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Climate change has been shown to alter the spatial distribution of whales and

other marine mammals. Fast changing ocean temperatures may also affect the

spatial distribution of whales at a finer scale, namely within populations, including

aggregation behaviour. Our ability to analyze the impact of climate change on

whale aggregation behavior, however, has been limited by our ability to collect

spatial observation data over large areas. To overcome this limitation, this study

analyzed open-access satellite imagery obtained between 2007 and 2020 in

Canada, Russia, and Alaska using Deep Convolutional Neural Networks (CNN) to

detect 1,980 beluga whales in 11 populations and to quantify their aggregation

patterns within their populations. Subsequently, we examined the relationship

between sea surface temperature (SST) and the intra-population spatial patterns

of beluga whales during summer seasons, when these whales normally

aggregate. We detected a negative correlation between SST and the frequency

of beluga whale aggregation, suggesting that warming temperatures may impact

beluga whale spatio-behavioral dynamics. Considering that the relative

abundance of beluga whales is declining and the future SST projections in

these Arctic Ocean locations, climate change may pose yet another threat to

beluga whales and other ice-dependent species.
KEYWORDS

biodiversity conservation, climate projections, deep learning, global warming,
marine mammals
Introduction

Human activities are predicted to cause an increase of up to 5°C in the global average

temperature by the end of the 21st century (IPCC, 2021). In addition, the global rise in

temperatures is melting glaciers and ice accumulations (Geyman et al., 2022; Sirmacek and

Vinuesa, 2022), whichmay lead to a significant reduction of Arctic ice extension and duration

in future decades. This rapid and marked increase in warming ocean temperatures and
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melting sea ice is also leading to seasonal shifts in habitat use of some

marine mammals (Insley et al., 2021), which could exacerbate the

extinction risk of ice-associated species by population depletion.

Furthermore, as the speed of environmental change is higher in

marine systems than in terrestrial systems (Poloczanska et al., 2016),

some species may be more vulnerable to this new climatic scenario

than others (Simmonds & Isaac, 2007; Moore & Huntington, 2008).

Traditionally, cetaceans living in remote areas have been monitored

through aerial line transect surveys from planes, among others (e.g.,

DeMaster et al., 2001; Heide-Jørgensen et al., 2010). Cetacean aerial

surveys imply in a significant amount of time and money and can

lead to population underestimations if researchers cannot cover the

whole distributional range of the studied species (Kaschner et al.,

2012). Classifying freely available satellite imagery using artificial

intelligence allows for low-cost identification and monitoring of large

cetacean populations over time (Guirado et al., 2019). In addition,

traditional methods to forecast species distributions over different

time periods after aerial surveys usually comprise species distribution

models (SDMs) (Bouchet et al., 2019), although predictions from

SDMs may be less accurate over long time frames or in periods and

areas undergoing rapid warming (Franklin, 2010). By combining

animal object detection through artificial intelligence and climate

change projections from the Copernicus Climate Change Service

(C3S), we can contribute both effectively and at low costs to identify

and establish new high seas habitat protected areas, which may be

essential in the conservation of beluga whales and other threatened

species. Cetacean species with a range limited to non-tropical waters

are more likely to be impacted by water temperature alterations

(MacLeod, 2009). Beluga whales (Delphinapterus leucas) (Pallas,

1776) are strictly ice-dependent species that inhabit isolated Arctic

Ocean waters (Suydam et al., 2001) and, thus, may comprise good

bioindicators concerning how climate change can affect other ice-

dependent Arctic species. They occur in coastal and offshore waters of

western and northern Alaska and Canada (Richard et al., 2001;

Suydam et al., 2001) and Russia (Shpak, et al., 2019), comprising

the most geographically isolated cetacean (Laydre et al., 2015). To

estimate their abundance, aerial surveys began in Cook Inlet and in

the Gulf of Alaska in 1993, documenting a 42.6% decline (1993-2006)

(Hobbs et al., 2006). Due to these critically low numbers, beluga

whales were listed as endangered (Goetz et al., 2012), and their

current situation seems somber as, out of 19 populations, 14 are data

deficient, three are declining, one is stable and only one is increasing

(Laydre et al., 2015). The combination of natural and anthropogenic

factors, such as climate change and/or illegal harvesting, may be

hindering beluga population recoveries (Carter and Nielsen, 2011).

Traditionally, long-term marine mammal monitoring techniques

have comprised direct observation, and, during the last decades, the

use of satellite tracking tools has efficiently revealed individual

movement patterns and distributions (Kennedy et al., 2013; Scales

et al., 2017). Object detection photo identification is significantly

more accurate than visual observation (Chernetsky & Krasnova,

2018), with lower costs than traditional counting techniques in

sampling animals living in remote areas (Taylor et al., 2007).

Recently, remote sensing imagery has been used to identify both

whale individuals and aggregations allowing for estimates concerning

population abundance. This technique, however, still does not
Frontiers in Marine Science 02
provide a high detection accuracy for marine mammals (Abileah,

2002; Fretwell et al., 2014; Fretwell et al., 2017), which makes it

difficult to develop reliable estimates concerning spatial distribution

or aggregation patterns.

In remote sensing methods, free Google Earth images have been

used to train Deep Convolutional Neural Networks (CNN) for

conservation goals (Guirado et al., 2017), which automatically learn

the distinctive features of each object class from a large set of

annotated images (LeCun et al., 2015). Previous studies in marine

mammal detection and counting have resulted in a recall rate of

more than 80% (Bogucki et al., 2019; Guirado et al., 2019; Gabaldon

et al., 2022; Khan et al., 2022). This can have a big impact in

reducing the effort required for manual verification, increasing the

advantage of employing an automatic detector in long-term

monitoring (Li et al., 2022; Marquez et al., 2022), estimating

population abundances and projecting dynamics and fluctuations

under future climate change scenarios. Therefore, this technology

provides an essential tool in predicting, assessing and implementing

conservation measures, which may, in turn, contribute to the

protection of these and other marine and ice-dependent species.

Our aim here is to identify beluga whale individuals and

aggregations in the Arctic Ocean from high-resolution satellite

imagery employing Deep CNN to automatically detect beluga

whales from open Google Earth images, and assess their

correlation with sea surface temperature (SST) projected scenarios

and with beluga-data to evaluate potential changes in beluga

distribution. To this end, this study (i) detected beluga whale

individuals and aggregations, (ii) assessed intra-population spatial

patterns and their relationship to SST, and (iii) compiled SST future

projections at beluga whale locations from 2015 to 2100 under three

IPCC representative concentration pathway (RCP) scenarios.
Methods

Beluga whale identification and
intra-population spatial patterns

Beluga whales (Delphinapterus leucas) (Pallas, 1776) are

distributed throughout the Arctic Ocean mainly at western and

northern Alaska, Canada (Suydam et al., 2001; Richard et al., 2001)

and Russia (Shpak, et al., 2019). These animals are ice-dependent, and

their distribution have been documented at high latitudes in the

Arctic Ocean. However, they have also been observed in southern

regions such as Baffin Bay (O’Corry-Crowe, 2009), Greenland

(Heide-Jørgensen et al., 2010), or Hudson Bay (Colbeck et al.,

2013). Beluga whale aggregations herein were detected using

satellite imagery from open very high-resolution (< 1 m/pixel)

images of Arctic coasts and Deep CNN (Guirado et al., 2019) from

2007 to 2020. The automatic whale-counting procedure employed a

two-step CNN-based model. In the first step (first, a classification of

images to obtain the possibility of finding beluga whales and second,

in the images with high probability offinding beluga whales, to detect

them in order to count the whales), the CNN scanned the sample area

to search for the presence of beluga whales in each grid cell. Only grid

cells in which the first-step CNN (a model based on Inception v3)
frontiersin.org
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gives a high probability for a whale presence (black square)

(Supplementary Figure 1SI) are then analyzed by the second step,

in which CNN (amodel based on Faster-RCNN Inception-Resnet v2)

finally locates and counts whale aggregations. The CNN-based model

was developed employing an open-source software using free Google

Earth and Mapbox images (subjected to terms of service). To train

and test the CNN-based classifier, we selected a dataset with very-

high resolution images acquired between the 1st and 2nd of January

2019 with eye altitude of ~200 m and approximately 1 m/pixel (zoom

18 in Google Earth) with acquisition date of June 4th, 2007. Many of

the images provided by Google Earth or Mapbox are Quickbird

satellite imagery that has a spatial resolution of 0.61 m/pixel satellite

in panchromatic image spatial resolution. This date coincides with

the breeding and feeding stage of D. leucas (Smith et al., 1985; Koski

et al., 2002). To increase the volume of the training dataset, we

employed data-augmentation techniques by applying rotation with a

factor selected randomly between 0 and 360°, randomly flipping half

of the training images, cropping, and changing the scale size of the

images and the brightness level of pixels by a factor of up to 50%. To

train and test the models, we used the Google TensorFlow deep-

learning framework (Abadi et al., 2016) in the step-1 CNN-based

model, and the Google Tensorflow Object Detection API (Huang

et al., 2017) to train, validate and test the step-2 CNN-based model.

For step-1, two classes were employed for model training containing

1,400 of images, (1) Beluga whale (D. leucas) samples and (2)

Icebergs. For step-2, the training dataset contains 700 aerial images,

in which each beluga whale is annotated within a bounding box (the

total number of bounding boxes is 846). For belugas testing and

validating, we downloaded 13,348 cells of 71 m x ~ 71 m. For

“icebergs”, we selected 700 images. For step-2, to test the CNN-based

model, 80% of the beluga whales object-interpreted in the Prince

Regent Inlet (Canada) from aerial images from NOAA (National

Oceanic and Atmospheric administration) were used using Mapbox.

Two authors visually inspected all the images to annotate each

cell with the name of the corresponding class and with the number

of whales. Both annotators also verified the presence of belugas in

these areas through specialized websites on whale watching and

used the Mapbox and Google Earth tools to differentiate beluga

whales from sea floor and icebergs by comparing images from the

same spot at different dates.

To evaluate the performance of CNN-based models, we used:

positive predictive value, sensitivity and F1-measure. True positives

correspond to images that were correctly classified or counted as

belugas by the models, false positives correspond to images that

were classified or counted as whales by the models but

corresponded to another class, and false negatives correspond to

images not detected with whales. In simple terms, a high positive

predictive value means that the model returned many more real

whales than false ones, while a high sensitivity means that the model

returned most of the real whales. The F1 measure provides a balance

between accuracy and sensitivity. Unfortunately, in areas where

icebergs of similar size to beluga whales were present, the accuracy

of the models was not good (less than 50% accuracy), and the

images were photo-interpreted to detect beluga whales manually.

To assess aggregation patterns, intra-community spatial patterns

(L-function) of individual beluga whales were calculated through the
Frontiers in Marine Science 03
relationship between the Clark-Evans R index (Clark & Evans, 1954)

and the minimum Nearest Neighbor distance, in meters.
Sea surface temperature

To assess the potential influence of sea surface temperature (SST)

on beluga whale aggregation patterns, Pearson’s correlations between

the SST (°C) and the minimum Nearest Neighbor distance of the

studied populations between 2007-2020 were calculated. To this end,

an annual time series of mean SST for every location was obtained

from satellite imagery. In addition, we employed The Scenario Model

Intercomparison Project (ScenarioMIP) for the climate model

projections (CMIP6), which provided multi-model climate

projections based on alternative future emission scenarios (O’Neill,

2016) and the Intergovernmental Panel on Climate Change (IPCC,

2021) projections to visualize SST trends for each beluga whale

aggregations, as well as mean effects, for every decade throughout

this century (2015-2100) applying three emissions scenarios (IPCC,

2021). These were obtained by downloading 25 SST models from the

CMIP6 climate projections available at the Copernicus database

(Yang et al., 2021), with monthly SST projection data available for

three climate change scenarios described in the 6th IPCC’s report:

SSP1-2.6, SSP2-4.5 and SSP5-8.5 (Supplementary Table 2SI). Models

were contained in NetCDF files, so we transformed them to raster

files. Then, we extracted the SSF data (in °C and with a spatial

resolution of 1° in latitude and longitude) for the locations of the 11

studied beluga whale aggregations using the extract function of the

raster package (Hijmans et al., 2015) available in the R statistical

environment (R Core Team, 2022). Following data extraction, only

up to six models contained data available at our studied locations

(Supplementary Table 2SI). We then averaged the SST projections for

each location, date, and climate change scenario.
Results

We were able to detect six beluga whales’ aggregations for

during the summer feeding period between 2007-2020 using open-

access satellite imagery and deep learning. A total of 1,980 beluga

whales were detected, grouped in eleven aggregations at the

Cunningham Inlet, Nunavut land and Hudson Bay (Canada),

Norton Sound (USA), and North and South Ojotsk sea (Russia)

(Figures 1, 2; Supplementary Table 1SI).

In a first test in the bay where the North Elwin River flows

(73.554006396, -90.96751917) with Google Earth images, the model

trained for the detection of the family Monodontidae based on

Faster-RCNN Inception-Resnet v2 of Tensorflow API obtained 99%

accuracy. In the test phase, we obtained a 98% F1 measurement of

D. leucas (Supplementary Table 2SI) with images exclusively from

Google Earth in the classification for object detection using

bounding boxes (Supplementary Figure 2SI). For the iceberg class

the measured F1 was 100%. However, in other bays further north

and with more mixed icebergs the automatic results were not good

(F1 < 60%). Therefore, we proceeded to manually photo-interpret

the other bays with high probability of beluga whale presence.
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The intra-population spatial patterns (L-function) of many

individual beluga whales displayed low minimum Nearest

Neighbour distances, following a quadratic relationship with the

Clark-Evans R index (R2 = 0.65) (Supplementary Figure 3SI).

To assess the relationship between SST and these aggregations,

we calculated the correlation between the SST (°C), detecting a

positive correlation between SST and Nearest Neighbour distance (r

= 0.65, p = 0.042), where most aggregations were located at areas

with low SST, ranging from -2 to 5°C, except for Russian locations

(Figure 3A). The averages of temperature (Figure 3B) also

highlighted how the Arctic Sea, including the Russian and North

Canadian locations, are increasing SST mean records along the last

decades. Our results highlighted that SST is expected to increase at

least one degree before 2050 in the three scenarios, but will increase

from 1.5 to 3°C from 2050 to 2100, depending on the RCP scenario
Frontiers in Marine Science 04
(Figure 3), with northern areas comprising the most affected under

the three RCP scenarios (Figure 4; Supplementary Figure 3SI).
Discussion

Here we employed satellite imagery and Deep CNN to identify

individual beluga whales and assess their patterns, obtaining

accurate results (Wu et al., 2022). However, not in all bays the

accuracy was good, and we proceeded to make a manual effort to

obtain the final results, using a lot of effort and time. The lesson

learned from this attempt to automate the detection of beluga

whales with satellite images would be that the spatial resolution of

the free images used is still low for detecting beluga whales (5m long

without submerging). In addition, individual automatic detection is
FIGURE 1

Beluga whale aggregations in the Arctic Ocean detected in very high-resolution satellite imagery from Google Earth. (A–F) beluga
whale aggregations.
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easily confused with icebergs, with the same color and sometimes

size or shape. Finally, we are optimistic for future work to increase

the accuracy of beluga whale detection using other strategies such as

the detection of sets of whales instead of isolated individuals, as they

are often found in groups where they could be better identified.

Our results highlighted that the rapid changes the Arctic region

is now facing due to climate change (Poloczanska et al., 2016)

emphasizing the importance of learning more about beluga whale

spatiotemporal distributions and latitudinal habitat use shifts. (We

detected herein a positive and significant relationship between SST

and whale aggregation, suggesting a higher number of beluga whale

aggregations in colder waters. However, the correlation value could

be influenced by the distinctive characteristics of two Russian

populations with low aggregation of whales (Figure 3A)

compared to other populations. Overall, this relationship may be
Frontiers in Marine Science 05
due to the fact that many areas, such as Baffin Bay, have experienced

significant sea ice changes, with sea ice retreating 7 days earlier and

advancing 5 days later per decade (Laidre et al., 2015). In West

Greenland, there was a clear correlation between decreasing sea-ice

cover and increasing distance from shore for beluga sightings.

Despite their relatively restricted distribution close to the coast

and in limited open areas in the early 1980s, when sea ice cover was

higher (Heide-Jørgensen et al., 2010). The northern archipelagos in

the Barents Sea have also been recording annual warming of up to

2.7°C per decade, with a maximum up to 4°C observed in some

periods (Isaksen et al., 2022). The higher records also observed in

the Russian locations may be due to the Arctic Sea experiencing the

highest SST ever recorded since increasing SSTs in the Northern

Pacific over the past decades, with associated changes in extreme

marine heatwaves (Carvalho et al., 2021). Current Arctic sea-ice
FIGURE 2

Density maps of beluga whale aggregations. Red indicates high densities.
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coverage levels are the lowest since 1850 for both annual mean and

late-summer values and the region will become practically ice-free

by the end of the 21st century in both low and high greenhouse gas

emissions scenarios such as SSP2-4.5, SSP3-7.0, and SSP5-8.5 (high

confidence) (Fox-Kemper et al., 2021) (IPCC, 2021).

The ocean absorbs almost 90% of the Earth’s energy imbalance

(Von Schuckmann et al., 2020), which is accelerating ocean

warming due to climate change (IPCC, 2021). We downloaded

the IPCC SST projections at the eleven study locations to highlight

whether those beluga whale populations could potentially be

affected by sea surface warming in the next decades, and our

findings indicate that all the locations might experience a one

degree temperature increase from 2015 to 2050 under the three
Frontiers in Marine Science 06
RCP scenarios. However, the warming pattern diverges from 2050

depending on the RCP scenario, demonstrating how, depending on

the emissions path we choose, the SST will increase at those

locations from 1.5°C to 3°C, with northern locations more

affected than southeast ones (Figure 4). Consequently, if our SST

IPCC scenarios are confirmed, northern populations could be

experiencing deep sea thermal changes in their distribution areas

from the 50s decade (Figure 5). This could, in turn, push their

distribution patterns towards cooler southern areas, overlapping

with northward distribution shifts of other marine mammal species

(Thorne et al., 2022), increasing habitat and resource competition

or even leading to drastic population depletion, depending on

species ability to adapt to new climate scenarios.
BA

FIGURE 3

(A) Relationship between sea surface temperature (°C) and minimum Nearest Neighbour distance, in meters (B) Heat map indicating mean sea
surface temperature (°C) between 2007-2020.
FIGURE 4

Average sea surface temperature (°C) projections under the SSP1 2.6, SSP2 4.5 and SSP5 8.5 IPCC scenarios at the 11 beluga locations analyzed
herein (solid lines) with their corresponding standard errors (semi-transparent ribbons).
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Overall, our study with a low-cost tool to monitor cetaceans

using freely available satellite imagery and artificial intelligence

demonstrated how beluga whales aggregate less in higher SST and

how their habitats are predicted to warm throughout the 21st

century. Spatial beluga whale population patterns are directly

associated to sea temperature and climate change will certainly

affect them in the future decades. However, the chosen IPCC

greenhouse emission path will determine the extent and speed of

SST increases for the rest of the century. Under this scenario, we

recommend a prompt and global reduction of gas emissions and the

protection of beluga whale territories from marine traffic if we wish

to preserve this vulnerable species. In this regard, this study, along

with future research to detect thermal shelters in the Arctic may

comprise valuable tools in highlighting potential climate change

impacts on beluga whale populations.
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