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With the global population growth and increasing demand for high-quality

protein, aquaculture has experienced rapid development. Fish culture

management and feed supply are crucial components of aquaculture.

Traditional baiting management relies on experiential judgment and regular

observation, which often leads to inefficient baiting practices and wastage. To

address these issues, intelligent bait casting decisions have emerged. Leveraging

advanced artificial intelligence algorithms, intelligent bait casting decisions can

overcome most drawbacks of traditional bait management and enhance

breeding efficiency. However, most of the current intelligent baiting decisions

are focused on using methods such as image processing and target detection to

identify different feeding actions and patterns. These methods do not discuss

based on video streams and do not consider the changes in fish behavior during

the baiting process. Therefore, we proposed a real-time analysis method based

on the density distribution of fish feeding behavior (FishFeed). Firstly, this method

upgrades the input mechanism, not only handling static images but also capable

of real-time video stream analysis. Secondly, by evaluating the fish school density

distribution through a new intelligent baiting strategy, this method can monitor

the feeding behavior of fish school during the baiting process in real time. Finally,

we constructed a dataset for fish school density analysis (DlouFishDensity) that

includes a wealth of video and image frames, providing a valuable resource for

research. Experimental results indicate that our algorithm outperforms MCNN,

improving MAE by 1.63 and 1.35, MSE by 1.92 and 1.58, and reducing prediction

time by 2.56 seconds on the same dataset. By implementing real-time analysis of

fish feeding behavior density distribution, our method offers a more efficient and

effective approach to baiting management in aquaculture, contributing to

improved breeding efficiency and resource utilization.
KEYWORDS

computer vision, deep learning, intelligent feeding, fish feeding behavior, fish
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1 Introduction

China is a major maritime nation as well as a significant player

in the aquaculture industry. China’s aquaculture sector has emerged

as one of the world’s largest and most comprehensive industries of

its kind. Currently, China accounts for over 60% of global

aquaculture production (Mang et al., 2012). With the continuous

advancement of deep learning and artificial intelligence

technologies, coupled with evolving market demands, China’s

aquaculture industry is undergoing profound transformation and

innovation. In recent years, it has witnessed substantial growth in

terms of scale, standardization, and integration of intelligent

systems (Zhang et al., 2020). As an integral part of artificial

intelligence, computer vision technology is also widely used in

intelligent breeding fields such as fish breeding (Li D. et al.,

2020). Computer vision technology facilitates optimized feed

delivery and feeding management processes (Wang, 2019). By

monitoring and analyzing various indicators such as feed waste

rate, feed utilization rate, and feed consumption rate etc., intelligent

adjustments can be made to provide scientific data support for

breeding management. This ultimately enhances breeding efficiency

and economic benefits.

However, the traditional feeding methods in aquaculture rely too

much on manual labor and are limited by the experience and work

efficiency of breeders. It is difficult to control the feeding time,

amount, and frequency accurately, and it cannot flexibly adapt to

the needs of fish, which may lead to feed waste and unstable feeding

effects. In contrast, although machine timed and quantitative feeding

has been applied in aquaculture, it mainly relies on preset fixed feed

amounts. Due to the inability to automatically adapt to the needs of

fish, it may cause problems of insufficient or excessive feed supply.

Both insufficient and excessive feed supply can have negative impacts

on fish growth, increase breeding costs, and cause pollution to the

breeding water area (Zhang et al., 2023). Therefore, feeding not only

affects the growth and health of fish, but also has a profound impact

on the economic efficiency of aquaculture. Currently, although these

two methods are simple and economical, they are no longer suitable

for the development of intelligent aquaculture.

As a result, an increasing number of researchers have started

exploring how to use computer vision technology to achieve the

goal of intelligent aquaculture, including intelligent baiting (Wang

et al., 2015). Computer vision technology, especially when

combined with deep learning models, offers new possibilities for

developing intelligent feeding strategies (Yang et al., 2021).
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Currently, computer vision technology can extract behavioral

characteristics and environmental parameters of fish schools

through the collection and analysis of image and video data, such

as the number, size, position, swimming trajectory of fish, and the

presence of bait (He et al., 2019). These advanced algorithms can

automatically optimize the amount and frequency of feeding based

on the behavioral patterns of fish and specific conditions of the

surrounding environment. Through real-time monitoring and

analysis, these models have the potential to adjust feeding plans

to meet individual needs and adapt to changing environments,

providing theoretical support and practical guidance for intelligent

baiting, thereby promoting the efficient use and management of

aquaculture resources.

At present, the application workflow of computer vision

technology in the field of intelligent bait casting is typically

illustrated in Figure 1. Video footage capturing fish under various

conditions is collected using cameras and other equipment,

followed by extraction of relevant features through appropriate

machine learning algorithms. These extracted features are then

analyzed and processed to facilitate intelligent decision-making

regarding the optimal amount and timing for bait casting.

Furthermore, in the realm of intelligent aquaculture research, it

is crucial to delve into fish feeding behavior for scientific assessment

of hunger levels and optimization of aquaculture practices. The

behavior patterns of fish school are complex and changeable,

including group behavior, domain behavior, courtship behavior,

escape behavior and feeding behavior. These behavioral patterns are

formed in the process of survival and reproduction of fish, which is

a way for them to adapt to the environment. Feeding behavior

serves as an indicator of a fish’s food requirements while also

reflecting its degree of hunger to a significant extent. Therefore, by

observing and analyzing the aggregation and dispersion patterns

exhibited by schools of fish, we can gain more efficient insights into

their feeding behavior. The density distribution within a school

accurately depicts its level of aggregation; high density distributions

indicate strong feeding behavior with intensified schooling

tendencies, necessitating increased bait quantities to meet

demand. Conversely, low density distributions signify scattered

fish with weaker feeding behaviors, requiring reduced or

suspended bait casting to avoid wastage. Scientific judgment of

hunger degree and accurate feeding can optimize the breeding

process and improve production efficiency, which is of great

significance for realizing intelligent bait casting and improving

breeding management.
FIGURE 1

Flow chart of intelligent bait casting.
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In the process of feeding, real-time analysis of fish school video

stream data plays a crucial role. It not only provides precise

information on fish distribution and density, helping breeders to

formulate more accurate feeding strategies; it also aids in

understanding the feeding status of the fish, allowing for timely

adjustments to the amount and frequency of feed. Additionally, this

analysis can promptly detect any abnormalities, ensuring breeding

safety. As a key technology for realizing intelligent feeding, real-

time fish school video stream data analysis can promote the

automation and intelligence of the feeding process, enhance

breeding efficiency, reduce labor costs, and further drive the

modernization of fishery production.

With the continuous development of information technology

and artificial intelligence, accurately grasping the dynamic

information of fish schools has become an important trend in the

production offisheries. This not only helps to improve the efficiency

of fishery production but also provides a scientific basis for

ecological protection and sustainable development. However,

existing research mainly focuses on target detection and density

estimation in static images, lacking comprehensive analysis based

on video stream data, and does not fully consider the impact of the

behavioral state of the fish school on feeding decisions.

In order to explore the intrinsic connection between the

behavioral state of the fish school during the baiting process and

feeding decisions, and to provide a scientific basis for optimizing

feeding strategies, we proposed a real-time baiting decision method

for fish school based on density distribution (FishFeed). By deeply

analyzing the number and distribution offish schools in video stream

data, further revealing the behavioral state of the fish school, a more

comprehensive and accurate assessment method is provided for real-

time feeding decisions. The main contributions are as follows:
Fron
(1) Firstly, we developed a multivariate input enhancement

module that significantly augments the input capacity of

network models by facilitating various data types, such as

real-time video streams, and providing functions for image

preprocessing and preliminary feature recognition. This

enhances the model’s adaptability to dynamic fish school

scenarios and establishes a foundation for the real-time

acquisition of fish school density distribution.

(2) Furthermore, we introduced a spatio-temporal density fusion

and visualization module, complemented by an innovative

intelligent feeding strategy based on attention mechanisms.

This module can generate innovative spatio-temporal fusion

density maps derived from the real-time acquired fish school

density distribution. Utilizing the intelligent feeding strategy

enables a quantitative analysis of the changes in fish school

density during the feeding process, thus effectively discerning

the feeding behaviors of fish school.

(3) Lastly, we constructed a fish school density analysis dataset

(DlouFishDensity), which encompasses 20 videos that

illustrate complete fish school feeding behaviors. In addition,

1000 image frames of fish school were extracted from these

videos, with over 20,000 manual annotations of fish head

positions conducted.
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The structure of this paper is organized as follows: The second

part of the article mainly introduces the related work in the field of

intelligent baiting; the third part mainly introduces our proposed

real-time analysis method of fish feeding behavior based on density

distribution; the fourth part mainly introduces the simulation

experiment results; the fifth part summarizes the full text and

makes a prospect.
2 Related works

In recent years, with the continuous development of computer

vision technology, more and more researchers have begun to

explore how to use computer vision technology to achieve

intelligent bait casting. Intelligent bait casting aims to achieve

real-time monitoring of fish behavior and status and accurate bait

casting through non-intrusive and automated high-precision image

recognition and deep learning algorithms, improve breeding

efficiency, reduce feed waste and reduce environmental pollution.

In the current intelligent bait casting system, there is a close

relationship between fish feeding activity and intelligent bait casting.

By judging the feeding activity offish, the appetite and demand offish

can be directly understood, so as to accurately control the feeding

amount, feed type and feeding time, which provides an important

basis for intelligent feeding. Zheng et al. (2021) proposed an

evaluation method of fish feeding activity intensity based on near-

infrared depth map. This method directly processed the depth data to

obtain clear fish feeding images, and judged the fish feeding activity

through the total number and change rate of target pixels, so as to

provide a scheme for real-time measurement and control. While

depth data can visually reflect fish behavior, how to translate this data

into actual feeding strategies and decisions may require more in-

depth research. Zhou et al. (2019) proposed an automatic

classification method of fish feeding intensity based on

convolutional neural Network (CNN) and machine vision. This

method used the reflection frame classification method combining

gray level co-occurrence matrix and SVM to detect the feeding

behavior of fish, and the accuracy of this method was as high as

90%. However, in practical applications, the function of real-time

monitoring and evaluation of fish feeding intensity needs to be

further optimized. Zhao Jian et al. (Zhao et al., 2016b) analyzed the

change characteristics of the surface reflection area caused by fish

feeding activities as the key factor, and proposed an evaluation

method of fish feeding activity intensity based on improved kinetic

energy model. However, there is no mention of the stability of long-

termmonitoring and the consistency of data, which is very important

in practical applications, especially in the continuous monitoring of

fish behavior. Zhao et al. (2016a) developed an improved kinetic

energy model, which quantified the feeding intensity of fish schools

by extracting the speed and rotation Angle of fish schools through

optical flow method. Chen Ming et al. (Chen et al., 2020) used the

gray level co-occurrence matrix and Markov random field model to

extract the shape and texture information of the fish school, which

was used as the input of the neural network to detect the feeding

intensity of the fish school, and the accurate recognition rate of the
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method reached 98%. Liu et al. (2014) proposed a computer vision-

based feeding activity index (CVFAI) using the moving speed of fish

schools to measure the feeding activity of fish at any given time.

Zhang et al. (2022) proposed a deep learning method combining

MobileNetV2 and SENet to identify the feeding behavior of fish

schools. The method uses feature weighting network to enhance

feature weights and suppress noise, and the accuracy rate reaches

97.76%. It performs well under laboratory conditions, but

applicability and robustness in actual farming environments are not

detailed, and real-time performance is not discussed.

At the same time, the feeding behavior of fish schools can be

indirectly analyzed by examining surface feeding images or the

remaining amount of residual bait during bait casting, thereby

facilitating the establishment of an intelligent bait casting system.

This method combines image processing and machine learning

technology to enable real-time monitoring, assessment, and

accurate determination of the feeding status and activity of fish

schools. ATOUM et al. (Atoum et al., 2015) proposed an automatic

feeding system based on residual bait detection to continuously

control the feeding process of fish in aquaculture ponds, aiming to

improve production profits by controlling feed quantity at an optimal

rate. Due to the influence of factors such as light changes, water

surface reflection, splash and so on, there are many difficulties in

improving the robustness of residual bait detection. Qiao Feng et al.

(Qiao et al., 2015) used the machine vision technology and embedded

system to construct a real-time image acquisition and processing

system to analyze the feeding law of fish, and established the

kinematic and dynamic models of the bait casting machine.

Combined with the real-time image processing results and the

feeding law of fish, an intelligent bait casting system was

constructed. Zhou et al. (2023) proposed an intelligent feeding

fuzzy control scheme for Factory recirculating aquaculture Systems

(IRAS) based on deep visual sensing. In this scheme, a target

detection model based on deep learning was introduced to capture

the residual bait and feeding frequency, and a fuzzy neural network

model was established to solve the problem of autonomous decision-

making control of feeding strategy. Hu et al. (2015) proposed to use

the machine vision method to analyze the water surface feeding

images taken in the process of baiting, establish a new calculation

model of baiting amount, and construct an intelligent baiting method

according to the feeding law. The process of extracting and analyzing

image feature parameters is mentioned in this paper, but the

complexity of data processing and the required computational

resources are not taken into account, which will bring difficulties to

the subsequent production application. Hu et al. (2021) proposed an

improved YOLO-V4 network, which, by combining DenseNet and

PANet structures, effectively improves the accuracy and detection

speed of real-time detection of uneaten feed particles in underwater

environments, helping to optimize feed management and reduce

waste, but the method’s ability to generalize under different farming

environments and conditions. The cost and complexity of

deployment in actual farming operations are not fully considered.

Mu Chunhua et al. (Mu et al., ) focused on the identification of

residual bait and feces in industrial circulating aquaculture, extracted

six features through image preprocessing and used Support Vector

Machine (SVM) algorithm with four different kernel functions and
Frontiers in Marine Science 04
improved decision tree algorithm for residual bait image recognition,

which provided a theoretical basis for the intelligent feeding system

based on residual bait concentration detection. But the size of the data

set used to train and test the algorithm is not specified in detail, if the

data set is not large enough, it may lead to insufficient generalization

ability of the algorithm in practical applications.

However, there are relatively few studies and significant

challenges in the analysis of feeding behavior based on fish

density. Existing research mostly focuses on target detection or

density estimation in static images, lacking in-depth discussion of

video stream data and ignoring the impact of fish behavior states on

feeding decisions.

Therefore, we proposed a real-time analysis method for fish

school feeding behavior based on density distribution (FishFeed),

which can efficiently quantify the density distribution offish schools

during feeding and make baiting decisions accordingly.The

proposed method consists of three parts: multivariate input

enhancement module, fish behavior understanding and density

estimation module, and spatio-temporal density fusion and

visualization module. In order to facilitate the use of fish density

for feature extraction, training and prediction, we collate and label

the fish Density dataset (DlouFishDensity), which contains a total

of 1000 pictures of 20 fish videos and manually annotate them.
3 Materials and methods

With the advancement of research in intelligent farming, it has

become evident that computer vision technology holds substantial

promise for fish density monitoring and feeding behavior analysis.

By leveraging computer vision techniques, we can gain more insight

into school density and feeding behavior. For instance, a high-

density distribution typically signifies that the fish school is highly

clustered or gathering in a specific area, which may suggest their

robust feeding behavior. Conversely, a low-density distribution

implies that the fish are dispersed, possibly indicating weaker

feeding behavior.

This information is of great significance to farmers, as it enables

them to better judge the hunger level of fish schools, understand

their growth status, prevent diseases, and optimize breeding

processes to improve production efficiency. However, realizing

this task presents numerous challenges, with the main issues being:
(1) Issue1: Traditional network models have limitations when

dealing with rapidly changing or dynamically complex

environments, especially when handling dynamic fish

school scenarios. These scenarios involve many variables

and uncertainties, such as the speed, direction, and density

changes of the fish schools, which make it difficult for

traditional models to accurately capture and analyze.

(2) Issue2: The feeding behavior states of a fish school are

influenced by multiple factors, including the density of the

fish school, environment, physiological needs, and group

interactions. It is a significant challenge to accurately

analyze these behavior states through the estimation of

fish school density and closely link them with feeding
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decisions. Therefore, how to construct a feeding decision

model that comprehensively considers these factors to

achieve more precise feeding is a topic worthy of our in-

depth research and exploration.
In light of these challenges, we proposed a novel method for

real-time analysis of fish feeding behavior based on density

distribution(FishFeed), aiming to address the increased accuracy

and real-time requirements in intelligent feeding decision-making

problems. As illustrated in Figure 2, FishFeed comprises three

components: a multivariate input enhancement module, a fish

behavior understanding and density estimation module, and a

spatio-temporal density fusion and visualization module. Among

them, the multi-input enhancement module integrates real-time

video stream analysis, image preprocessing, and feature recognition

functions, breaking through the limitations of traditional models

when dealing with a single data type, thereby enhancing the

adaptability and robustness of the model when dealing with

dynamic fish school scenarios. In addition, the spatio-temporal

density fusion module combined with the intelligent baiting

strategy based on the attention mechanism not only improves the

monitoring and analysis accuracy of the fish feeding behavior but

also effectively quantifies the aggregation and dispersion behavior of

the fish school, providing strong support for efficient baiting

decisions. The process of the FishFeed method is described below.

The processed dataset is initially fed into the density estimation

algorithm for fish density estimation training. After sufficient

iterations, the optimal network weight file obtained through

training is obtained. Subsequently, the input images, videos, or

video streams are preprocessed through a multi-input enhancement

module. The fish school behavior understanding and density

estimation module is used to estimate the density of the test set,

generating a density map. Through the spatiotemporal density fusion

and visualization module, a three-dimensional density superposition

of the estimated density values and spatiotemporal fusion density

map are generated, visualized through heatmaps and video. At the

same time, the changes in the density distribution of the fish school

during this period are quantitatively analyzed for baiting decisions.
3.1 Multivariate input
enhancement module

With the wide application of deep learning in various fields, the

requirements for network models are getting higher and higher. To
tiers in Marine Science 05
cater to the need for real-time fish density estimation, we introduced

a novel multivariate input enhancement module. This module is

designed to accommodate multiple data types, incorporate image

preprocessing and initial feature recognition functionalities, and

endows the network model with excellent scalability and potent

input data processing capabilities. It can process and analyze all

kinds of data in real time, which provides strong support for real-time

monitoring of dynamic scenes such as fish density.

The input module of traditional network models typically accepts a

single data type. However, the multi-input enhancement module not

only accepts multiple data types, including still images, video clips, and

real-time video streams, but also provides image preprocessing and

preliminary feature recognition functions. This design makes the

network model flexible in dealing with different data sources, thus

extending its applicability in dynamic scenarios and promoting the

further development of the field of intelligent bait casting.

This multivariate input augmentation module is shown in

Figure 3 and consists of the following key steps:
(1) Data input management: The module receives various types

of input data, including still images, video clips, and live

video streams. Since the format and standard of the input

data may vary, proper image sequence management is

required to ensure uniformity in data entry.

(2) Image preprocessing: To standardize the input data, the

preprocessing steps include image resizing, pixel value

normalization, color space conversion, etc.

(3) Preliminary feature extraction: Before passing the input

data to the density estimation module, this module initially

extracts the key features of the fish school from the original

image. The aim is to optimize and prepare the feature data

to better adapt to the input requirements of the

network model.
3.2 Fish behavior understanding and
density estimation module

In aquaculture and fishery management, it is crucial to grasp the

distribution of fish density accurately and in real time for optimizing

breeding strategies and management decisions. However, due to the

complex and variable underwater environment and the diversity of

fish behaviors, this task is extremely challenging. To address this, we
FIGURE 2

Diagram of the FishFeed network structure.
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proposed a module for understanding fish behavior and estimating

density, which consists of three core components: a feature extraction

network, loss computation, and density map generation. Firstly, we

employ the VGG19 Variant as the feature extraction network. By

adjusting the network structure and parameter configuration, it

enhances its adaptability to underwater environments and fish

images. Secondly, we introduce DM-Count Loss as the loss

function. This loss function combines the advantages of density

map estimation and object counting, by considering both the

difference between predicted and actual density maps, and the

error between predicted and actual counts, thus improving the

model’s robustness and accuracy. Finally, we utilize an adaptive

Gaussian kernel density map generation method. This method

dynamically adjusts the parameters of the Gaussian kernel

according to the characteristics and density distribution of the fish

images to produce high-quality density maps.

Through the organic integration of these three parts, we have

constructed a complete and efficient module for understanding fish

behavior and estimating density. By sending fish images processed

by the multi-input enhancement module into the well-trained

density estimation module, we can quickly obtain the distribution
Frontiers in Marine Science 06
of fish density. The structure of the fish school behavior

understanding and density estimation module is shown in Figure 4.

Firstly, the VGG19 Variant network is used to extract features

from fish school images, obtaining a rich feature representation.

Then, these features are inputted into the DM-Count loss function to

calculate the loss and perform backpropagation, optimizing the

model’s parameters. During the prediction process, density maps

are generated through an adaptive Gaussian kernel density map

generation method to supervise the training process of the model.

Finally, after multiple iterations of training, a model capable of real-

time, accurate estimation of fish school density distribution

is obtained.

3.2.1 Feature extraction network: VGG19 variant
To extract the features of fish school images more effectively, we

adopted an improved VGG19 Variant network. This network has

been optimized based on the original architecture of VGG19 to

adapt to the underwater environment and the characteristics of fish

school images. By reducing the depth of the neural network layers,

adjusting the number of convolutional layers, and introducing up-

sampling operations, the network’s feature extraction capability has
FIGURE 4

Fish behavior understanding and density estimation module structure diagram.
FIGURE 3

Multivariate input enhancement module network structure diagram.
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been enhanced, allowing it to better capture the details and

contextual information of fish school images. The specific

network structure is shown in Figure 5, and the detailed network

structure is shown in Table 1.

Due to the VGG19 model’s characteristics such as deep

architecture, small convolution kernel size, transfer learning, and

wide network structure, it performs exceptionally well in traditional

image recognition tasks. These features also provide potential

advantages for its application in this module. It can effectively

capture local details and spatial relationship information of fish

schools, thereby more accurately estimating the density distribution

of fish schools. First, the input image is passed through the VGG19

Variant network to extract features, which only contains 16

convolutional layers and 4 pooling layers. Then, since the feature

map extracted by the convolutional layer may be relatively small, in

order to increase the resolution of the density map, an up-sampling

operation is applied here. The up-sampled feature map will pass

through a sequence module containing 2 convolutional layers,

namely the density regression layer, which will further extract and

learn the fish school density features. The feature map processed by

the density regression layer will be passed to the density estimation

layer, which will further process the feature map.

The network model chosen to be used in this paper, VGG19, is a

classic convolutional neural network model, which is a variant of

VGGNet. The reason why our fish density estimation algorithm

finally chose to use the VGG19 model for the following reasons:
Fron
(1) Deep architecture: VGG19 has a deep network structure,

including 16 convolutional layers and 3 fully connected

layers, which makes the model have stronger learning

ability and expression ability. This enables VGG19 to

extract and learn the fish body features in complex fish

images more accurately, and finally improve the accuracy of

fish density estimation.
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(2) Small-size convolution kernel: VGG19 uses a small-size

convolution kernel (3×3), which can greatly reduce the

number of parameters, increase the nonlinear ability of the

model, and better retain the detail information in the fish

image. By stacking multiple small-size convolutional layers,

abstract features are gradually extracted to achieve better

fish density estimation performance.

(3) Transfer learning: Since VGGNet is pre-trained on large-scale

image classification tasks, VGG19 learns rich image feature

representations. Through transfer learning, we can use the

feature extraction ability of VGG19 trained on large-scale

datasets, and then apply it to the fish density estimation

algorithm. In this way, data and computing resources can be

saved, and it can help to improve the accuracy and

generalization ability of fish density estimation.

(4) Wide network structure: VGG19 has a large model

capacity, which can better adapt to complex fish density

estimation tasks. The width of the network allows the

model to learn more features and relationships, enabling

it to better understand the distribution of fish in the image

for accurate density estimation.
But the VGG19 model also has some problems, such as

consuming more computing resources and using more parameters.

Among them, the main reason is that the VGG19 model contains

three fully connected layers, and the vast majority of parameters in

these fully connected layers are from the first fully connected layer,

which leads to more memory usage. However, in this paper, we do

not need to classify or regression the extracted fish school features,

but to generate a predicted density value map based on the extracted

features to estimate the fish school density in the image. Therefore,

there is no need to rely on the complex fully connected layer structure

in our fish school density estimation algorithm. The VGG19 Variant

we used in the fish density estimation algorithm is compared with the
FIGURE 5

VGG19 Variant network structure diagram.
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original VGG19 model, and the comparison results are shown in

Table 2. VGG19 consists of a 19-layer neural network with 16

convolutional layers and 3 fully connected layers, while the VGG19

Variant contains only the original 16 convolutional layers and the

new 3 convolutional layers.

Compared with the traditional VGG19 model, the VGG19

Variant proposed in this paper is optimized for real-time

requirements, and the heavy fully connected layer in the VGG19

model is abandoned, the number of parameters is significantly

reduced, and the extra calculation and memory overhead are

avoided, making our algorithm more lightweight and efficient.

3.2.2 Loss calculation: DM-count loss
To accurately calculate the loss and guide the training of the

model, we adopted the DM-Count loss function (Wang et al., 2020).

This loss function combines information from two aspects: density

map estimation and target counting. By comprehensively

considering the difference between the predicted density map and

the actual density map, as well as the error between the predicted

count and the actual count, it achieves a comprehensive

optimization of the model’s performance. The introduction of

DM-Count Loss effectively improves the model’s robustness and

generalization ability, enabling it to better adapt to different

underwater environments and fish behaviors.

In the existing fish density estimation methods, the Euclidean

distance loss function is often used to estimate the difference

between the predicted density map and the true value, and the

loss function is defined as follows:

L(q) =
1
2No

N

i=1
‖ F(xi, q) − Fi ‖22 (1)

N is the number of training images, xi is the input image in the

network, q represents the network parameters, F (xi,q) represents
the predicted density map generated by the network learning, Fi
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represents the true density map of the label, and L represents the

difference loss between the two.

Compared to using the Euclidean distance loss function,

adopting the DM-Count loss function can provide a more

stringent generalization error range and a more reasonable

calculation method, thus showing better performance in density

estimation tasks. The Euclidean loss function is more sensitive to
TABLE 1 VGG19 Variant network structure table.

Layer_name Input_size Kernel_size Padding Stride

conv1_1, 2 224×224×64 3×3 1

maxpool 224×224×64 2×2 2

conv2_1, 2 112×112×128 3×3 1

maxpool 112×112×128 2×2 2

conv3_1, 2, 3, 4 56×56×256 3×3 1

maxpool 56×56×256 2×2 2

conv4_1, 2, 3, 4 28×28×512 3×3 1

maxpool 28×28×512 2×2 2

conv5_1, 2, 3, 4 14×14×512 3×3 1

conv6_1 14×14×256 3×3 1

conv6_2 14×14×128 3×3 1

conv7 14×14×1 1×1 1
TABLE 2 The VGG19 Variant and the original VGG19 comparison table.

VGG19 Variant VGG19

16 + 3 weight layers 19 weight layers

Input(224*224 RGB image) Input(224*224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64

maxpool maxpool

conv3-128 conv3-128 conv3-128 conv3-128

maxpool maxpool

conv3-256 conv3-256 conv3-256
conv3-256

conv3-256 conv3-256 conv3-256
conv3-256

maxpool maxpool

conv3-512 conv3-512 conv3-512
conv3-512

conv3-512 conv3-512 conv3-512
conv3-512

maxpool maxpool

conv3-512 conv3-512 conv3-512
conv3-512

conv3-512 conv3-512 conv3-512
conv3-512

conv3-256 maxpool

conv3-128 FC-4096

conv1-128 FC-4096

FC-4096

soft-max
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outliers, and the square operation will amplify the impact of

outliers, while the DM-Count loss function has better

performance and stability, with less impact on outliers, because it

does not square the error. This means that our model has higher

reliability and accuracy when dealing with new data.

Let a ∈ Rn
+ denote the vectorized binary graph of point labels

and â ∈ Rn
+ denote the vectorized predictive density map returned

by the neural network. By treating a and â as unnormalized density

functions, we represent the DM-Count loss function in terms of

three terms: the count loss ‘C , the OT loss ‘OT , and the total

variation (TV) loss ‘TV . The first term measures the difference

between the totals, while the last two measures the difference

between the normalized density function distributions. The total

loss function is a combination of count loss, OT loss and TV loss,

and the formula is defined as follows:

‘(a, â ) = ‘C(a, â ) + l1‘OT (a, â ) + l2 ∥ a ∥1 ‘TV (a, â ) (2)

Where l1 and l2 are tunable hyperparameters for OT and TV

losses. To ensure that the TV loss has the same proportion as the

count loss, we multiply this loss term by the total count.

Given H training images IHf gHH=1 and corresponding dot

labeled maps aHf gHH=1, a deep neural network f for density map

estimation is learned by minimization as follows:

L(f ) =
1
H o

H

H=1
‘ aH , f (IH)ð Þ (3)

(1)Count loss   ‘C : Let ∥ : ∥1   denote the L1 norm of the vector,

so   ∥ a ∥1, ∥ â ∥1 are the ground truth and predicted counts,

respectively, and the counting loss is defined as the absolute

difference between the two:

‘C(a, â ) = ∥ a ∥1 − ∥ â ∥1j j (4)

(2)OT loss   ‘OT : a   and â   are both non-canonical density

functions. But you can convert them into probability density

functions by dividing them by their respective totals. We define

the OT loss as follows:

‘OT(a, a
⌢) = OT

a
∥ a ∥1

,
a⌢

∥ a⌢ ∥1

� �
= a∗,

a
∥ a ∥1

� �
+ b∗,

a⌢

∥ a⌢ ∥1

� �
(5)

Where  a∗  and   b∗   are solutions to the OT cost (Villani, 2008).

(3)Total variation (TV) loss   ‘TV : The OT loss will approximate

the high-density regions of the fish school well, but the

approximation may be poor for low density regions. To solve this

problem, we additionally use the total variation loss, defined as:

‘TV(a, a
⌢) = ∥

a
∥ a ∥1

−
â

∥ â ∥1
∥TV =

1
2
∥

a
∥ a ∥1

−
â

∥ â ∥1
∥1 (6)
3.2.3 Density map generation: adaptive
gaussian algorithm

Density maps are a powerful visualization tool that is widely

used in fishery fish stock studies to assess the abundance,

distribution range, and so on of fish stocks. In this paper, the

density map is used to visually show the distribution of fish density.

Through the density map, we can understand the aggregation
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degree, density relationship and dynamic change of fish schools in

space, and then analyze their behavioral characteristics and

ecological habits.

The physical meaning of the density map is to indicate the

density of the fish school in a specific spatial extent by the intensity

of color or shadow. In the density map, a stronger shadow indicates

a higher density of fish, and vice versa indicates a lower density of

fish. Specifically, a high-density area means that there are more fish

gathered together in the area, while a low-density area indicates that

the fish school is more dispersed within the area. Figure 6 illustrates

the density of fish schools.

In order to achieve accurate feeding, we need to obtain the

density distribution of fish in the feeding process in real time and

accurately, and analyze and judge the feeding behavior based on this

information. To this end, the number of fish schools in the density

map can be counted to determine the prediction result. Therefore,

the quality of the density map has an important impact on the

accuracy of the prediction results.

During the density map generation phase, we employed an

adaptive Gaussian kernel density estimation method. This approach

dynamically adjusts the parameters of the Gaussian kernel based on

the characteristics and density distribution of the fish school images

to generate high-quality density maps. By adaptively selecting the

appropriate size and weight of the Gaussian kernel, we can

effectively reduce the impact of noise and artifacts while

maintaining spatial resolution in the density map. This results in

more accurate, smoother, and easier-to-interpret density maps,

providing strong support for subsequent understanding of fish

behavior and density estimation.

Firstly, the position of each fish head in the picture is marked,

and the size of the fish head is calculated according to the known

position of each fish head and the distance between each other.

Then, by applying the geometrically adaptive Gaussian kernel

algorithm, we transform the marked points into a patch of the

corresponding fish head size and ensure that the probability sum of

this region is one. Finally, we can obtain an accurate fish school

density map, where the sum of regional probabilities of all fish

heads in the whole image is equal to the number of fish schools, and

the density map generation process is shown in Figure 7.

Convert the labeled fish head image into a density map by (7):

H(x) =o
N

i=1
d (x − xi) (7)

Where d is the impact function, xi represents the position of the

pixel where the fish head is located, d (x − xi) represents the impact

response function of the fish head position in the image, and N is

the total number of fish heads in the image.

Since the problem of near size and far size appears in almost

every picture of the fish school, in order to make the density map

can truly reflect the actual distribution of the fish school (the size of

the fish in different positions is different). The density map based on

adaptive Gaussian kernel is adopted, and the formula is as follows:

F(x) =o
N

i=1
d (x − xi)∗Gs i(x),with  s i = bd

_ i
(8)
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Among them:

d
_ i
=

1
mo

m
j=1d

i
  j (9)

This formula is used to calculate the average distance between

the m nearest fish heads to the fish head of xi and the fish head. is

approximately equal to the fish head size when the fish density is

relatively large. To calculate the density of the fish around a pixel,

we multiply d (x − xi) with Gaussian kernel Gs i(x), in our

experiments, b=0.3 works best.
3.3 Spatio-temporal density fusion and
visualization module

With the ongoing advancements in artificial intelligence

technology, intelligent feeding systems have gained widespread

adoption in the aquaculture industry. However, effectively

monitoring fish aggregation and dispersion to achieve precise

feeding and optimize breeding conditions remains an urgent

challenge. To address this issue, we proposed a spatio-temporal

density fusion and visualization module and an attention-

mechanism-based intelligent bait casting strategy for accurate

assessment of fish aggregation and dispersion. The proposed

spatiotemporal density fusion and visualization module enhances

the original output, facilitating informed feeding decisions. Unlike

the original network model, which can only generate a density map

corresponding to a single image at a specific time point, our

approach aims to create a spatio-temporal fusion density map

that clearly illustrates the density distribution of fish over time. By
Frontiers in Marine Science 10
leveraging the attention-mechanism-based intelligent feeding

strategy, more accurate feeding decisions can be made.

3.3.1 Spatio-temporal density fusion
and visualization

Specifically, we propose the following two key steps to implement

this spatio-temporal density fusion and visualization module:

Firstly, we adopt the method of 3D density superposition

calculation to integrate the changes of fish density in a period of

time to achieve spatio-temporal density fusion. Since each density

map represents the fish density distribution at a specific time point,

after obtaining the density maps in a certain period of time, we

calculate the superposition of these density maps in the time

dimension t and the two-dimensional spatial dimension h, w, that

is, the fish density values at the corresponding positions on each

density map are accumulated. The spatio-temporal density fusion

process is shown in Figure 8. In this way, we obtain a density map

that integrates the information about the density variation of the

fish school over a period of time, that is, the spatio-temporal fusion

density map.

Secondly, spatio-temporal fusion density map is visualized,

where heat maps and videos are common methods:
(1) Heat map: In each time period, we convert the pixel value of

the density map into the corresponding color intensity, and

use the chromatogram of the heat map for visualization. By

observing the color distribution and morphological

characteristics in the heat map, the color information in

the map can intuitively represent the density level and

morphological characteristics of different regions, such as
Partial Annotation Gaussian Kernel AlgorithmAnnotation TransformationImage Annotation Generating Density Maps

FIGURE 7

The density generation process.
A

B

FIGURE 6

Examples of fish school density maps. (A) Original images, (B) density maps.
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Fron
the degree of aggregation, the degree of diffusion and the

distribution of large and small regions. It can further reflect

the aggregation behavior and changing trend of fish school.

Figure 9 shows an example of visual heat map, where (A)

and (B) each shows one of the original images of fish school

pictures in a period of time, (C) and (D) each show the

corresponding synthesized spatio-temporal fusion density

map for fish school images over a period of time. As shown

in Figure 9C, D, the lighter colored areas indicate highly

dense areas, while the other areas indicate areas with low

density or even no fish. This visualization method can help

us intuitively analyze the density distribution of fish in each

time period.

(2) Video: We concatenate the superimposed density maps of

multiple time periods in chronological order to form a

continuously playing dynamic heat map video. By

observing this video, we can intuitively observe the

distribution and dynamic change trend of fish density

in a longer period of time, and this dynamic heat

map display way can provide more detailed and

comprehensive information.
By introducing this spatio-temporal density fusion and

visualization module, we can intuitively visualize the density

changes of fish schools over a period of time. The innovation of

this module enables our network model to better deal with time

series information, analyze the dynamic behavior changes of fish

schools more comprehensively, and provide a more comprehensive

perspective for the study of fish behavior and ecology.

3.3.2 Intelligent feeding strategy based on
attention mechanism

In this paper, we proposed an attention-mechanism based

intelligent bait casting strategy. The core task is to analyze and

calculate fish density by utilizing the concept of attention

mechanism. This approach aims to accurately determine the

change in fish density in each area, assess its significance within
tiers in Marine Science 11
the entire image, and subsequently accurately judge the degree of

fish aggregation and dispersion. The rationale behind employing

the attention mechanism lies in the fact that areas with higher fish

numbers on the entire fish density map typically exhibit more

pronounced density fluctuations, thereby providing more valuable

information. Consequently, these areas are deemed more important

and warrant greater attention.

The analysis process of this strategy relies upon the spatio-

temporal density fusion and visualization module introduced above.

After generating a spatio-temporal fusion density map, this module

combines the concepts of attention mechanism in deep learning to

quantitatively analyze the changes in density distribution, in order

to judge the degree of fish gathering and further infer whether they

are in a state of hunger. Specifically, we can conclude that when the

fish density distribution quickly shows a gathering trend after a

single attempt to bait, the fish is in a state of hunger, because the fish

tend to gather together in search of food. This analysis based on the

changes in density distribution can effectively help us judge the

degree of hunger of fish and take corresponding feeding measures

in time.

In order to combine the time factor and Density information to

accurately measure the change trend and degree of fish density

distribution, we introduce a new formula to represent the

contribution of total difference of fish density change(TD), which

is defined as follows:

TD = o
N

k=1

(Fi − Fi−1) • Pki (10)

WhereN represents the number of regions divided by the density

map,   Pki represents the proportion of the fish density value of the k

region in the whole map after the division of the i density map, that is,

the contribution degree of each region to the overall density, and Fi  

represents the estimated fish density in the kth region.

Through a series of calculations, analysis and comparisons, we

can obtain a numerical index to quantitatively assess the strength of

the trend and degree of change in the density distribution of fish

schools. This new formula provides us with an objective and
FIGURE 8

Process of spatio-temporal density fusion.
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quantifiable tool to evaluate the changes in fish density, thus

providing a scientific and accurate basis for intelligent bait casting

strategy. The specific methods are as follows:
Fron
(1) Density map division: The spatiotemporal fusion density

map of the input is evenly divided into four, six, or nine

regions. These areas are rectangular areas of equal size,

ensuring that the distribution of fish stocks within each area

is fully considered, and the number of partitions depends

on the number of fish stocks contained in the dataset. The

two data sets used in this paper are divided into four

regions, as shown in Figure 10B.

(2) Area density contribution evaluation: for each division area,

calculating the fish density values Fi and fish density values

accounted for the proportion of the whole picture Pk, in

order to realize each regional contribution to the density of

the whole evaluation.
tiers in Marine Science 12
(3) Figure before and after difference calculation: to deal with

continuous time point of the fish density diagram, calculate

the regional density changes in the value. This involves

subtracting the value of each corresponding area in the

previous density map from the value in the current density

map, to obtain the difference ADk. For each region, the

formula for calculating the density change value is as follows:

ADk = Fi − Fi−1 (11)

Among them, the ADk represents the difference of fish

density change in the kth region.

(4) Differential contribution calculation: the difference of each

area ADk respectively multiplied by the proportion of the

region Pk, differential contribution of each region  Dk

Dk = ADk • Pk (12)
A B

FIGURE 10

An Example Of Density Map Partitioning. (A) One of the original images, (B) density map.
A B

DC

FIGURE 9

Examples of visual heat maps. (A, B) Original images, (C, D) density maps.
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(5) Total differential contribution calculation: The fish density

change difference contribution Dk calculated from all

regions is accumulated to obtain the total fish density

change difference contribution TD of the whole density

map region. Where N denotes the number of regions

divided by the density map.

TD = o
N

k=1

Dk (13)

(6) Total Difference Contribution to fish density change (TD)

analysis: Based on the calculated TD value, the analysis is

performed to determine whether the fish are gathering or

dispersing. If TD is greater than zero, it is judged as fish

gathering. On the contrary, if TD is less than or equal to

zero, the fish is judged to be dispersed. Finally, the

judgment result of fish gathering or dispersing is output.
4 Experiments

4.1 Experimental dataset

In this paper, we used two datasets. One is the fish density analysis

dataset (DlouFishDensity), which contains 20 side-shot videos with

complete fish feeding behavior, as shown in Figure 11. Another is a

data video clip taken by Cui (Cui et al., 2022), which contains videos all

taken above the water surface, as shown in Figure 12.

To accurately train and predict the fish school density analysis

model, first, we filter all the collected videos. The videos that meet

our requirements have a resolution of 1920*1080 and a duration

between 30s-60s. Second, we manually labeled the locations of fish

heads on 900 image frames in DlouFishDensity and 300 image
tiers in Marine Science 13
frames in the video of Cui (Cui et al., 2022) dataset, and finally

labeled the locations of more than 30000 fish heads. The labeling

tool uses MATLAB to establish a data_marker labeling applet to

label the fish head of each picture in the data set. The fish with

occluded fish heads in the picture will not be labeled, and the

corresponding at file will be generated for the marked picture,

where the total number of markers in the image is used as the

ground truth value of the whole picture.
4.1.1 DlouFishDensity dataset
Due to the lack of public fish density datasets at this stage, we

collected and produced a dataset specifically for fish density analysis

(DlouFishDensity). To obtain authentic behavioral data offish in an

aquaculture environment, we used mobile phones and high-

definition video equipment for on-site recording, capturing 20

videos of fish school feeding behavior.

The video was recorded from the experimental fish breeding

pool of Dalian Ocean University, and the simple schematic diagram

of the collection equipment is shown in Figure 13. The size of the

breeding pool is 3 meters * 2 meters, the water depth is 1.5 meters,

the distance between the lamp and the pool is 1.5 meters, and the

camera is located on one side of the pool, used to shoot the

underwater fish school feeding behavior video from the side.

Through this dataset, we aim to provide an accurate and diverse

resource for training and evaluating models for the fish farming

industry and related research. The dataset contains 20 videos with

complete school feeding behavior and 1000 manually annotated

image frames, and part of the DlouFishDensity dataset pictures are

shown in Figure 11.

We divided the dataset into a training set and a test set at a ratio

of 9:1, with 18 videos for training and 2 videos for testing. From the

18 videos, we extracted 1000 frames of fish school images for manual
A B

D E F

C

FIGURE 11

Partial picture of DlouFishDensity dataset.
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annotation, which reflect the density distribution of the fish school at

different times. From the two videos, 274 and 235 image frames were

extracted as Test Set A and B groups respectively.

4.1.2 The Cui (Cui et al., 2022) dataset
We employed the data video clips taken by Cui et al. (2022).

Unlike the underwater fish school activity videos taken from the

side in DlouFishDensity, the videos included in this data set are all

taken above the water surface. They breed the experimental subjects

in a farm located in Yantai City, Shandong Province, China. The

breeding pool is a circular pool with a diameter of 3 meters and a

depth of 0.75 meters. The simple schematic diagram of the
Frontiers in Marine Science 14
collection equipment is shown in Figure 14. The video of fish

feeding is captured from above the water surface by a camera and

transmitted to the computer for processing.

Some of the dataset images are shown in Figure 12. The figures

show the scattered state of the fish school in (A) and (D), while (B)

and (C) will be evaluated as fish school gatherings. The video of fish

activity taken above the water surface has a wider field of view and

can capture images of fish activity from various angles. The

combination of video data taken above the water surface and

those taken from the side can enhance our dataset, provide a

better understanding of the spatial distribution and density

changes of fish schools, improve the diversity and reliability of

experiments, and offer more accurate and comprehensive results for

real-time analysis of fish density changes. During this experiment,

these video clips were reorganized and spliced reasonably, and data

were labeled for testing.
4.2 Implementation and training detail

The hardware configuration used in the experiment is mainly

based on the CPU of i7 9700 and the GPU of NVIDIA RTX 3090 for

training, and the network design is based on Pytorch version 1.7.0

and CUDA version 11.0.

The entire network is initialized to a Gaussian distribution with

mean 0 and standard deviation 0.1 for the weights. Compared with

the stochastic gradient descent optimization algorithm, the Adam

optimization algorithm has the advantages of less resources and fast

model convergence. Therefore, the Adam algorithm is used to

optimize the network. The initial learning rate of the model is

0.00001, the learning rate decay is multiplied by 0.9 every 5 rounds,

the number of samples in each batch is 1, and the number of
FIGURE 13

The simple schematic diagram of the collection equipment of
DlouFishDensity dataset.
A B

DC

FIGURE 12

Part of the data set picture of Cui (Cui et al., 2022). (A) Scattered, (B) gather, (C) gather, (D) scattered.
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training rounds is 1000. The network automatically saves the best

algorithm model weight parameters of the last five times.
4.3 Performance comparison between
different algorithms and
backbone networks

Fish school density estimation is one of the key tasks in our

proposed FishFeed method. With the rapid development of

computer vision and deep learning technologies, an increasing

number of algorithms have been proposed to solve the problem

of fish school density estimation. However, different algorithms and

backbone networks vary in their performance in terms offish school

image feature extraction and density estimation. To verify the

overall performance of our proposed algorithm in fish school

density estimation, as well as the effectiveness of our proposed

VGG19 Variant in fish school image feature extraction, we designed

a series of experiments and compared their performance with that

of already published algorithms.

All algorithms are trained on the DlouFishDensity dataset, and

each algorithm has undergone multiple trainings and parameter

tuning. In this process, we strictly keep the other parameters

unchanged and only observe the performance of the two methods

compared.In test sets A and B, to ensure the stability and reliability

of the results, we chose the average value of five runs as the final

basis for evaluation.

4.3.1 Evaluation criteria
In these experiments, we employed four evaluation metrics to

comprehensively measure the performance of the algorithm. Mean

Absolute Error (MAE) and Mean Squared Error (MSE) are two

widely used indicators in density estimation problems. They

effectively quantify the difference between the model’s predicted

results and the actual values, thereby helping us judge the accuracy

of model predictions. At the same time, we also considered the

prediction time and the number of predicted density maps

generated per second. These two metrics respectively reflect the

computational efficiency of the algorithm and the rate of generating

results, which are of significant importance for real-time

requirements in practical applications.
15
The Mean Absolute Error (MAE) and Mean Squared Error

(MSE) can provide important information about the accuracy and

robustness of an algorithm. MAE is used to quantify the mean

absolute difference between the predicted and true values. A lower

MAE value signifies that the algorithm’s prediction is closer to the

true value, indicating higher accuracy. MSE measures the mean

squared error between the predicted and true values, reflecting the

degree of data variation. A smaller MSE value suggests better

algorithm robustness, as it maintains a low prediction error in the

face of data changes. The definitions are as follows:

MAE =
1
No

N

1
jZi−Z

⌢
ij (14)

MSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

1
(Zi − Z

⌢
i)2

s
(15)

Where N is the number of images, Zi is the number of marked

real image fish schools, and it is the estimated number of fish

schools corresponding to the ith image.
4.3.2 Backbone network comparison experiment
To verify the effectiveness of our proposed VGG19 Variant in

extracting features from fish school images, we designed exhaustive

experiments. The experiments selected three representative density

estimation feature extraction networks for comparative analysis.

These include the CSRNet (Li et al., 2018), which is based on an

improved VGG16 for feature extraction, and the FishCount (Li J.

et al., 2020) model, which is based on an improved MCNN for

feature extraction. By comparing the performance of these

networks, we can deeply assess the advantages of the VGG19

Variant in feature extraction.

In the experiments, we only replaced the backbone network

without changing other network structures and adjusted parameters

individually for training. Through quantitative analysis of the

prediction errors after training, we revealed the unique

advantages of the VGG19 Variant in extracting features from fish

school images. Table 3 shows the prediction results in the test set.

In this experiment, the VGG19 Variant we adopted demonstrated

significant performance advantages in extracting features from fish

school images. Quantitative analysis shows that the model has achieved

noticeable improvements in key performance indicators such as Mean

Absolute Error (MAE), Mean Squared Error (MSE), and prediction

processing time. Specifically, Table 3 shows the evaluation results of our

model on test sets A and B, where the prediction speed surpassed other

models for comparison. In test set A, our model recorded the lowest

MAE and MSE, and similarly achieved the smallest error in test set B.

Through comparative analysis with other models, we found that

the VGG19 Variant can more effectively capture key information

when extracting features from fish school images, thereby

significantly improving the accuracy of density estimation. We

believe that this performance improvement is mainly due to the

improvements in network architecture design, parameter

optimization, and feature extraction and fusion mechanisms of

the VGG19 Variant. Taking into account all evaluation indicators,
FIGURE 14

The simple schematic diagram of the collection equipment of
Cui dataset.
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the VGG19 Variant has been proven to be the optimal model

structure choice for this research task.

4.3.3 Algorithm comparison experiment
In order to verify the overall performance of the proposed

algorithm in the estimation of fish density, we designed a series of

experiments and compared its performance with that of published

algorithms. MCNN (Gkioxari et al., 2016) comes from a population

counting study.

It is particularly important to emphasize that the results

generated in this experiment are based on the method of

generating a single density map from a single input image. This

means that for each input image, the algorithm independently

generates a corresponding density map as output. This approach

helps us to observe and analyze the performance of the algorithm

more meticulously when dealing with individual samples and also

provides more specific and targeted guidance for subsequent

algorithm optimization.

The results shown in Table 4 demonstrate the predictive

performance of different algorithm models on the DlouFishDensity

dataset. These results not only provide an objective basis for us to

compare the strengths and weaknesses of different algorithms but

also offer valuable reference information for subsequent research

and applications.

The experimental results show that the proposed algorithm is

better than the MCNN algorithm in the two indexes of mean

absolute error (MAE) and mean square error (MSE). Specifically,

compared with MCNN algorithm, our algorithm improves MAE by

1.63 and 1.35, and MSE by 1.92 and 1.58, respectively. These data

clearly demonstrate the excellent performance and higher

prediction accuracy of our algorithm in fish density estimation.

Furthermore, compared to the MCNN algorithm, our

algorithm reduces the average prediction time by 2.56 seconds

and produces an average of 4.44 more predictive density maps per
Frontiers in Marine Science 16
second. This enhancement is attributed to the incorporation of a

lightweight VGG19 deformation network and the optimized

utilization of a 16-layer convolutional neural network for feature

extraction. Consequently, the model can expediently comprehend

the features of fish schools, thereby better fulfilling our

requirements for real-time density analysis of fish feeding behavior.

The reduction in prediction time is pivotal for real-time analysis

tasks, especially in practical applications where rapid and precise

predictions are essential due to the need for immediate responses

and decisions. A prolonged prediction time can impair the real-time

performance of the analysis, potentially resulting in missed

opportunities for critical analysis. Consequently, the proposed

algorithm’s ability to reduce prediction time is a significant

advantage, enhancing both the efficiency and suitability of the

model for real-time analysis tasks. This further underscore the

practicability and advancement of the proposed algorithm in

analyzing feeding behavior based on fish density distribution.

Through the analysis of experimental accuracy and real-time

performance, our study demonstrates, through an analysis of

experimental outcomes, that the algorithm developed in this

research is capable of effectively capturing the characteristics of

fish school behavior, thereby reducing density estimation errors and

enhancing the overall performance of the model. Comparatively,

when juxtaposed against the MCNN algorithm, our approach

exhibits marked superiority in terms of Mean Absolute Error

(MAE), Mean Squared Error (MSE), and prediction time. These

findings not only substantiate the efficacy of our proposed

algorithm in fish density estimation but also pave the way for

further refinement and practical implementation in real-world fish

density estimation scenarios.

4.3.4 Water quality impact analysis
Water quality represents a pivotal factor influencing fish

distribution and population density. Comprehending its impact
TABLE 4 Prediction results of different algorithms on DlouFishDensity dataset.

Algorithm MAE MSE Forecast time Predictions per second Test set

MCNN 1.88 2.34 14.05s 19.50 A

MCNN 1.61 1.99 12.84s 18.31 B

Ours 0.25 0.42 11.49s 23.84 A

Ours 0.26 0.41 10.28s 22.85 B
fro
TABLE 3 Prediction results of different backbone network on DlouFishDensity dataset.

Backbone Network MAE MSE Forecast time Test set

FishCount 1.29 1.53 16.56s A

CSRnet 1.96 2.47 13.34s A

Ours 0.25 0.42 11.49s A

FishCount 1.12 1.34 14.67s B

CSRnet 1.69 1.98 11.95s B

Ours 0.26 0.41 10.28s B
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on estimating fish population density is essential. Primarily, water

quality directly impacts the living environment and physiological

condition of fish. Optimal water quality fosters a conducive habitat

for fish, facilitating their growth and reproduction, which in turn

augments population density. Conversely, degraded water quality

may precipitate fish mortalities, migrations, or erratic behaviors,

consequently diminishing population density.

Secondarily, fluctuations in water quality parameters can

directly modulate fish behavior and physiology. For example,

variations in critical parameters like temperature, dissolved

oxygen, and pH levels can influence metabolic rates, appetite, and

reproductive capacities of fish, subsequently affecting population

density. Furthermore, pollutants, toxic substances, and pathogens

present in water can inflict direct or indirect harm to fish, impacting

population density.

In the process of estimating fish population density, the

influence of water quality manifests in several aspects:
Fron
(1) Data Collection: Inadequate consideration of water quality

factors during data collection may induce sample bias, thus

skewing the estimation results of fish population density.

Therefore, data collection must meticulously account for

the spatial distribution and variability of water

quality parameters.

(2) Fish Behavioral Changes: Alterations in water quality can

elicit changes in fish behavior, such as aggregation,

migration, or avoidance. These behavioral shifts can

directly affect the estimation results of fish population

density. Hence, the impact of water quality on

fish behavior necessitates thorough consideration

during estimation.

(3) Fish Physiological State: Water quality directly affects the

physiological state of fish. Fish under stress or affected by

water pollution may exhibit physiological anomalies,

thereby influencing the estimation results of fish

population density.
4.4 Intelligent feeding decision verification
based on attention mechanism

To verify the effectiveness of our proposed attention mechanism-

based intelligent bait casting strategy on the changing trend and degree

of fish population density, we designed an experiment. Utilizing the

FishFeed method, which incorporates the aforementioned intelligent

feeding strategy as the algorithmic determination approach, we

conducted the experiment. Both algorithmic determination and

manual analysis were employed to appraise the outcomes. By

monitoring temporal factors and density data throughout the feeding

process, we could analyze the fish population’s density distribution in

real-time and gauge their aggregation levels. These analyses offered

profound insights into the fish population’s hunger levels, thereby

laying the groundwork for future feeding strategy adjustments.
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4.4.1 Evaluation criteria
In our experiment, we employed an attention-based intelligent

baiting strategy to scrutinize the alterations in the density

distribution of fish groups. The changes in density distribution

were quantified using Formula 10, as defined in Section 2.3.2, which

also enabled us to determine the degree of aggregation within these

groups. By calculating the differences in density at various time

points and aggregating them, we derived the contribution of total

difference of fish density change (TD) value. The detailed

computation procedure is outlined in Section 2.3.2. The formula

for computing the TD value is presented as follows:

TD = o
N

k=1

(Fi − Fi−1) • Pki (10)

WhereN represents the number of regions divided by the density

map, Pki represents the proportion of the fish density value of the k

region in the whole map after the division of the i density map, that is,

the contribution degree of each region to the overall density, and Fi  

represents the estimated fish density in the kth region.

Based on the calculated TD value, the analysis is performed to

determine whether the fish are gathering or dispersing:
(1) If TD is greater than zero, it is judged as fish gathering.

(2) If TD is less than or equal to zero, the fish is judged to

be dispersed.
4.4.2 Experimental effect
For this purpose, during the algorithm testing phase, we

converted the two datasets of Cui et al. (2022) and the

DlouFishDensity video into HTTP video streams. In this way, we

simulated the transmission and processing environment of real-

time video streams to be closer to actual application scenarios and

to more accurately assess the real-time performance of the

algorithm. We recorded key performance indicators when the

algorithm processed each video set, including the total running

time of the algorithm and the processing time per image. The details

and performance data of the three video sets are shown in Table 5.

These results provide us with valuable information about the

performance of the algorithm when processing HTTP video

streams in real-time. By deeply analyzing and comparing these

results, we can further optimize the algorithm to improve its

accuracy and efficiency in practical applications.

During the conversion process, we ensured the stability and

continuity of the video stream so that the algorithm could receive

and process video data in real-time. Subsequently, we used the

algorithm to generate a spatio-temporal fusion density map, TD

value and judgment results generated by the algorithm are shown in

Figures 15–17.

Based on the analysis of the data collected during the

experiment, it was observed that a clustering trend in fish density

following bait casting may indicate that the fish are in a starvation

state. This is because fish tend to gather together in search of food

when they are hungry. By analyzing changes in density distribution,
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TABLE 5 Video stream processing performance assessment table.

Video Set Duration (s) Number of Frames Extracted Algorithm Running Time (s) Processing Time per Image (s)

Video 1 60 1805 185.31 0.102

Video 2 60 1805 183.20 0.101

Video 3 60 1809 189.56 0.105
F
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FIGURE 15

Test results of Cui (Cui et al., 2022) dataset Video 1.
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we can assess the hunger level of a school of fish and take timely

measures for bait casting.

Accordingly, it was found that the FishFeed method can

effectively analyze the real-time density distribution of fish with

high reliability. The TD value is a robust indicator of the trends and

magnitudes in fish density distribution. Monitoring the TD values

across various time points reveals post-feeding alterations in fish
Frontiers in Marine Science 19
density, corroborating our observations and analyses, thus affirming

the efficacy of the attention mechanism-based intelligent feeding

strategy. Employing the TD value as an assessment metric enables

precise quantification of the shifts in fish density distribution.

Integrating this with the concept of the attention mechanism

from deep learning facilitates an enhanced analysis of fish

aggregation and dispersion patterns. These results also
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FIGURE 16

Test results of Cui (Cui et al., 2022) dataset Video 2.
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demonstrate that the intelligent bait casting strategy proposed in

this paper combines time factors and density information to

accurately infer the starvation state of fish. This provides strong

guidance and decision-making support for farmers, ultimately

improving the effectiveness of bait casting in fishery production.

Despite not showing significant performance differences in core

metrics such as algorithm processing speed and accuracy, the two
Frontiers in Marine Science 20
datasets exhibit distinct characteristics in their spatiotemporal

fusion density maps.

Firstly, due to the different shooting angles, there are visual

differences in the spatiotemporal fusion density maps of the two

datasets. The Cui dataset may focus more on the distribution and

density changes of targets on the water surface, while the

DlouFishDensity dataset may provide another perspective from a
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FIGURE 17

Test results of DlouFishDensity dataset Video 3.
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side view. This difference makes the two datasets have different

applicable scenarios in practical applications.

Secondly, although the data results are similar in core metrics,

the differences in spatiotemporal fusion density maps could also

impact the algorithm’s decision-making outcomes. Due to the

different presentations of density maps, algorithms may be

influenced by varying visual information during analysis and

judgment. Therefore, even if the two datasets are similar in terms

of algorithm processing speed and accuracy, their decision-making

results could differ due to visual disparities.

In algorithm performance testing and evaluation, it is crucial to

simulate the transmission and processing environment of real-time

video streams, especially for algorithms designed to address real-

time issues in practical applications. The reason we converted the

videos from Cui dataset and DlouFishDensity dataset into HTTP

video streams was precisely because of this consideration. Through

this conversion, we can more accurately simulate the complex

environment that the algorithm faces in real-world applications,

thus evaluating its performance more comprehensively.

In practical applications, video streams are often affected by

various factors such as network bandwidth, transmission delays,

and packet loss, all of which can significantly impact the algorithm’s

real-time performance. By converting datasets into HTTP video

streams, we can introduce these practical factors, making the

algorithm testing environment closer to real-life scenarios. Such

simulation helps us more accurately assess the algorithm’s

performance in real-time processing, such as processing speed,

stability, and robustness.

Therefore, adopting the method of converting datasets into

HTTP video streams not only helps to more accurately evaluate

the algorithm’s real-time performance but also provides us with

more comprehensive and in-depth algorithm performance

analysis results. This will aid us in better optimizing the

algorithm, enhancing its performance in practical applications,

and offering strong support for research and application in

related fields.
5 Conclusion

In this paper, we introduce a novel approach for analyzing the

feeding behavior of fish schools based on density distribution,

offering fresh perspectives and methodologies for practical

applications in the realm of fish farming. The proposed intelligent

bait casting strategy has the potential to enhance the efficiency of

fish breeding, minimize bait waste, and reduce costs. Furthermore,

by incorporating temporal variations in fish density distribution, we

can better align with the ecological needs of fish and foster their

growth and well-being. Nevertheless, this strategy necessitates

further validation and optimization to accommodate more

intricate fish school behavior scenarios and account for other

pertinent factors such as environmental influences.
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