), compared to improvements of 20% and 28%

for surface-only observations. The improvement in ocean heat content estimates
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is sensitive to the choices of prior observation and background error covariances,

highlighting the importance of the careful development of the assimilation

system to optimize the way in which the observations inform the numerical

model estimates.
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1 Introduction

It is well understood that forecasting ocean processes requires

information on the subsurface hydrographic structure. In ocean

reanalyses and forecasts, the assimilation of subsurface observations

is crucial for the correct representation of the ocean’s structure

below the surface (Zavala-Garay et al., 2012; Kerry et al., 2018;

Gwyther et al., 2022). However, the accuracy of subsurface model

estimates in continental shelf regions is poorly quantified due to the

sparsity of observations. Marine heatwaves (MHWs) and Marine

coldspells (MCSs) can have devastating ecological and economic

impacts, have already become more frequent, more intense and

longer-lasting in the past few decades (Frölicher et al., 2018; Oliver

et al., 2018a, Oliver et al., 2018b; Darmaraki et al., 2019), and it is

known that their subsurface structure can be complex (Elzahaby

et al., 2021, 2022). Consequently, there is a pressing need for

accurate estimates of the subsurface structure of shelf seas, key to

representing and predicting these temperature extremes in

continental shelf regions where impacts are most significant

(Schaeffer and Roughan, 2017; Oliver et al., 2018b; Elzahaby and

Schaeffer, 2019; Jacox et al., 2019; Schaeffer et al., 2023).

The deployment of profiling Argo floats since the early 2000’s

has drastically improved the representation of the subsurface ocean

for offshore waters (e.g. Balmaseda et al., 2007; Haines, 2018; Storto

et al., 2019), yet subsurface observations of shelf seas are typically

sparse in time and space. Off the coast of south-east Australia,

observations taken over the continental shelf and shelf slope are key

to predicting the complex circulation inshore of the East Australian

Current (Kerry et al., 2018, 2020; Siripatana et al., 2020). Subsurface

observations from ocean gliders have been shown to constrain

model estimates of current transport and eddy kinetic energy in

both the Hawaiian Lee Countercurrent (Powell, 2017) and the East

Australian Current (Kerry et al., 2018), and improve subsurface

temperature and salinity forecasts in a high-resolution coastal and

shelf sea models of the New York Bight (Zhang et al., 2010a) and

along the Oregon and Washington coasts (Pasmans et al., 2019).

However, coverage is still generally sparse and the cost associated

with an extensive observation system can be prohibitive.

In this study we use the ocean conditions around Aotearoa New

Zealand (NZ) to examine the value of coastal and shelf subsurface

temperature observations on model estimates of temperature and
02
heat content. The region provides an ideal test-bed as NZ

experiences a complex system of boundary currents [Figure 1A;

Chiswell et al. (2015); Stevens et al. (2019)] that modulate the

surrounding oceanic environment on a variety of temporal and

spatial scales. Both large-scale ocean currents and mesoscale eddies

drive upper ocean heat content (UOHC) changes across the NZ

region (Kerry et al., 2023a), driving MHWs with different

characteristics depending on the local circulation region

(Elzahaby et al., 2021; Kerry et al., 2022). Specifically, Kerry et al.

(2022) show that regional temperature extremes in coastal waters

around NZ are largely driven by local circulation and highlight the

importance of correctly representing the ocean’s depth structure in

predicting the onset of MHW events. As part of NZ’s Moana Project

(https://www.moanaproject.org), the implementation of fishing-

vessel mounted temperature sensors (a fishing vessel observation

network, FVON) has drastically increased the availability of

subsurface observations in shelf regions. This study aims to

demonstrate the impact of these additional observations on the

representation of subsurface temperature and ocean heat content

across the variety of circulation regimes around NZ.

We use a series of Observing System Simulation Experiments

(OSSEs) to quantify the impact of the FVON on ocean state

estimates of NZ’s shelf seas. The experiments are based on the

Moana Ocean Hindcast (Azevedo Correia de Souza et al., 2022) and

use 4-Dimensional Variation Data Assimilation [4D-Var Moore

et al. (2004); Di Lorenzo et al. (2007); Moore et al. (2011c)] to

combine the model with available observations to generate an

estimate of the ocean state that is better than either alone. 4D-

Var uses the (linearized) model dynamics to solve for increments in

the initial conditions, atmospheric forcing, and boundary

conditions, such that the modelled ocean state better fits and is in

balance with the observations. We perform a series of data

assimilating experiments covering the 3-month period over the

onset of the 2017-2018 Tasman Sea MHW [23 Sept 2017 to 28 Dec

2017, Figure 1D; Kajtar et al. (2022)]. The goal of this paper is

twofold, 1) to demonstrate the influence of subsurface temperature

observations by comparing different data densities and 2) to

compare different data assimilation configurations in order to

improve the influence of the subsurface observations in the model.

The OSSE methodology and data assimilation system

configuration are described in Section 2. The results are then
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presented in Section 3; we begin by presenting a domain-wide

overview of the OSSEs’ performance in Section 3.3, and then we

focus on the Shelf Seas (water depths shallower than 1000 m) in

Section 3.4. Section 4 discusses specifics of the regional processes.

Results are discussed in Section 5 in the context of ocean observing

strategies and assimilation system development for shelf seas.
2 Materials and methods

2.1 Observing system simulation
experiment methodology

In a realistic prediction system, a background numerical model is

combined with ocean observations to produce an ocean state estimate

that better represents the observations (the Analysis). The

background numerical model has uncertainties associated with the

initial conditions, boundary and surface forcing, and model physics.

The goal of data assimilation is to combine the model with ocean

observations, such that the model represents the observations (taking

into account their associated errors). The resultant ocean state

estimate has reduced uncertainty and provides initial conditions for

the subsequent forecast (Figure 2, top). Assessing the performance of

a realistic prediction system is limited by the fact that the true ocean

state is not known away from the observed locations. In some cases,
Frontiers in Marine Science 03
observations are withheld from the assimilation process for

verification (e.g. Kerry et al., 2016; Zuo et al., 2019).

OSSEs are designed to replicate a realistic prediction system,

and they have the advantage that the system can be evaluated based

on a known ocean state (Figure 2, bottom). In an OSSE, a given

model solution is defined as the Reference State (sometimes referred

to as the Nature run). The goal is to assimilate synthetic

observations extracted from the Reference State into a Baseline

model (sometimes referred to as a Twin). The Baseline model is

designed to represent the background numerical model from a

realistic prediction system, by intentionally introducing errors in

the initial conditions, boundary and surface forcing. Some OSSEs

may also use a different (coarser) model resolution, and include

different model physics (e.g. Halliwell et al., 2017). Because the

complete ocean state is known, OSSEs allow us to rigorously

compare different observing platforms and difference assimilation

system configurations. OSSEs have been used widely across the

atmospheric and ocean prediction communities as a relatively

straight-forward and cost effective way to assess the impact of

potential new observing systems (e.g. Masutani et al., 2010;

Hoffman and Atlas, 2016; D’addezio et al., 2019), alternate

deployments of existing systems such as observing different

regions or at different sampling frequencies (e.g. Gwyther et al.,

2022, 2023b), different data assimilation schemes or configurations

(e.g. Moore et al., 2020; Storto et al., 2020) and resolving different
FIGURE 1

(A) MKE over SW Pacific with schematic of major ocean currents and fronts, and showing model domain. Current, eddy and front names are defined
in Kerry et al. (2023a) (B) Model bathymetry with 400,1000,2000 m contours (1000m contour in bold) and bathymetric features labelled. (C) Mean
SST with mean surface current velocity vectors from daily-average output from the Moana Ocean Hindcast. (D) Time series of the domain-averaged
SST for the Moana Ocean Hindcast and observations (ESA CCI) for the year 2017-2018 and the OSSE period (grey shading).
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physical processes (e.g. Kerry and Powell, 2022). The OSSE design

used in this study is described in the following sections.

2.1.1 Reference state
The Reference State simulation used in this study is a realistic

free-running model simulation that was performed from 1 July

2017 to 30 Jun 2018 with the same configuration as the Moana

Ocean Hindcast (Azevedo Correia de Souza, 2022). The

numerical model is configured using the Regional Ocean

Modeling System (ROMS) version 3.9 to simulate the

atmospherically-forced eddying ocean circulation in the NZ
Frontiers in Marine Science 04
oceanic region. ROMS is a free-surface, hydrostatic, primitive

equation ocean model solved on a curvilinear grid with a terrain-

following vertical coordinate system (Shchepetkin and

McWilliams, 2005). The Moana Ocean Hindcast configuration

has a 5km horizontal resolution and 50 vertical s-layers. Initial

and boundary conditions are from the GLORYS ocean reanalysis

(Lellouche et al., 2021), developed by the Copernicus Marine

Environment Monitoring Service (CMEMS). This reanalysis

product was found to be the most suitable in the NZ region

(Azevedo Correia de Souza et al., 2021). Atmospheric forcing

fields from the Climate Forecast System Reanalysis (CFSR)
FIGURE 2

An outline of the steps taken in (top) a realistic prediction system and (bottom) an Observing System Simulation Experiment.
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provided by National Center for Atmospheric Research (NCAR)

(https://climatedataguide.ucar.edu/climate-data/climate-

forecast-system-reanalysis-cfsr) are used to compute the surface

wind stress and surface net heat and freshwater fluxes using the

bulk flux parameterization of Fairall et al. (1996). A thorough

description of the model configuration and validation is

presented in Azevedo Correia de Souza et al. (2022). The

model provides a realistic representation of the surface and

subsurface variability around NZ, and represents NZ’s major

boundary currents well (Kerry et al., 2023a).

2.1.2 Baseline
As mentioned above and outlined in Figure 2, synthetic

observations extracted from the Reference State are assimilated

into a Baseline model. In this case, our Baseline model uses the

same model grid, model physics, boundary conditions and surface

forcing as the Reference State simulation; however the Baseline

model is initialized from a perturbed state about the Reference State.

We shift the initial conditions of the Reference State simulation by

eighteen days to generate the Baselinemodel initial conditions. This

temporal shift is chosen based on the autocorrelation of UOHC,

where it takes eighteen days to reach an autocorrelation of 0.5 for

UOHC (defined in Equation 3 below) at chosen points in NZ’s shelf

seas. The autocorrelation analysis is described in more detail in

Kerry et al. (2022) (their Figure 2).

Time-series of the Root Mean Squared Difference (RMSD)

between the Reference State and the Baseline (Figures 3A–C)

confirm that the chosen perturbation of eighteen days is

appropriate. The plots show no convergence over the 1-year

simulation, indicating that the initial conditions continue to

dominate, rather than the boundary or atmospheric forcings, and

that data assimilation is required to correct the ocean state

estimates. The differences between the Reference State and

Baseline (Figures 3D–O) are representative of typical errors in a

realistic forecast system, therefore the Baseline provides a useful

model in which to assimilate the synthetic observations to assess the

effectiveness of the observations in improving model estimates. By

only perturbing the initial conditions, our OSSEs are assessing the

ability of the assimilation system to improve model state estimates

(assuming perfect boundary and surface forcing).
2.2 Experiments

In order to assess the impact of the subsurface temperature

observations from fishing vessels, we performed experiments that

assimilate synthetic observations that are representative of the

timing, locations and associated errors of the realistic

observations that were available in the region. We perform five

experiments, which we describe below and in Table 1:
Fron
1. Surface only

2. Surf + FVON2021 0.2

3. Surf + FVON2022 0.2

4. Surf + FVON2022 0.1

5. Surf + FVON2022 0.2 reduced Lh
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The first experiment (Surface only) assimilates only along-track

SSH and gridded SST observations. The second experiment (Surf +

FVON2021 0.2) assimilates surface observations as well as synthetic

subsurface observations that represent the data density from the

FVON that were available from 23 Sept 2021 to 28 Dec 2021, during

the beginning of the Fishing Vessel sensor program. For

experiments 3-5 (Surf + FVON2022 0.2, Surf + FVON2022 0.1,

and Surf + FVON2022 0.2 reduced Lh), we use synthetic subsurface

observations that represent the data density from the FVON

available from 23 Sept 2022 to 28 Dec 2022, twelve months later,

where there was an approximately 6-fold increase in observation

density compared to the same period in 2021 (refer to Figure 4).

In addition to testing the data densities we also compare

different data assimilation configurations. In experiments 3-5, the

0.2 and 0.1 refer to the observation error estimates assigned to the

subsurface temperature observations (in °C) that are specified prior

to data assimilation. These prior observation errors, specified in R,

are important scaling factors in the cost function (described in

Equation 1 below) to avoid over-fitting to uncertain observations.

Observational errors are assumed to be Gaussian with zero mean

and variance given by the diagonal of the matrix R. In particular, the

observational error variances for subsurface temperature

observations in experiments Surf + FVON2021 0.2, Surf +

FVON2022 0.2, Surf + FVON2022 0.2 reduced Lh, (Surf +

FVON2022 0.1) are specified to be (0.2 °C)2 [(0.1 °C)2].

Additionally it is necessary to prescribe an estimate of the

uncertainties associated with the background model state, referred

to as the background error covariance matrix B (as described in

Equation 1 below). The uncertainties specified in B permit larger

adjustments where the model is uncertain and penalize adjustments

where the model errors are expected to be low. Experiments 1-4 use

the same background error covariances, while for Experiment 5 the

horizontal length scales used to compute the background error

covariances were modified (refer to Equation 2). Details of the

experiments are given in Table 1. The observations, their

preprocessing and the prior observation error covariance

specification are outlined in Sections 2.3 and 2.4.2 below. The

formulation of the prior background error covariances is

described in Section 2.4.3 and Equation 2.

The OSSE experiments are performed for the period from 23

Sept 2017 to 28 Dec 2017. This captures a period where

temperatures in the Tasman Sea are close to climatology, followed

by the rapid onset of the extreme MHW of summer 2017-2018,

which began mid-November 2017 (Kajtar et al., 2022). The onset of

the MHW is represented well in the Reference State simulation, as

seen by the comparison of the domain averaged SST from the model

and the European Space Agency Climate Change Initiative

(ESACCI) SST data (Figure 1D). The data assimilation is

performed for 6-day cycles (refer to Section 2.4.1); 16 successive

6-day cycles are performed to cover the 3-month OSSE period.
2.3 Observations

Synthetic observations are extracted, by sampling the Reference

State, to represent realistic observation platforms. The synthetic
frontiersin.org
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observations are representative of the timing, locations and

associated errors of the realistic observations that were available

in the region. To be representative of realistic ocean observations,

the values sampled from the Reference State at the observation times

and locations are perturbed with a random error such that the

errors are normally distributed within the bounds of the

observational error estimates of the actual observations.

We extract synthetic observations from the Reference State to

represent satellite derived along track SSH data from the Radar

Altimeter Database System (RADS, Naeije et al. (2000); Figures 4A, B)

and satellite derived SST data from the Operational Sea Surface
Frontiers in Marine Science 06
Temperature and Ice Analysis (OSTIA, Donlon et al. (2012);

Figures 4C, D). SSH tracks are repeated 2 hours before and after their

actual time to ensure the SSH information is projected into the

baroclinic ocean, rather than the fast-moving barotropic. Repeating

the tracks a few hours either side of their actual time is standard practice

in 4D-Var DA (e.g. Powell et al., 2009); given that 4D-Var uses the

model dynamics to compute the increment adjustments, if the altimeter

tracks are not repeated they can be fit as a barotropic signal. We make

the valid assumption that the slow moving mesoscale circulation varies

little over the +/- 2 hours. The OSTIA SST product has a 0.05° x 0.05°

horizontal grid resolution and is applied daily.
FIGURE 3

Time-series of domain-averaged RMSD between Reference State and Baseline State for (A) SSH, (B) SST and (C) temperature at 150 m. Standard
deviation of Reference State and RMSD between Reference State and Baseline State over the full year of 2017-2018, for (D, E) SSH, (H, I) SST,
(L, M) temperature at 150 m, (F, G) temperature at 400 m, (J, K) bottom temperature, and (N, O) UOHC (as defined in Section 3.2).
frontiersin.org
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The synthetic subsurface observations were extracted to

represent the timing and locations of the FVON observations that

were available in 2021, from 23 Sept 2021 to 28 Dec 2021, (Surf +

FVON2021 0.2) and in 2022 (when data density was six-fold higher)

from 23 Sept 2022 to 28 Dec 2022 (Surf + FVON2022 0.2, Surf +

FVON2022 0.1, and Surf + FVON2022 0.2 reduced Lh), both in

position and depth extent. Figure 4 shows the number of

observations per 6-day window (Figures 4E, G) and the

observation density for various depth bins (Figures 4I–P), for the

FVON for 2021 and 2022 respectively.
2.4 Data assimilation configuration

2.4.1 4D-Var configuration
4D-Var uses variational calculus to solve for increments in

model initial conditions, boundary conditions, and forcing such

that the differences between the observations and the new model

trajectory is immunized – in a least-squares sense – over a specific

assimilation window. The goal is for the model to represent all of

the observations in time and space using the physics of the model,

and accounting for the uncertainties in the observations and

background model state, producing a description of the ocean-

state that is dynamically balanced and a complete solution of the

non-linear model equations.

This is achieved by minimizing an objective cost function, J, that

measures normalized deviations of the modelled ocean state (given

the increment adjustments to model initial conditions, boundary

conditions, and forcing) from the observations as well as from the

modelled background state (the model prior). The cost function is a

function of the increment vector and can be written as
Frontiers in Marine Science 07
J(dz) =
1
2o

n

i=0
(Gdz − di)

TR−1
i (Gdz − di) +

1
2
(dz)TB−1(dz)

= Jo + Jb (1)

where G = HiM(ti,t0), M(ti,t0) represents the tangent linear

version of the nonlinear model equations M, integrated from t0 to

ti. The difference between the modelled background state and the

observations is represented by the innovation vector, given at each

time ti by di = yi − Hi(Xf(ti)); where y are the observations and Hi is

the operator that samples the background circulation to observation

points in space and time. As such, the Gdz − di term represents the

difference between the model and the observations given the

increment adjustment integrated through the tangent linear

model. R is the observation error covariance matrix and B is the

background error covariance matrix. In practice, with 4D-Var,

subsequent integrations of the adjoint and tangent linear models

(in the inner loops) are performed to solve for an increment vector

that minimizes (or acceptably reduces) J. The non-linear model

trajectory is updated in the outer loops.

In our experiments we assimilate observations over 6-day

cycles. We employ 10 inner loops and a single outer loop in order

to achieve a reasonable computational cost with an acceptable

reduction in J. Initial conditions for the subsequent 6-day forecast

are taken from the end of the previous analysis.

For a thorough description of the 4D-Var formulation, the

reader is referred to Moore et al. (2011c). The ROMS 4D-Var

implementation is well described by Moore et al. (2011c, 2011a,

2011b), and it has been used successfully in many applications [e.g.,

Di Lorenzo et al. (2007); Powell and Moore (2008); Powell et al.

(2008); Broquet et al. (2009); Matthews et al. (2012); Zavala-Garay

et al. (2012); Janeković et al. (2013); Souza et al. (2014); Kerry et al.

(2016); Gwyther et al. (2022); Wilkin et al. (2022)].
2.4.2 Prior observation uncertainty assumptions
The 4D-Var method aims to solve for the nonlinear ocean

solution that better represents the observations and is free within

the uncertainties in the system. As such, specification of the prior

observation and model background uncertainties is important.

These uncertainties are prescribed in the observation error

covariance matrix R and the background error covariance matrix

B, respectively, and are important scaling factors in the cost

function, J (Equation 1).

The prior observation uncertainties are specified as a standard

deviation associated with each observation, and must account for the

instrument or product error associated with the observations and the

errors of representativeness. Errors of representativeness describe

uncertainties due to the spatial and temporal discretization in the

model; for example, if several observations exist in the same grid cell

taken within the same time-step, the error of representativeness is

computed by the variance of these coinciding observations. Errors of

representativeness must also account for any physical processes that

may be sampled by the observations but that are not resolved in the
TABLE 1 Overview of the OSSE experiments, showing the assimilated
observations, the corresponding prior observation uncertainty estimates
(R), and the horizontal decorrelation lengths scales used to estimate B.

Experiment
name

Observations Prior
errors

Horz.
length
scales

1. Surface only SSH and SST
(Figures 4A–D)

0.04m,
0.4°C

50 km

2. Surf +
FVON2021 0.2

SSH, SST and
FVON 2021 density
(Figures 4E, F, I–L)

0.04m,
0.4°C,
0.2°C

50 km

3. Surf +
FVON2022 0.2

SSH, SST and
FVON 2022 density
(Figures 4G, H, M–P)

0.04m,
0.4°C,
0.2°C

50 km

4. Surf +
FVON2022 0.1

SSH, SST and
FVON 2022 density
(Figures 4G, H, M–P)

0.04m,
0.4°C,
0.1°C

50 km

5. Surf +
FVON2022 0.2
reduced Lh

SSH, SST and
FVON 2022 density
(Figures 4G, H, M–P)

0.04m,
0.4°C,
0.2°C

50 km for zeta,
u and v
20 km for
temperature
10 km for salt
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model; remotely generated internal tides is an example of these (e.g.

Kerry and Powell, 2022).

In these experiments we specify prior observation errors of 0.04

m for the alongtrack SSH data and 0.4 °C for SST observations.

Modern altimeter missions maintain a typical accuracy of 0.03 m

for sea level (Schrama et al., 2000); for the alongtrack SSH

observations, we apply an uncertainty value of 0.04 m. The

alongtrack resolution is of the same order as the model horizontal

resolution so errors of representativeness are low. Errors associated

with representation of the surface and internal tide expression and
Frontiers in Marine Science 08
the inverse barometer effect are expected to be small and captured

within the 0.04 m. For SST, the OSTIA product provides quantified

error estimates of 0.4 °C (Donlon et al., 2012). As the errors of

representativeness are expected to be small as the model horizontal

resolution is of the same order as the OSTIA product resolution, we

specify a prior observation error of 0.4 °C for SST data. As

introduced in Section 2.2, the observation error estimates

assigned to the subsurface temperature observations for Surf +

FVON2021 0.2, Surf + FVON2022 0.2, Surf + FVON2022 0.2

reduced Lh, (Surf + FVON2022 0.1) are specified to be 0.2 °C
FIGURE 4

(A) Total number of SSH observations per 6-day window (including repeated tracks), (B) Total number of observations per 1 degree box over the
OSSE period for SSH, (C) same as (A) but for SST, (D) same as (B) but for SST, (E) total number of FVON2021 observations, (F) histogram of
FVON2021 observations with depth for all observations over OSSE period, (G) same as (E) but for FVON2022 observations, (H) same as (F) but for
FVON2022 observations. Total number of subsurface observations per 1 degree box over the OSSE period for FVON2021 OSSE from 0-50m (I), 50-
150m (J), 150-400m (K), 400-1000m (L). The same for the FVON2022 OSSE from 0-50m (M), 50-150m (N), 150-400m (O), 400-2000m (P).
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(0.1°C). For consistency checks associated with these prior

uncertainty choices, refer to Section 3.1 and Table 2 below.

2.4.3 Prior background uncertainty assumptions
The background error covariance matrix should represent the

expected uncertainties in the model initial conditions, surface and

boundary forcings. For the initial conditions and boundary forcing,

the control variables are zeta (sea level), temperature, salinity and

velocities (u and v). The control variables for surface forcing are

surface heat flux, surface salinity flux and surface wind stress (u and

v). In practice B is an NxN matrix, where N is the size of the state

vector (which includes every model state variable at every grid cell,

every boundary variable and every surface forcing variable). This B

matrix is much too large to compute or store, and instead we

estimate B by factorization, as described in Weaver and Courtier

(2001), such that,

B = KbSLL
1=2
v LhL

1=2
v LSKT

b , (2)

where Kb is the balance operator, S and L are the diagonal

matrices of the background error standard deviations and

normalization factors respectively, and Lv and Lh are the

univariate correlations in the vertical and horizontal directions.

We only prescribe univariate covariance in Kb. The dynamics are

coupled through the use of the tangent linear and adjoint models in

the assimilation, but not in the statistics of B. The correlation

matrices, Lv and Lh, and the normalization factors, L, are computed

as solutions to diffusion equations following Weaver and Courtier

(2001). The background error standard deviations, S, are computed

from a long free running model simulation; the natural standard

deviations of the model fields are scaled to give an appropriate

match between the prior specified and diagnostic background errors

[as per Desroziers et al. (2005)].

The characteristic length scales chosen for Lv and Lh are

assumed to be homogeneous and isotropic. The choice of

horizontal length scales (detailed in Table 1) is 50 km for SSH,

temperature, salinity and velocities for Experiments 1-4. For

Experiment 5, the horizontal decorrelation length scales for

temperature and salinity are reduced to 20 km and 10 km,
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respectively. The reduction in length scales for temperature and

salinity was motivated by the coastal nature of the subsurface

observations, where length scales of variability are typically small,

compared to offshore regions dominated by mesoscale eddies (of

scales of 100-200 km). Various approaches for estimating

horizontal length scales are presented in Wilkin et al. (2002);

Matthews et al. (2011); Kerry et al. (2016). It is noted that

horizontal decorrelation length scales are likely to vary

considerably across the domain given the varying circulation

regions (Kerry et al., 2022). For example, for boundary currents

the cross-shelf decorrelation lengths scales will be shorter than

those in the alongshore direction (e.g. Oke and Sakov, 2012).

Vertical isotropic decorrelation length scales are set to 30 m for

all variables for all experiments. Analysis of mooring and glider

observations across the south-east Australian continental shelf and

into the deep ocean (detailed in Kerry et al. (2016)) find vertical

decorrelation length scales range from 15-200 m for temperature,

salinity and velocities, highlighting the drawbacks of specifying a

single value in a DA configuration.
3 Results

3.1 Consistency of prior and
posterior uncertainties

The analysis generated by the 4D-Var system is dependent on

the prior assumptions of the background and observation

uncertainties, and the validity of these assumptions is important

in determining the optimality of the analysis. Our goal is to generate

a new time-varying ocean state estimate that is a complete solution

of the ocean model equations and better fits the observations, taking

into account the uncertainties of both the model background state

(the initial estimate, or the forecast) and the observations. A

measure of the consistency of the assimilation system given the

prior uncertainty assumptions can be made using a set of

diagnostics based on the innovation statistics, presented in

Desroziers et al. (2005). These diagnostics are based on the

observation minus background, observation minus analysis, and

analysis minus background differences and provide a check of the

consistency of the prior choices of the background and observation

error covariances. The level of agreement between the a priori

specified error variances (B and R), and those diagnosed a posteriori

following the methods introduced by Desroziers et al. (2005)

(hereafter referred to as the diagnostic errors) provides a measure

of the appropriateness of the estimates of B and R.

For all five experiments (Table 1) we present the ratio of the

diagnostic observation errors and prior observation errors (and the

diagnostic background errors and the prior background errors) in

Table 2. The ratios are given in terms of the standard deviations (the

square root of the variances) and are time-averaged over the OSSE

period. A value of unity represents optimal consistency between the

prior uncertainty choices and the diagnostic errors. For SSH the

prior and diagnostic observation errors are typically consistent,

while the prior specified background error variances for SSH are

underestimated. For SST, the prior and diagnostic observation
TABLE 2 Ratio of diagnostic and prior observation and background
errors as per Desroziers’ equations (Desroziers et al., 2005).

Experiment SSH SST subsurface
T

1. Surface only 1.1 (0.25) 0.94 (0.64) NA

2. Surf +
FVON2021 0.2

1.6 (0.18) 2.4 (0.58) 3.8 (1.0)

3. Surf +
FVON2022 0.2

1.9 (0.15) 3.2 (0.53) 9.2 (0.71)

4. Surf +
FVON2022 0.1

1.2 (0.17) 0.96 (0.55) 1.76 (0.94)

5. Surf +
FVON2022 0.2
reduced Lh

1.1 (0.21) 0.93 (0.65) 0.93 (0.88)
Values are given for the entire NZ region and averaged over the OSSE period. Observation
error ratio is outside of brackets and background error ratio is in brackets.
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errors are consistent (values close to unity) for experiments Surface

only, Surf + FVON2022 0.1, and Surf + FVON2022 0.2 reduced Lh.

For experiments Surf + FVON2021 0.2 and Surf + FVON2022 0.2,

diagnostic SST observation errors are elevated by 240% and 320%,

respectively, compared to the prior error estimates indicating

under-fitting to SST. For subsurface temperature, when prior

observation errors are specified to be 0.2°C with horizontal

decorrelation length scales of 50 km for temperature and salinity

in B (experiments Surf + FVON2021 0.2 and Surf + FVON2022 0.2)

the diagnostic errors exceed the prior specified observation errors

by 380% for the 2021 density observations (Surf + FVON2021 0.2)

and 920% for the 2022 density observations (Surf + FVON2022 0.2).

Reducing the prior specified observation errors to 0.1°C resulted in

improved consistency of the errors, but degradation of various

circulation metrics (Sections 3.3 and 3.4). Experiment Surf +

FVON2022 0.2 reduced Lh gave the best consistency of error

estimates across the board and the best representation of surface

and subsurface metrics (Sections 3.3 and 3.4).
3.2 Circulation metrics

To illustrate the impact of assimilating observations we present

comparisons between the Reference State, the Baseline, and the data

assimilation experiments 1-5 (Table 1). Spatial plots of the Root

Mean Squared Difference (RMSD) between the Reference State and

the comparison simulations are presented for the following metrics;

SSH, SST, temperature at 50 m, temperature at 150 m, temperature at

400 m, temperature at 1000 m, bottom temperature, and upper ocean

heat content (UOHC). The depth of 150 m represents the mean

thermocline depth across the domain (Kerry et al., 2023a). The

UOHC quantifies the heat carried in the upper ocean, and is given by:

Z z

z−zT
Cpr(z)T(z)dz (3)

where z is the height of the free-surface, −zT is the depth of the

upper layer and Cp is the specific heat of sea water in J(kgK)−1. In

this work we define the depth of the upper layer as the 90th

percentile thermocline depth computed from a long-term

hindcast simulation as in Kerry et al. (2023a).
3.3 Domain-wide overview

Because we are using OSSEs, we can compare the ocean state

estimates from each data assimilating experiment with a known

ocean state (the Reference State). To provide a domain-wide

overview of the OSSE performance we compare the

representation of eight different metrics that were introduced in

Section 3.2. Figures 5 and 6 display the variability (standard

deviations over the OSSE period) and the differences between the

experiments spatially, averaged in time over the OSSE period. The

metrics are (Figure 5 rows 1-4) SSH, SST, temperature at 50 m and

temperature at 150 m, and (Figure 6 rows 1-4) temperature at 400

m, temperature at 1000 m, bottom temperature, and UOHC. The

columns of the figures are explained by the points below:
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• Column 1: The standard deviation of the metric in the

Reference State. This displays the typical variability of

the metric.

• Column 2: The RMSD between the Reference State and the

Baseline. This describes the magnitude by which the

Reference State deviates from the Baseline (as described in

Section 2.1.2 and Figure 3).

• Column 3: Red indicates improvement (lower RMSD with

the Reference State) for Surf + FVON2022 0.2 reduced Lh
compared to the RMSD between the Baseline and the

Reference State. Blue indicates degradation. That is, the

red regions demonstrate the improvement achieved by

assimilation for Surf + FVON2022 0.2 reduced Lh
compared to no data assimilation.

• Column 4: Red (blue) indicates improvement (degradation)

given assimilation of the subsurface temperature

observations (Surf + FVON2022 0.2 reduced Lh) compared

to Surface only.

• Column 5: Red (blue) indicates improvement (degradation)

given an increase in observation density for 2021 to 2022

(wi th the observat ion and background errors

kept constant).

• Column 6: Red (blue) indicates improvement (degradation)

given an increase in prior observation errors for subsurface

temperature from 0.1°C to 0.2°C (with the observation

platform and background errors kept constant).

• Column 7: Red (blue) indicates improvement (degradation)

given a reduction in the horizontal length scales applied to

temperature and salinity in the background error

covariance matrix (with the observation platform and

prior observation errors kept constant).
Overall we show that experiment Surf + FVON2022 0.2 reduced

Lh improves on all metrics compared to the Baseline (Column 3 of

Figures 5, 6). Surface only outperforms Surf + FVON2022 0.2

reduced Lh over much of the domain for surface properties (SSH

and SST) and near surface temperature (Column 4 of Figure 5),

while Surf + FVON2022 0.2 reduced Lh provides improvement to

temperature at 400 m outside of the North Cape/northern East

Auckland Current (EAUC) region and improvement of bottom

temperature over the shelf seas (Column 4 of Figure 6). A less tight

fit to surface and near surface properties occurs as the system is also

fitting to temperature in the lower water column. Note that Surf +

FVON2022 0.2 reduced Lh stills provides a considerable

improvement to surface and near surface properties and UOHC

compared to the Baseline (Column 3 of Figures 5, 6).

Increasing the density of the subsurface temperature

observations from Surf + FVON2021 0.2 to Surf + FVON2022 0.2

(Figures 4E–P) results in a better fit to SST, but some larger

differences with the Reference State for SSH, subsurface

temperature and UOHC, particularly in the EAUC region

(Column 5 of Figures 5, 6). Noticeable improvement below the

surface is achieved for bottom temperature (Column 5, row 3 of

Figure 6). Increasing the prior specified observation uncertainties

for the subsurface temperature observations from 0.1°C in Surf +

FVON2022 0.1 to 0.2 °C in Surf + FVON2022 0.2 results in
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improvements across all metrics over most of the domain (Column

6 of Figures 5, 6). Most notably, UOHC, which integrates upper

ocean properties, is degraded by introducing subsurface

observations and increasing their density (Figure 6, row 4,

columns 4 and 5). This degradation is due to over-fitting of the

coastal temperature observations and is most pronounced in the

EAUC region where cross-shelf spatial scales of variability are short.

Both increasing the prior observation uncertainty estimates for

subsurface temperature observations and reducing their length

scales of influence provided improvements to heat content

estimates (Figure 6, row 4, columns 6 and 7).

Significant improvements across all metrics were achieved by

keeping the prior subsurface temperature observation errors set to

0.2°C, and adjusting the horizontal length scales used in the

specification of B (refer to Section 2.4.3) in Surf + FVON2022 0.2

reduced Lh. The improvements for Surf + FVON2022 0.2 reduced Lh
compared to Surf + FVON2022 0.2 are shown (by the red regions) in

Column 7 of Figures 5 and 6. Adjusting the length scales provided a

more consistent match between the prior and diagnostic temperature

errors (Table 2, compare Experiments 4 and 5, Section 3.1), consistent

with a more optimal system resulting in improved representation of

surface and subsurface temperature and heat content.
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3.4 Shelf seas

For a clearer view of the impacts of data assimilation on the

representation of shelf seas, we now focus on the shelf regions with

water depths less than 1000 m. This is where most of the subsurface

FVON observations are taken, and where ocean predictions are

most sought after to support fisheries and coastal users.

3.4.1 Temporal evolution of spatially-
averaged errors

The temporal evolution of the errors in the shelf regions shows

how the errors are reduced with the introduction of data

assimilation in the different experiments (Figure 7). As discussed

in Section 2.2 and Figure 1D, the OSSE period is chosen to represent

a warming event, with an associated sharp rise in SST, bottom

temperature and ocean heat content in NZ’s shelf seas (as shown by

the spatially-averaged values for depths less than 1000 m in the

Reference State, Figure 7). For all OSSEs, errors in SSH and SST are

reduced most rapidly over the first 2-3 assimilation cycles (12-18

days, Figures 7A, B). The lowest errors in SSH and SST are achieved

with Surface only or the less dense subsurface observations (Surf +

FVON2021 0.2), followed by the dense subsurface observations with
FIGURE 5

(Column 1) Standard deviation of Reference State, (Column 2) RMSD between Reference State and Baseline, (Column 3) difference between RMSD
between Reference State and Baseline and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh, (Column 4) difference between
RMSD between Reference State and Surface only and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh, (Column 5) difference
between RMSD between Reference State and Surf + FVON2021 0.2 and RMSD between Reference State and Surf + FVON2022 0.2, (Column 6)
difference between RMSD between Reference State and Surf + FVON2022 0.1 and RMSD between Reference State and Surf + FVON2022 0.2, and
(Column 7) difference between RMSD between Reference State and Surf + FVON2022 0.2 and RMSD between Reference State and Surf +
FVON2022 0.2 reduced Lh. For columns 3-7 red areas represent improvement (i.e. lower RMSD with the Reference State) for the second experiment.
Rows are for SSH, SST, temperature at 50 m and temperature at 150 m. Experiments are numbered 1-5 as detailed in Table 1.
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adjusted decorrelation length scales (Surf + FVON2022 0.2 reduced

Lh). For bottom temperature in the shallow regions (depths less

than 400 m, Figure 7C), assimilating denser subsurface observations

(Surf + FVON2022 0.2, Surf + FVON2022 0.1, and Surf +

FVON2022 0.2 reduced Lh) results in greater error reduction over

the first 48 days, after which the OSSE with less dense subsurface

observations (Surf + FVON2021 0.2) reaches similar error

reduction. As the warming event intensifies (after Nov 11), both

Surface only and Surf + FVON2021 0.2 provide a comparable

representation of heat content in water depths less than 400 m,

compared to the experiments with denser subsurface temperature

observations (Figure 7D). At the peak of the warm event (after Dec

11), heat content in shallow regions is best estimated by the

experiments with dense subsurface observations (Surf +

FVON2022 0.2 and Surf + FVON2022 0.2 reduced Lh). Surf +

FVON2022 0.2 reduced Lh provides the lowest errors across all

metrics over the entire experiment period.

3.4.2 Spatial maps of temporally-averaged errors
Spatial maps of the temporally-averaged errors reveal where

improvements are made given the different experiments. Figure 8
Frontiers in Marine Science 12
shows the magnitude of the RMSD between the Baseline and the

Reference State and the 5 OSSEs and the Reference State for SST,

bottom temperature and heat content. Errors between the Baseline

and the Reference State for SST are greatest along the shelf region

influenced by the eddydominated EAUC, and along the Chatham

Rise, while bottom temperature is most poorly represented along

the west coast shelf in water depths less than 400 m. Heat content is

most poorly represented over the plateaus and on the narrow shelf

of the North Island. While the magnitudes shown in Figure 8 are

useful to quantify the uncertainty associated with each model

experiment, the key differences between the experiments are more

clearly shown in Figures 9 and 10, where (as in Section 3.3) the

differences in the temporally-averaged RMSD values are shown.

Note that panel (a) represents the magnitude of the standard

deviations, while for panels (b-h), red areas represent

improvement (i.e. lower RMSD with the Reference State) for the

second experiment, and blue represents degradation.

Bottom temperature estimates are improved, compared to the

Baseline, when Surface only observations are assimilated

(Figure 9C). Further improvements of up to 0.4°C are achieved

for bottom temperature for Surf + FVON2022 0.2 reduced Lh
FIGURE 6

(Column 1) standard deviation of Reference State, (Column 2) RMSD between Reference State and Baseline, (Column 3) difference between RMSD
between Reference State and Baseline and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh, (Column 4) difference between
RMSD between Reference State and Surface only and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh, (Column 5) difference
between RMSD between Reference State and Surf + FVON2021 0.2 and RMSD between Reference State and Surf + FVON2022 0.2, (Column 6)
difference between RMSD between Reference State and Surf + FVON2022 0.1 and RMSD between Reference State and Surf + FVON2022 0.2, and
(Column 7) difference between RMSD between Reference State and Surf + FVON2022 0.2 and RMSD between Reference State and Surf +
FVON2022 0.2 reduced Lh. For columns 3-7 red areas represent improvement (i.e. lower RMSD with the Reference State) for the second experiment.
Rows are for temperature at 400 m, temperature at 1000 m, bottom temperature and UOHC. Experiments are numbered 1-5 as detailed in Table 1.
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FIGURE 8

RMSD between the Reference State and the Baseline and the Reference State and the 5 OSSEs for (A–F) SST, (G–L), bottom temperature, and
(M–R) heat content, shown for coastal regions (water depths<1000 m). 100 m, 400 m and 1000 m bathymetry contours are shown. Experiments are
numbered 1-5 as detailed in Table 1.
B

C D

E F

A

FIGURE 7

Time-series of RMSD between Reference State and Baseline (black), and the Reference State and the 5 OSSE experiments for the OSSE period. SSH
(A) and SST (B) are for points with water depths<1000 m. Bottom temperature (C, E) and total heat content (D, F) are presented for all points with water
depths<400 m and water depths from 400-1000 m. The right axes show the mean values in the Reference State simulation, illustrating the warming event.
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compared to Surface only (Figure 9E), most notably along the west

coast shelf region. Increasing the subsurface temperature

observation density (from Surf + FVON2021 0.2 to Surf +

FVON2022 0.2) gave improvements across most of the shelf sea

regions corresponding to a widespread increase in subsurface

temperature observations across the shelf seas (Figure 4), with the

greatest improvement of up to 0.3°C being off the west coast

(Figure 9F). Changes to bottom temperature representation were

relatively small with adjustments to prior observation uncertainties

(Figure 9G) and changes to the length scales (Figure 9H).

Heat content represents an integration of density and

temperature throughout the water column (Equation 3). While

the assimilation of subsurface observations (Surf + FVON2022 0.2

reduced Lh compared to Surface only) shows the greatest

improvement to bottom temperature inshore of the 400 m depth

contour (Figure 9E), the improvements to heat content extend

offshore of the 400 m isobath (Figure 10E). This is most noticeable

on the central west coast region where the extent of the heat content

improvement extends considerably further offshore than the

coverage of the subsurface observations (Figures 4M–P).

Increasing the observation density (Surf + FVON2021 0.2 to Surf

+ FVON2022 0.2, Figure 10F) gives a significant improvement in
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heat content representation, highlighting the importance of dense

subsurface temperature observations on both bottom temperature

and heat content estimates in shelf seas.

The experiments that adjust the assimilation system’s prior

uncertainty estimates have a less pronounced impact on bottom

temperature and heat content estimates in the shelf seas

(Figures 9G, H, 10G, H), compared to the impact of increasing

observation density (Figures 9E, F, 10E, F). However, the differences

are seen in other surface and near-surface metrics. The prior

observation and background uncertainty estimates control how

the assimilated observations are projected onto the unobserved

portion of the ocean state, and therefore their correct specification is

key to the representation of the ocean away from observed

locations. This is particularly important where off-shelf water

masses impact on shelf circulation, as is discussed for the EAUC

region in Section 4.

3.4.3 Summary
In Table 3 we quantify the improvements of the five

experiments compared to the Baseline. The results show that Surf

+ FVON2022 0.2 reduced Lh provides the best overall improvement

across all metrics.
B C D

E F G H

A

FIGURE 9

Bottom temperature presented for coastal regions (water depths<1000 m). (A) Standard deviation of Reference State, (B) RMSD between Reference
State and Baseline, (C) difference between RMSD between Reference State and Baseline and RMSD between Reference State and Surface only,
(D) difference between RMSD between Reference State and Baseline and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh,
(E) difference between RMSD between Reference State and Surface only and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh,
(F) difference between RMSD between Reference State and Surf + FVON2021 0.2 and RMSD between Reference State and Surf + FVON2022 0.2,
(G) difference between RMSD between Reference State and Surf + FVON2022 0.1 and RMSD between Reference State and Surf + FVON2022 0.2,
and (H) difference between RMSD between Reference State and Surf + FVON2022 0.2 and RMSD between Reference State and Surf + FVON2022
0.2 reduced Lh. For (B–H), red areas represent improvement (i.e. lower RMSD with the Reference State) for the second experiment. 100 m, 400 m
and 1000 m bathymetry contours are shown. Experiments are numbered 1-5 as detailed in Table 1.
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FIGURE 10

Total heat content presented for coastal regions (water depths<1000 m). (A) Standard deviation of Reference State, (B) RMSD between Reference
State and Baseline, (C) difference between RMSD between Reference State and Baseline and RMSD between Reference State and Surface only,
(D) difference between RMSD between Reference State and Baseline and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh,
(E) difference between RMSD between Reference State and Surface only and RMSD between Reference State and Surf + FVON2022 0.2 reduced Lh,
(F) difference between RMSD between Reference State and Surf + FVON2021 0.2 and RMSD between Reference State and Surf + FVON2022 0.2,
(G) difference between RMSD between Reference State and Surf + FVON2022 0.1 and RMSD between Reference State and Surf + FVON2022 0.2,
and (H) difference between RMSD between Reference State and Surf + FVON2022 0.2 and RMSD between Reference State and Surf + FVON2022
0.2 reduced Lh. For (B–H), red areas represent improvement (i.e. lower RMSD with the Reference State) for the second experiment. 100 m, 400 m
and 1000 m bathymetry contours are shown. Experiments are numbered 1-5 as detailed in Table 1.
TABLE 3 Time-average of spatially-averaged RMSD between Baseline and Reference State, and percentage improvement of each OSSE relative to
the Baseline.

Experiment
SSH

(<1000m)
SST

(<1000m)
BT

(<400m)
BT

(400-1000m)
HC

(<400m)
HC

(400-1000m)

Baseline
(cm/°
C/Jm−2×108)

2.22 0.29 0.47 0.20 2.43 7.46

1. Surface only 42 37 20 9.9 28 23

2. Surf +
FVON2021 0.2

41 35 34 10 34 25

3. Surf +
FVON2022 0.2

38 30 43 11 37 24

4. Surf +
FVON2022 0.1

34 22 41 9.0 33 23

5. Surf +
FVON2022 0.2
reduced Lh

40 30 44 12 38 27
F
rontiers in Marine Scien
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All values are given as percentage improvement relative to the magnitudes given in the first row. Metrics are given for water depth ranges shown in brackets below the metric. BT, Bottom
temperature; HC, Total depth integrated heat content.
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4 Regional processes

Given the variety of oceanic processes across the NZ region (e.g.

Chiswell et al., 2015; Fernandez et al., 2018; Stevens et al., 2019) and

the variability in FVON coverage (Figure 4), improvements in

model state estimates for the different OSSEs vary across the

regions. In this section we discuss the differing processes at play

across the NZ region in relation to the impact of the FVON and the

data assimilation system, with implications for MHWpredictability.

The discussion draws on two previous studies that characterize the

temporal and spatial scales of heat content variability around NZ

(Kerry et al., 2023a) and reveal the varying drivers of MHW events

across the regions (Kerry et al., 2022).

The north east coast of the North Island is dominated by

mesoscale eddies associated with the EAUC and the East Cape

Current (ECC) (Fernandez et al., 2018; Stevens et al., 2019). The

North Cape and East Cape regions are associated with eddy

separation and the formation of the North Cape Eddy (NCE) and

the East Cape Eddy (ECE, Figure 1). Errors in SSH between the

Reference State and the Baseline are elevated along the path of these

boundary currents, and SST errors are elevated off North Cape

(Figure 5, Column 2), consistent with high SST variability in this

region that is poorly resolved by satellite products (Kerry et al.,

2023a). Along the EAUC’s path, and in the region where it separates

from East Cape, subsurface temperature and UOHC errors are

elevated in the Baseline model (Figures 5 and 6, Column 2).

Assimilating subsurface temperature observations that are

concentrated along the narrow shelf (compared to Surface only

observations) results in degradation of surface and subsurface

temperature in the depth range of the mesoscale circulation

(above 1000 m) and UOHC off North Cape and East Cape

(Figures 5, 6, Column 4). Increasing the subsurface temperature

observation density results in further degradation to SSH,

subsurface temperature and UOHC, particularly off North Cape

(Figures 5, 6, Column 5). We show that improved representation of

SSH, SST, subsurface temperature and UOHC along the path of the

EAUC and in these separation regions is achieved by relaxing the

errors associated with FVON observations (Figures 5, 6, Column 6)

and reducing the length scales of variability associated with the

prior specified background errors (Figures 5, 6, Column 7). This

highlights the importance of correctly configuring the assimilation

system to prevent overfitting to dense coastal observations for the

representation of boundary currents and mesoscale eddies that

dominate the off-shelf circulation. This is a challenge for

boundary current regions with narrow shelfs where high

variability in horizontal and vertical decorrelation length scales

are likely. As UOHC along the narrow shelf is modulated by the

mesoscale eddies (Kerry et al., 2023a), their correct representation

(offshore of the shelf) is key to predicting temperature and UOHC

on the shelf. UOHC in the Bay of Plenty is driven by onshore flow

associated with an eddy-dipole, and MHW events in the region are

driven by anomalously high onshore heat transport down to 1000 m

depth (Kerry et al., 2022). MHW prediction in the region therefore

requires correct representation of the heat associated with the

mesoscale eddies that are responsible for advecting heat onto

the shelf.
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Another notable region of elevated errors between the Baseline

and the Reference State is the south west of NZ (most clearly seen

Figure 3E) where the Subtropical Front (STF) impinges on the

Challenger Plateau (Figure 1). This entire region also afforded better

representation of surface and subsurface properties with lower

errors associated with FVON observations (Figures 5, 6, Column

6) and reduced length scales of variability associated with the prior

background errors (Figures 5, 6, Column 7). The STF feeds the

southward flowing Fiordland Current (FC) and the weaker,

northward flowing Westland Current (WC, Figure 1A), although

heat content over the plateau is not dominantly driven by advection

(Kerry et al., 2022). On the Challenger Plateau, increased subsurface

temperature observation density resulted in improved bottom

temperature estimates on the shelf for depths less than 400 m

(Figures 9E, F), and improved heat content estimates over the

plateau for water depths from 400-1000 m (Figure 10). Kerry et al.

(2022) show that heat content on the shelf off of the west coast of

the South Island is sensitive to large scale adjustments in the ocean’s

subsurface structure over the west coast, in contrast to other

boundary current dominated regions where advection dominates.

This is likely to be why the greatest improvements in subsurface

temperature and UOHC representation upon assimilation of the

FVON observations are seen on the shelf regions of the west coast.

The shallow region off of the southern tip of the South Island

(the Stewart Plateau and Snares Shelf region) is influenced by the

Fiordland Current (FC), with heat content over the shelf between

positively correlated to heat content over the South Island’s west

coast shelf region (Kerry et al., 2023a). Improved bottom

temperature estimates in the region are seen with increased

density of FVON observations (Figures 9E, F) and higher

observation errors (Figure 9G).

Circulation to the east along the Chatham Rise results from the

convolution of the Southland Current (SC) and the extension of the

ECC as they turn eastward (Figure 1A). A westward flowing counter

current returns water along the rise to form the Wairarapa Coastal

Current (WCC) (Kerry et al., 2023a). Including FVON data

(Figure 10E) and increasing the observation density (Figure 10F)

resulted in improved UOHC representation along the Chatham Rise

where this counter current exists. Anomalously high heat transport

in this counter current drives MHW events in the central east coast

region (Kerry et al., 2022). Improvements in representation of

surface and subsurface temperature, and UOHC along the

Chatham Rise are clearly seen in Figures 5 and 6, Column 3.
5 Discussion

Data assimilation is particularly challenging for coastal and

shelf regions where observations are typically temporally and/or

spatially sparse and where the circulation variability contains a

broad range of time and space scales (e.g. Walstad and

McGillicuddy, 2000; Kerry et al., 2020). Effective assimilation of

subsurface observations into ocean circulation models is crucial to

improving subsurface structure estimates (Gwyther et al., 2022).

Here we have compared five Observing System Simulation

Experiments (Table 1) to quantify the impact of assimilating
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fishing-vessel mounted temperature sensors that collect subsurface

temperature observations in NZ’s shelf seas. We show that, not only

is increased density of subsurface observations important in the

representation of the subsurface ocean, their successful assimilation

into an ocean model requires careful specification of the prior

observation and background uncertainties to optimize the way in

which the observations inform the numerical model estimates.

We show that including coastal and shelf subsurface

temperature observations provides improvements in the

representation of bottom temperature and heat content, most

notably at water depths< 400m (Table 3). The Surface only

experiment provided a 20% and 28% improvement compared to

the Baseline for bottom temperature and heat content, respectively,

while the experiments assimilating subsurface temperature

observations provide improvements of between 34-44% and 33-

38%. Increasing the density of the subsurface observations while

keeping the prior specified observation and background

uncertainties the same (Surf + FVON2021 0.2 to Surf +

FVON2022 0.2) results in improvements in bottom temperature

representation but a degradation in SSH and SST representation in

the shelf seas (Table 3). This degradation is greater when a tighter fit

to the subsurface observations is specified (that is, with prior

observation uncertainties reduced from 0.2°C to 0.1°C, Surf +

FVON2022 0.2 to Surf + FVON2022 0.1). The best fit across all

metrics is Surf + FVON2022 0.2 reduced Lh, in which the prior

observation uncertainties for the subsurface observations are set at

0.2°C and the decorrelation length scales for temperature and

salinity specified in the background error covariance matrix are

reduced from 50 km to 20 km and 10 km, respectively. Both the

domain-wide view (Section 3.3) and the results focused on the shelf

seas (Section 3.4), show that Surf + FVON2022 0.2 reduced Lh is the

superior system in representing all of the chosen metrics. This is

related to both the increased subsurface temperature observation

density and the assimilation configuration. Specifically, the increase

in prior observation uncertainties for the subsurface observations

(from 0.1 to 0.2°C) prevents over-fitting to the dense coastal and

shelf observations, and shorter horizontal decorrelation length scales

associated with the background error covariance matrix allow

improved projection of the observations onto the modelled state.

Previous experiments assimilating similar fishing-vessel-derived

observations in the Adriatic Sea conducted by Aydoğdu et al. (2016)

also highlight the value of such observations, although the observing

system was simpler and only single-point vertical values were

utilized instead of the profiles provided by the FVON sensors in

this study. The authors emphasize the importance of domain

coverage over the number of observations. From the distribution

of the subsurface temperature observations presented in Figure 4 we

see that, although not dramatic, there is an increase in the area

covered by the FVON sensors in 2022 in relation to 2021. This factor

can be important for the improved metrics discussed above.

Similarly, the OSSE methodology could also be used to assess the

optimum observational data density required to achieve a requisite

model improvement. By starting with data in all grid cells a data

thinning approach could be used in order to guide howmany fishing

vessels are required, or where FVON observations will have the

greatest impact. In this experiment, bottom temperature in the
Frontiers in Marine Science 17
shallow seas reaches similar error reduction for the lower density

observations compared to the denser observations after two months

(Figure 7C); however this corresponds to a rapid increase in bottom

temperature and may be related to full water column mixing. In the

EAC region, Kerry et al. (2018) show that observations taken in

regions of higher variability have more impact on transport and EKE

estimates throughout the current system. This is consistent with

results of Gwyther et al. (2022) who show that synthetic temperature

profile observations through the downstream eddy-dominated

region of the EAC system are considerably more impactful in

improving subsurface temperature and UOHC estimates

throughout the region than the same observations taken upstream,

across the mostly coherent EAC. In a similar study, weekly profiles

(with profiles occurring in every assimilation cycle) are shown to

provide considerably better results that fortnightly or monthly

sampling (Gwyther et al., 2023b).

While our results highlight the value of subsurface temperature

observations in representing bottom temperature in shelf seas, we note

that correct representation of the SSH (associated with the geostrophic

currents) and correct representation of temperature throughout the

water column (not just at the bottom) is required to correctly estimate

heat content. This requires careful design of the data assimilation

system in order to achieve maximum benefit from the observing

system. Specifically, the way by which information from the

observations is projected onto the modelled ocean state is controlled

by the background error covariance matrix, and the fit to the

observations is controlled by the prior observation uncertainties.

Overfitting to certain observations can result in degradation of the

representation of other fields. Specifically, in this study we see that

over-fitting to dense near-shore temperature profile observations is at

the expense of temperature representation of offshore waters and

surface and near-surface fields (as in Surf + FVON2022 0.1). This is

most pronounced along the narrow shelf region, dominated by the

EAUC and the ECC. Further, careful specification of the decorrelation

length scales used to compute the background error covariance matrix

is required (Section 2.4.3). Consistency of improvement across both

surface and subsurface properties is important for correctly

representing upper ocean heat content; a crucial metric for

understanding and predicting MHWs (Kerry et al., 2022).

Furthermore, in regions where the off-shelf circulation modulates the

shelf circulation, such as the EAUC (as discussed in Section 4) and the

EAC, where mesoscale eddies drive cross-shelf transport (Malan et al.,

2022), correct representation of the subsurface structure offshore of the

shelf is key to predicting shelf circulation. While our results focus on

analysis skill, we note that preventing over-fitting is crucial to the

quality of forecasts (e.g. Kerry et al., 2023b).

The assimilation of surface data alone can improve subsurface

representation, yet the addition of subsurface observations has the

potential to provide considerable further improvement given an

effective assimilation system, as was shown in this study. The

improvement of the subsurface temperature representation with

assimilation of SST was shown by Zhang et al. (2010a), but they

also highlight the value of subsurface glider measurements of

temperature and salinity on salinity forecasts. Ezer and Mellor

(1997) find assimilation of SSH data reduces errors more effectively

in mid-depths (around 500 m), and SST data reduces errors in the
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upper layers (above 100 m), with a combination of SST and SSH data

able to provide improved skill at all depths compared to assimilation

of each set of data separately. Pasmans et al. (2019) find that surface

observations are required in combination with the subsurface

observations of temperature and salinity from gliders to prevent

unphysical eddies from forming in the vicinity of the glider transects.

Representer analysis by Zhang et al. (2010b) shows how the

information from glider transects extends toward the dynamically

upstream, yet in practice Pasmans et al. (2019) found that their

assimilation of glider observations failed to produce large-scale

subsurface corrections. A similar result was found in Siripatana

et al. (2020), where observations from a deep water mooring array

produced improvements to the representation of the EAC core depth

in its vicinity, with degradation in the unobserved downstream

region. Likewise, Gwyther et al. (2023a) found that eddy subsurface

structure was often poorly represented in the absence of observations

within the eddy. This issue was addressed in a post-processing feature

mapping approach developed by Rykova (2023) in which individual

ocean eddies are corrected if a profiling float exists within the feature.

Each profiling float only affects the specific feature that it observes;

however, this approach is yet to be implemented in an automated

manner for sequential data assimilation and is limited by the fact that

many features are unsampled. All of these results highlight the

challenges associated with the projection of information from

observed variables onto the unobserved ocean state in data

assimilation systems, which is controlled by the observation-model

covariances, and emphasize the importance of domain coverage.

Indeed the greatest challenges associated with assimilation of

temporally and spatially sparse observations in dynamically active

regions relate to the specification of the background error

covariances (Moore et al., 2019). In advanced time-dependent

data assimilation, the model physics constrain the state-estimates

such that the prescribed covariances are propagated in time to

identify observation-model covariance. In 4D-Var (and 3D-Var)

the background error covariance matrix (B) is usually based on

information about the dominant dynamical balances of the system,

as well as information about the average statistics of errors in the

forecast system (Lorenc, 2003). In classic 4D-Var, the covariances in

B are assumed to be static with isotropic horizontal and vertical

length scales and the tangent-linear and adjoint models introduce

flow-dependence in the error covariance via the time evolution of

the background. In our 4DVar configuration, we estimate B by

factorization (Weaver and Courtier, 2001) and prescribe univariate

covariance (the dynamics are coupled by the tangent-linear and

adjoint models in the assimilation, but not in the statistics of B). On

the other hand, an Ensemble Kalman Filter (EnKF) employs an

ensemble of nonlinear model states to estimate B and so capture

what are commonly referred to in Numerical Weather Prediction

(NWP) as the “errors of the day”.

Within the scope of this study, we compare two different values

of subsurface temperature prior observation uncertainties and two

different decorrelation length scales associated with the background

error covariance matrix. Considerable differences in the model state

estimates highlight the sensitivity to these prior uncertainty

estimates and the importance of their careful specification. Our

NZ model covers various dynamically different circulation regimes
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so the length scales of variability are anisotropic. Furthermore, the

subsurface observations are concentrated in coastal and shallow

shelf regions. Zhang et al. (2010a) acknowledge similar limitations

given the isotropic and univariate nature of B, and while

multivariate background error covariance terms have been added

to the ROMS 4D-Var system, they rely on the assumption of

approximate geostrophic dynamics which may not be adequate

for dynamic continental shelf regions. It is likely that a more

optimal approach would be to estimate flow-dependent

background error covariances that capture the “errors of the day”,

and the spatially-varying decorrelation length scales. Ensemble-

variational methods, that make use of the dynamical interpolation

properties of the adjoint (4D-Var), and the explicit flow-dependent

error covariances (used in ensemble methods) have been studied

extensively for atmospheric DA (e.g. Lorenc et al., 2015) with

improvements in forecast skill achieved particularly in

dynamically active systems (Raynaud et al., 2011; Lorenc and

Jardak, 2018). At the European Centre for Medium Range

Weather Forecasting (Bonavita et al., 2016) and at Météo-France

(Bouyssel et al., 2022), the use of flow-dependent, ensemble-based

estimates to describe the background error covariance matrix at the

start of the 4D-Var assimilation window has resulted in improved

accuracy of the analysis and forecast fields. In the ocean, Pasmans

et al. (2020) use Ensemble-4DVar in a realistic coastal ocean model

and show that further research and development is required.

Accurate model estimates and forecasts of the coastal ocean

provide useful information to decision-makers to effectively manage

our coastal environment, mitigate risks and support industry. The

importance of the subsurface structure of the circulation for

ecological and economic impacts, particularly related to MHW

events, has been revealed by several studies (Schaeffer and

Roughan, 2017; Elzahaby and Schaeffer, 2019). Specifically, the

sensitivity of MHW onset to the ocean’s subsurface structure was

revealed in Kerry et al. (2022), highlighting the importance of correct

subsurface representation for MHW predictability. Fishing vessels as

providers of subsurface observations provide a new frontier of in situ

data, particularly in coastal and shelf seas (Van Vranken et al., 2023),

and we must develop the skills to effectively make use of the data to

improve model estimates and predictions. Our future work aims to

address the properties of the background error covariance matrix

to optimize the influence of spatially and temporally inhomogeneous

observations, with a focus on improving subsurface representation.
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