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Marine Heatwaves (MHWs) are persistent anomalous sea surface temperature

warming events that can affect the marine ecological environment and

ecosystems. Here, we study the winter MHWs in the cold tongue region of the

South China Sea (SCS) from 1982 to 2022. Our results show that the winter

MHWs in the cold tongue region have the strongest cumulative intensity in the

SCS, exceeding 45°C·day/time. These strong MHWs are due to their high mean

intensity and long duration. Significant interannual variations are observed in

these MHWs, with extremeMHWevents occurring in the El Niño winters of 97/98

and 15/16. By employing a mixed layer heat budget analysis, we reveal that the

extremeMHW event in the winter of 97/98 is caused primarily by the surface heat

flux term, and secondarily by the vertical entrainment term. While the 15/16

extreme event is caused by a combination of the surface heat flux term, the

vertical entrainment term and the horizontal advection term.
KEYWORDS

marine heatwaves, South China Sea, cold tongue, statistical characteristics, mixed layer

heat budget
1 Introduction

Changes in the state of the ocean, particularly extreme oceanic state variations, have

significant impacts on marine environments, climate systems, ecosystems, and human

societies (Smith et al., 2021; Hu and Li, 2022; Masanja et al., 2023). Marine Heatwaves

(MHWs) are mutually discrete, prolonged events of anomalous warming of sea surface

temperatures (SSTs), lasting from a few days to several months (Hobday et al., 2016). The

occurrence of such extreme events can disrupt marine ecosystems and reduce biodiversity

(Wernberg et al., 2016; Hughes et al., 2017; Smale et al., 2019; Yao et al., 2022; Smith et al.,
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2023; Joyce et al., 2024), which in turn affects, among other things,

fishery resources and social production (Mills et al., 2013; Caputi

et al., 2016; Hughes et al., 2017; Pastor and Khodayar, 2023). Since

the Industrial Revolution, MHWs have become more persistent,

frequent, widespread, and intense in the context of ongoing global

warming (Frölicher and Laufkötter, 2018; Jacox et al., 2020; Yao

et al., 2022). Oliver et al. (2021) found that the frequency and

duration of global MHWs increased by 34% and 17%, respectively,

resulting in a 54% increase in annual MHW days from 1925 to

2016. As a result, the frequency of coral bleaching has increased,

seagrass density has decreased, and kelp biomass has declined

(Smale et al., 2019). Future projections from the Coupled Model

Intercomparison Project Phase 6 (CMIP6) simulations indicate a

continuous increase in MHW events, leading to sustained

disruptions of marine ecosystems (Yao et al., 2022; Cheng et al.,

2023; Dong et al., 2023). Under the 1.5°C (2.0°C) global

temperature increase target of the Paris Agreement, the annual

mean MHW days are projected to increase by 16 (23) times

(Frölicher and Laufkötter, 2018). Hence, MHWs have rapidly

emerged as an important research frontier and hotspot.

MHW events exhibit significant spatiotemporal variations

(Hobday et al., 2016; Oliver et al., 2018; Holbrook et al., 2019; Hu

et al., 2021; Kuroda and Setou, 2021; Wang et al., 2022a). For

example, Hu and Li (2022) found that the frequency of MHW

events in global oceans is 1−3 times per year, with a lower frequency

in the equatorial eastern-central Pacific, where the MHWs tend to

be single, long-lasting, and of high intensity. Holbrook et al. (2019)

found that high-intensity MHW events primarily occur in

boundary current regions and the equatorial eastern-central

Pacific Ocean, while the equatorial eastern Pacific exhibits the

longest duration of MHWs. Liang et al. (2023) found that the

frequency and intensity of MHWs exhibit obvious seasonal

characteristics, with higher intensity and frequency of MHW

events occurring in summer than in winter. Oliver et al. (2018)

found that, influenced by global warming, MHWs also exhibit low-

frequency variations such as on interdecadal timescales: for global

average, there is a significant increase in the frequency, intensity,

and duration of MHWs in the period of 2000−2016 compared to

the period of 1982−1998.

The formation of MHWs can be driven by external forcings

from human activities and internal modes of the climate system

(Hu and Li, 2022). Frölicher and Laufkötter (2018) found a

substantial increase in the frequency, intensity, duration, and

spatial extent of global MHWs in response to the anthropogenic

forcing. The internal climate variability modes mainly include local

driving factors and remote influences (Holbrook et al., 2019). The

local factors involve air-sea heat flux, horizontal temperature

advection, and vertical mixing. Air-sea heat fluxes that favor the

formation of MHWs include anomalously high net solar radiation

caused by less cloud cover and greater insolation, and anomalously

low latent and sensible heat from the ocean to the atmosphere, often

accompanied by exceptionally weak surface winds. These processes

may operate independently or simultaneously, generating air-sea

heat flux-driven MHWs, such as those that occurred in the

Mediterranean Sea in 2003 and 2006 (Olita et al., 2007; Mavrakis

and Tsiros, 2019) and from the southeastern tropical Indian Ocean
Frontiers in Marine Science 02
to the Coral Sea in 2015/16 (Benthuysen et al., 2018), as well as in

the East China Seas in 2004, 2006, and 2016 (Tan and Cai, 2018;

Yan et al., 2020). Horizontal temperature advection can drive local

temperature changes that lead to advective-type MHWs, such as the

MHW event in the Tasman Sea in 2015/16 (Oliver et al., 2017). The

remote influence may come from large-scale phenomena like El

Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation

(PDO), and Madden-Julian Oscillation (MJO), which can

influence atmospheric circulation and oceanic conditions in

distant regions through teleconnection, leading to the formation

of MHWs (Oliver et al., 2021). For example, oceanic Rossby waves

generated by changes in surface wind stress curl over the South

Pacific region can modulate meridional heat transport through the

Tasman Sea, enhancing the likelihood of MHW events (Oliver et al.,

2017; Holbrook et al., 2020; Li et al., 2020).

The South China Sea (SCS; 100°−125°E, 0°−25°N; Figure 1) is a

large semi-closed marginal ocean located in the northwest Pacific,

with an average depth of 2000 meters (Yao et al., 2022). The SCS is a

global hotspot of marine biodiversity with widely distributed coral

reefs (Wang and Li, 2009; Li et al., 2011), and it plays an important

role in the economy and development of surrounding countries due

to its high marine biological productivity and significant ecological

functions (De Deckker, 2016). Under global warming, the SCS has

become a region prone to frequent MHW occurrences (Li et al.,

2019; Yao et al., 2020; Tan et al., 2022; Wang et al., 2022a; Yang

et al., 2022a). From 1982 to 2020, the average total summer MHW

days, duration, and frequency in the SCS increased by

approximately 3.0 days/decade, 1.0 days/time/decade, and 0.2

times/decade, respectively (Yao and Wang, 2021). On the

seasonal scale, the occurrence area of SCS MHWs is slightly

smaller in summer than in winter, while the MHW mean
FIGURE 1

The multi-year mean winter SST in the SCS during 1982–2022
(shading). White arrows indicate a schematic representation of the
surface circulation during winter. Black box represents the cold
tongue region.
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intensity is greater in summer (Yang et al., 2022b). Previous studies

have mainly focused on summer MHWs (Gao et al., 2020; Yao and

Wang, 2021; Tan et al., 2022; Oh et al., 2023), since it is the critical

season for coral bleaching with the strongest upwelling system (Yao

and Wang, 2021; Feng et al., 2022; Li and Donner, 2022). For

instance, Yao and Wang (2021) found that summer MHWs in the

SCS are mainly concentrated near the Nansha Islands and the Beibu

Gulf. This is due to the anomalous strengthening of the western

North Pacific subtropical high-pressure system during summer, and

the westward extension of the system that leads to anomalous

easterly winds at low latitudes, weakening the southwestern

monsoon and the upwelling in the midwestern SCS, favoring the

formation of MHWs (Yao and Wang, 2021). On interannual

timescales, MHWs in the SCS are influenced by ENSO (Liu et al.,

2022; Tan et al., 2022). During El Niño events, the anomalous

northwestern Pacific anticyclone in winter led to enhanced solar

radiation in the southwestern and northern SCS and reduced latent

heat flux, resulting in the formation of MHWs (Liu et al., 2022).

Spatially, previous studies have mainly focused on MHWs in the

northern SCS, especially the continental shelf area (Wang et al.,

2022a; Feng et al., 2022; Wang et al., 2023), because there are more

intense and frequent MHWs in the SCS continental shelf than in the

open sea (Cai et al., 2016; Li et al., 2019; Yao et al., 2020; Wang et al.,

2022b). Abnormal air-sea heat flux is the main cause of their

formation (Wang et al., 2022a, 2023; Wang et al., 2022b).

This study focuses on winter MHWs in the cold tongue region

of the SCS. During winter, the northeast monsoon prevails in the

SCS, leading to the formation of basin-scale cyclonic circulation,

accompanied by strong western boundary currents (Liu et al., 2001;

Yan et al., 2019). The strong north-to-south western boundary

currents transport cold water from the northern part of the SCS to

the southern part, forming the “cold tongue” (Liu et al., 2004)

(Figure 1). Influenced by ENSO, the western boundary currents in
Frontiers in Marine Science 03
the SCS exhibit significant interannual variability (Wang et al.,

2013; Quan et al., 2016; Zhao and Zhu, 2016; Zu et al., 2019):

During El Niño years, the northeast monsoon in the SCS weakens,

leading to weakening of basin-scale circulation and western

boundary currents. The weakened western boundary currents

reduce the north-to-south cold advection, which leads to the

recession or disappearance of the cold tongue in the SCS (Liu

et al., 2004). This implies that MHWs are very likely to occur in the

winter cold tongue region during El Niño years. Therefore, this

paper will investigate the characteristics and mechanisms of winter

MHWs in the cold tongue region.
2 Data and methods

2.1 Data

Temperature data with daily resolution are ideal for identifying

and describing MHWs. Additionally, the time period of the data

needs to be long enough (longer than 30 years) to estimate a

climatological field (Oliver et al., 2021). Satellite-based SST

datasets can provide global, continuous, and decades-long

products for studying MHWs (Oliver et al., 2018). Therefore, the

data utilized in this study is the daily mean dataset from the

National Oceanic and Atmospheric Administration (NOAA)

Optimum Interpolation Sea Surface Temperature (OISST) version

2, covering from late 1981 to present (Reynolds et al., 2007; Huang

et al., 2021). This dataset is assembled by combining bias-adjusted

observations from different platforms (satellites, ships, buoys) on a

global regular grid and filling in gaps by interpolation. Remote

sensing SST data from the Advanced Very High Resolution

Radiometer (AVHRR) provides the primary input. The horizontal

resolution is 0.25°×0.25°. Access and download of the data are

available from the website at: https://www.ncei.noaa.gov/products/

optimum-interpolation-sst.

To explore the mechanism of MHWs in the winter cold tongue

region of the SCS, the mixed layer heat budget analysis was

conducted using the OFES (ocean general circulation model for

the Earth Simulator) product, which is a long-time series (1950-

present) of high-resolution ocean model data (Sasaki et al., 2008). In

addition, the OFES does not adopt an assimilation scheme.

Therefore, its dynamic process is self-consistent and can be used

for numerical diagnosis of thermodynamic or dynamic processes.

For this study, ocean temperature, ocean current fields (including

zonal velocity, meridional velocity, and vertical velocity), and

surface heat flux data from the OFES 3−day dataset were

employed. The horizontal resolution of OFES is 0.1°×0.1°, with a

vertical resolution of 5 meters at the surface. The data are available

at: http://apdrc.soest.hawaii.edu/las_ofes/v6/dataset?catitem=87.
2.2 Methods

2.2.1 Definition of MHW events
In this study, the period from 1982 to 2022 was selected as the

climatological period. The definition of MHW events followed the
TABLE 1 Definitions of Marine Heatwave (MHW) Indices.

Index Definition Formulas Unit

Frequency Number of MHWs N times

Duration Duration of a MHW event te − ts
days/
time

Mean
Intensity

The mean intensity of MHW,
i.e., the average temperature
anomaly of a MHW event

T(t) − Tm(t)
°C/
time

Maximum
Intensity

The maximum intensity of
MHW, representing the peak
temperature anomaly of a

MHW event

max½T(t) − Tm(t)�
°C/
time

Cumulative
Intensity

The cumulative intensity of
MHW, indicating the total
temperature anomaly of a

MHW event

ote
t=ts

½T(t) − Tm(t)�
°C·day/
time

Total Days

Total number of days of
occurrence of MHWs,

representing the cumulative
duration of all MHW events

oN
i=1Durationi days
Note N represents the number of MHW events, te and ts denote the start and end time of a
specific MHW event, T represents the SST value for a specific day in the year, and Tm
represents the climatological SST.
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method proposed by Hobday et al. (2016), who identified events

exceeding the 90th percentile of seasonal variability—where the

daily SST surpassed the threshold (typically defined as the 90%

value of SST centered on the local climatological mean for the

preceding and following 11 days) for five consecutive days or more.

Events with intervals less than three days were considered the

same event.

2.2.2 MHW indices
After identifying MHW events, six metrics are used to represent

the characteristics of MHWs (Zhao and Marin, 2019), including

frequency, duration, mean intensity, maximum intensity,

cumulative intensity, and total days (Table 1).

2.2.3 MLT equation
The mixed layer temperature (MLT) equation is an effective

method for understanding the generation and maintenance of

MHWs (Benthuysen et al., 2014; Chen et al., 2014; Kataoka et al.,

2017; Oliver et al., 2021). The changes in MLT are primarily caused

by a combination of air-sea heat exchanges, advection by currents

and eddies, horizontal and vertical mixing, and entrainment of

water into the mixed layer (Moisan and Niiler, 1998):

∂

∂t
Ta =

Q − Qh

rcph
− Va
�!

· ∇Ta − wh +
dh
dt

� �
Ta − Th

h
(1)

In Equation (1), Ta represents the temperature averaged in

the surface mixed layer (ML), t denotes time, Q is the net heat

flux at the ocean surface, comprising various components of air-

sea heat flux, Qh is the downward radiative heat flux at the

bottom of the ML, r is the seawater density, cp is the specific heat

capacity of seawater, h is the mixed layer depth (MLD), Va
�!

  =

 (ua,   va) represents the two-dimensional horizontal velocity

vector averaged in the ML. ∇ represents the horizontal

gradient operator, wh is the vertical velocity at the bottom of

the ML, Th is the temperature just below the ML. ∂
∂ t Ta

represents the MLT tendency term, Q−Qh
rcph

represents the

surface heat flux term, Va
�!

·∇Ta represents the horizontal

advection term, and wh +
dh
dt

� � Ta−Th
h represents the vertical

entrainment term. By diagnosing the MLT equation, the main

controlling factors of MHWs can be understood, and further

analysis can elucidate their underlying physical processes.

3 Characteristics of MHWs in the cold
tongue region of the SCS

3.1 Annual average and seasonal
characteristics of MHWs in the SCS

Figure 2 shows the annual average statistical characteristics of

MHWs (frequency, mean intensity, maximum intensity, duration,

total days, and cumulative intensity) in the SCS from 1982 to 2022.

The frequency of MHWs is highest in the northeastern SCS and

along the coast, reaching 2−3 events per year, while it is lower in the
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southwestern regions, averaging less than 2 events per year

(Figure 2A). The mean intensity and maximum intensity exhibit

the highest values in the northern shelf area of the SCS, exceeding

2°C/time, gradually decreasing southward, demonstrating a “north

high-south low” pattern (Figures 2B, C). The duration of MHWs is

longer in the northwestern SCS, with a maximum of more than 14

days/time (Figure 2D). The spatial distribution of MHW occurrence

total days is similar to that of the duration, with more days in the

northwestern SCS, and over 30 days in the Beibu Gulf each year

(Figure 2E). The cumulative intensity of MHWs is affected by both

mean intensity and duration. Areas with high cumulative intensity

are mainly in the northern and western SCS, with maximum values

exceeding 25°C·day/time. These results are generally consistent with

the findings of previous studies (Yao et al., 2020; He et al., 2023).

To further analyze the seasonal difference of MHWs in the SCS,

Figure 3 presents boxplots showing the MHW characteristics in

spring (March, April, May), summer (June, July, August), autumn

(September, October, November), and winter (December, January,

February). The average frequency of MHWs in the SCS is roughly

equal in spring, summer, and autumn (~0.5 times) and slightly

lower in winter (~0.4 times) (Figure 3A). The mean/maximum

intensity of MHWs is higher in spring and winter, with the highest

in winter (1.37/1.64°C/time), and lower in summer and autumn

(~1.23/1.48°C/time) (Figures 3B, C). The duration of MHWs is

highest in winter (9.8 days/time), followed by autumn (8.5 days/

time), and lowest in spring and summer (~8.1 days/time)

(Figure 3D). The total days of MHWs are comparable in spring,

summer and winter (~5.3 days) and slightly higher in autumn (6.3

days) (Figure 3E). Affected by mean intensity and duration, the

cumulative intensity of MHWs is highest in winter (14.23°C·day/

time), second highest in spring (11.56°C·day/time), and lowest in

autumn and summer (∼10.52°C·day/time) (Figure 3F). These

findings agree with the results of Liu et al. (2022).

Cumulative intensity represents the overall strength of the

MHWs. MHWs with strong cumulative intensity could

potentially exert severe pressure on the marine ecosystem, leading

to a decrease in biodiversity and having significant repercussions on

fisheries and the economy (Eakin et al., 2010; Frölicher et al., 2018;

Marin et al., 2021). Figure 4 shows the spatial distribution of

seasonal variation in cumulative intensity in the SCS. In spring

and autumn, the northwestern part of the SCS shows high values,

with cumulative intensity exceeding 25°C·day/time. In summer,

high values are observed in the central SCS and around Hainan

Island, reaching over 30°C·day/time. In winter, two high-value areas

are present in the western part: the winter cold tongue region (black

box area in Figure 4) and the offshore area of northeast Vietnam,

with cumulative intensity exceeding 45°C·day/time and 40°C·day/

time, respectively. These findings show that the winter MHWs in

the cold tongue region have the strongest cumulative intensity in

the SCS. The strong cumulative intensity corresponds to strong

mean intensity (>1.5°C/time) and long duration (>45 days/time) in

this region (Figure 5). Given that the strongest MHWs have not

been previously studied, our research aims to fill this gap by

studying the winter MHWs in the cold tongue region of the SCS.
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3.2 Characteristics of winter MHWs in the
cold tongue region

To investigate the characteristics of winter MHWs in the cold

tongue region, we considered this region (103°−113°E, 3°−13°N,

marked by the black box in Figures 1 and 4) as a whole for MHW

identification. Considering the winter monsoon in the SCS

prevailing during the period from November to March next year

(Shaw and Chao, 1994), we selected this time window to detect

MHWs in the cold tongue region. Therefore, the winter hereafter
Frontiers in Marine Science 05
for the cold tongue MHW spans from November to March next

year. From 1982 to 2022, a total of 16 winter MHW events were

detected in this region (Table 2). Notably, there was no MHW

before the winter of 97/98 (November 1997 – March 1998). This is

related to the fact that the long-term warming trend of SST was not

removed when calculating the threshold (for details see Section 5).

To investigate the interannual variability of winter MHW

events in this region, we conducted a statistical analysis of their

characteristics by year (Figure 6). It is found that the frequency of

MHWs during winter has increased in recent years, with only one
B C

D E F

A

FIGURE 3

Boxplots of the (A) frequency (units: times), (B) mean intensity (units: °C/time), (C) maximum intensity (units: °C/time), (D) duration (units: days/time),
(E) total days (units: days), and (F) cumulative intensity (units: °C·day/time) of SCS MHWs in spring (March, April, May), summer (June, July, August),
autumn (September, October, November), and winter (December, January, February) after removing extremes marked by the circles. The dashed
line inside the box represents the mean value, and the bottom and top of the box line represent the 1st and 3rd quartiles, respectively.
B C

D E F

A

FIGURE 2

Spatial distribution of multi-year average (A) frequency (units: times), (B) mean intensity (units: °C/time), (C) maximum intensity (units: °C/time),
(D) duration (units: days/time), (E) total days (units: days), and (F) cumulative intensity (units: °C·day/time) of SCS MHWs from 1982 to 2022. MHW is
detected using NOAA OISST following the method proposed by Hobday et al. (2016).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1362805
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Meng et al. 10.3389/fmars.2024.1362805
MHW event occurring in the winters of 97/98, 02/03 and 06/07,

while two occurred in three winters during 2010−2016. The winters

of 18/19 and 21/22 had the highest frequency, with three MHW

events occurring in each winter. In contrast to the frequency, the

mean (maximum) intensity of winter MHWs in this region shows

no clear trend, with the average value of 1.09°C/time (1.34°C/time).

The intensity of winter MHWs exhibits significant interannual

variability. Specifically, the winter MHW event in 97/98 and the

first MHW event in 15/16 exhibited the highest intensity, with the
Frontiers in Marine Science 06
mean (maximum) intensity of 1.41°C/time and 1.40°C/time

(1.95°C/time and 2.20°C/time), respectively. Excluding these two

strongest MHW events, the average value of the mean (maximum)

intensity is 1.05°C/time (1.23°C/time). The average duration and

cumulative intensity of winter MHWs are 23.4 days/time and 28.53°

C·day/time, respectively. The winter MHW event in 97/98 and the

first MHW event in 15/16 significantly exceed other events, with the

duration of 79 days/time and 96 days/time, respectively, and the

cumulative intensity of 111.74°C·day/time and 134.92°C·day/time,
BA

FIGURE 5

Winter (December, January, February) mean intensity [(A), units: °C/time] and duration [(B), units: days/time] of SCS MHWs from 1982 to 2022.
FIGURE 4

Seasonal variation in cumulative intensity (units: °C·day/time) of SCS MHWs from 1982 to 2022: spring (March, April, May), summer (June, July,
August), autumn (September, October, November), and winter (December, January, February). Black box represents the cold tongue region.
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respectively. Excluding these two events, the average duration and

cumulative intensity of winter MHWs in this region are 14.2 days/

time and 14.98°C·day/time.

Since the intensity and duration of the MHW events in the

winters of 97/98 and 15/16 (first event) are significantly higher, the

characteristics of these two extreme MHW events are further

analyzed in comparison with others (Figure 7). It is evident that

all four characteristic indices of these two extreme events surpass
Frontiers in Marine Science 07
those of others: the mean (maximum) intensity of the extreme

events in the winters of 97/98 and 15/16 (first event) is 0.36°C and

0.35°C (0.71°C and 0.97°C) higher than that of other events,

representing an increase of 34% and 33% (58% and 78%),

respectively. The duration of these extreme events increases by

64.8 and 81.8 days, which are 4.6 and 5.8 times longer than other

events. The cumulative intensity also strengthens by 96.76°C·day

and 119.94°C·day, being 6.5 and 8.0 times higher than other events.
B

C D

A

FIGURE 6

Statistical characteristics of winter MHWs in the cold tongue region of the SCS during 1982−2022: (A) mean intensity (units: °C/time), (B) maximum
intensity (units: °C/time), (C) duration (units: days/time) and (D) cumulative intensity (units: °C·day/time). Different colors in the bar plot represent
different MHW events in the same year. Since the absence of MHW events before the winter of 97/98, the horizontal axis begins from the winter of
97/98. More detailed information on the MHWs in the winter cold tongue of SCS can be seen in Table 1.
TABLE 2 Properties of winter MHWs in the Cold Tongue Region of the SCS during 1982−2022.

No. MHW_start MHW_end
Duration
(days/
time)

Maximum Intensity
(°C/time)

Mean Intensity
(°C/time)

Cumulative Intensity
(°C·day/time)

1 1998/01/08 1998/03/27 79 1.95 1.41 111.74

2 2002/12/21 2003/01/05 16 1.54 1.25 20.00

3 2006/11/27 2006/12/01 5 1.07 0.99 4.95

4 2010/02/02 2010/02/15 14 1.40 1.11 15.50

5 2010/02/21 2010/03/09 17 1.44 1.18 20.00

6 2012/11/22 2012/12/25 34 1.23 1.00 34.07

7 2013/01/05 2013/01/09 5 1.07 1.00 5.02

8 2014/11/30 2014/12/08 9 1.16 1.04 9.32

9 2015/11/02 2016/02/05 96 2.20 1.40 134.92

10 2016/02/12 2016/02/17 6 1.34 1.09 6.52

11 2018/12/08 2019/01/08 32 1.28 1.05 33.55

12 2019/01/12 2019/01/22 11 1.22 1.13 12.40

13 2019/02/18 2019/02/23 6 1.07 0.99 5.97

14 2021/11/16 2021/12/02 17 1.28 1.00 16.96

15 2022/01/18 2022/02/03 17 1.16 1.00 17.03

16 2022/02/13 2022/02/22 10 1.01 0.85 8.48
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Therefore, the two extreme MHW events in the winters of 97/98

and 15/16 (first event) are selected as representative events for

further analysis.

Figure 8 shows the SST anomalies (SSTA) during the extreme

MHW in the winter of 97/98. It can be seen that the SST exhibited a

positive anomaly of more than 1°C in late December 1997 near

(109°E, 7°N), forming the MHW. The MHW initially appeared at

the frontal zone. As the MHW developed, in mid to late January

1998, MHW occupied almost the entire cold tongue region, with the

maximum SSTA appearing at the frontal zone, which could exceed

+2.5°C. In early to mid-February, the intensity of the MHW slightly

weakened, but increased again towards the end of the month, with

the maximum SSTA appearing in the southeast coast of Vietnam,

surpassing +2.5°C. In March, the MHW weakened, until it

practically dissipated in April.

The extreme MHW event in the winter of 15/16 started in early

November 2015 (Figure 9). Similar to the pattern observed in 97/98,

the MHW also appeared first at the frontal zone, followed by a

continuous expansion in spatial coverage and an increase of intensity.

In mid-December, the MHW covered almost the entire cold tongue

region, with an intensity surpassing +1.5°C. In mid to late January,

the MHW reached its strongest point, with the maximum SSTA

appearing at the center of the cold tongue region, exceeding +2.5°C.

In February, the MHW gradually weakened until it dissipated.
4 Mechanism analysis of extreme
MHW events in the winter cold
tongue region of the SCS

4.1 Comparison of OISST and OFES Data

To explore the occurrence and maintenance mechanisms of the

extreme MHWs during 97/98 and 15/16, we calculated the MLT

equation using the OFES data. We first evaluated the performance
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of OFES SSTA data in simulating the two MHW events. Figure 10

shows the comparison of SSTA between OFES model data and

OISST data during MHW events. For simplicity, only the

cumulative SSTA during the strongest MHW event in each winter

is shown here. It is evident that the OFES is able to reproduce the

two extreme MHW events during the winters of 97/98 and 15/16,

although it generally underestimates the intensity of MHWs. In

comparison to OISST data, OFES data underestimate SSTA by 35%

and 30% during these two MHW events, respectively. Figure 11

shows the SSTA time series of OFES and OISST data during the two

extreme MHW events. It exhibits consistent trends between the two

datasets throughout the two MHW events, with correlation

coefficients of 0.92 and 0.94, respectively. This comparison

indicates that the OFES data can be used to analyze the

mechanism of these two extreme MHW events in winters of 97/

98 and 15/16.
4.2 Mechanisms of the 97/98 and 15/16
extreme MHW events

Figure 12 shows the anomalies of all terms in the MLT equation

in the SCS winter cold tongue region during the 97/98 and 15/16

extreme MHW events relative to climatology. Positive anomalies in

the MLT tendency term indicate a faster-than-climatology warming

or slower-than-climatology cooling. It is obvious that there were

three distinct periods of positive anomalies in the MLT tendency

term during the 97/98 extreme MHW event (highlighted in red

shading in Figure 12A), occurring on 5−16 January, 10−21

February, and 3−11 March in 1998, respectively. The first

warming anomaly provided energy for the occurrence of the

event, and the two in the latter periods sustained the event.

Analysis of the MLT equation indicates that the contribution of

the horizontal advection term to the MHW event was relatively

small. The positive anomalies in the MLT tendency term during
FIGURE 7

Comparison of the characteristic indices between two extreme MHW events in the winters of 97/98 and 15/16 (first event) and other events in the
winter cold tongue region in the SCS during 1982−2022: mean intensity (units: °C/time), maximum intensity (units: °C/time), duration (units: days/
time), and cumulative intensity (units: °C·day/time).
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these three periods were mainly attributed to the surface heat flux

term, supplemented by a secondary contribution from the vertical

entrainment term. On average, over these three periods, the

contributions of the surface heat flux term and vertical

entrainment term were 62% and 25%, respectively. This result

indicates that the extreme and prolonged MHW event in 97/98

was caused by three intermittent anomalies in the atmospheric/

oceanic environment, rather than sustained one, which contrasts

with our initial assumption. Further work is needed to understand

the causes of these intermittent anomalies in the atmospheric/

oceanic environment.
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The extreme MHW event in 15/16 was also caused by multiple

intermittent anomalies in the atmospheric/oceanic environment

(Figure 12B). During the 15/16 MHW event, there ware three

distinct periods with positive MLT tendency term anomalies

(highlighted in red shading in Figure 12B), occurring during 28

October−3 November, 15 November−13 December, and 31

December−21 January, respectively. The anomalous warming during

these periods generated and maintained the extreme event. Analysis of

the MLT equation indicates that horizontal advection term, vertical

entrainment term, and surface heat flux term all contributed to the 15/

16 MHW process. On average for the three periods, the contributions
FIGURE 8

Variation of SSTA in the winter cold tongue region of the SCS during the period 1997.12.20−1998.4.20. Colors represent SSTA exceeding the MHW
threshold, while contour lines represent the climatology of SST. The blue arrows represent the ocean current fields, utilizing data from OSCAR
Surface Currents.
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of horizontal advection term, vertical entrainment term, and surface

heat flux term were 24%, 33%, and 43%, respectively.
5 Discussion

When identifying MHWs in this study, the long-term warming

trend of SST was not removed in calculating the threshold.

Consequently, the identified MHWs in the winter cold tongue

region of SCS all occur during 97/98 and beyond, and there is an

increasing trend in the frequency of MHWs (Table 2; Figure 6). To
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investigate the impact of the long-term SST variation on MHWs,

especially the identification of extreme events, an 11−year running

mean threshold was applied to detect MHWs (Zhang et al., 2018;

Hörhold et al., 2023). Specifically, the 11−year running mean

threshold is calculated by taking the 90th percentile of SST within

a running window of 11 years centered on each year, where the

window spans five years before and after the target year, andMHWs

are detected accordingly. This approach aims to remove the

influence of long-term variability in SST. Notably, for the years

1982−1986, the forward running condition cannot be satisfied, so

the threshold obtained in 1987 is used for detection. Similarly, for
FIGURE 9

Variation of SSTA in the winter cold tongue region of the SCS during the period 2015.11.1−2016.2.29. Colors represent SSTA exceeding the MHW
threshold, while contour lines represent the climatology of SST. The blue arrows represent the ocean current fields, utilizing data from OSCAR
Surface Currents.
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the years 2018−2022, the backward sliding condition cannot be

satisfied, so the threshold obtained in 2017 is used for detection

(Zhang et al., 2018).

After removing the SST long-term trend, there was no apparent

increasing trend in the frequency of MHWs (Figure 13). Before 97/

98, MHWs were observed (e.g., in the winters of 82/83, 87/88, and

91/92), and after 09/10, there was a significant decrease in the

frequency of MHWs (from 11 events to 2 events in the most recent

decade). To emphasize the impact of long-term SST variations on

extreme MHW events, the differences in the strongest MHW events

in each winter are compared below. It can be seen that the mean

intensity of MHWs has shown a certain degree of weakening after

97/98, especially in recent MHW events, such as the events in 15/16

and 18/19, which weakened by 19% and 22%, respectively. In terms

of the duration of MHWs, there was an increase before 09/10,

followed by a decrease for subsequent events. For example, the

extreme MHW event exhibited an increase of 13 days in 97/98 but a

decrease of 13 days in 15/16. However, MHWs in 97/98 and 15/16
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still had the longest durations. Under the combined influence of

intensity and duration, the cumulative intensity of MHWs

remained the highest in 97/98 and 15/16, but it strengthened by

15% in 97/98 and weakened by 30% in 15/16. The years with

stronger MHWs correspond to those with higher SST, and 97/98

and 15/16 are the years characterized by the first two highest SST.

The two extreme MHW events in winters of 97/98 and 15/16

were associated with El Niño (Liu et al., 2022). During El Niño year,

a low-level enhanced anticyclone occurs over the western North

Pacific, changing atmospheric forcing and oceanic environment in

the SCS and hence generating MHWs. We also checked the years of

other MHWs in this region (82/83, 87/88, 91/92, 04/05, 06/07, 09/

10, and 18/19), and found them all being El Niño years. In addition

to El Niño, they may also be affected by other factors, such as local

upwelling and entrainment (Yao and Wang, 2021), the unusual

Indian Ocean dipole (Xiao et al., 2020), the inter-basin interaction

(Yao and Wang, 2021). Further work is needed on the relative

contributions of these factors.
FIGURE 10

Comparison cumulative of SSTA between OISST and OFES data for winter MHW events in the cold tongue region of SCS during the period 1982
−2022. Blue and red bars represent SSTA calculated from OISST and OFES data, respectively. Only the largest MHW event in each winter is shown.
BA

FIGURE 11

Comparison of SSTA between OISST and OFES data for two extreme MHW events in the cold tongue region of SCS: (A) 1998.1.8−1998.3.27, and
(B) 2015.11.2−2016.2.5. Note that a three-day moving average has been applied to the OISST data.
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6 Conclusions

In this study, the seasonal characteristics of MHWs in the SCS are

briefly analyzed, based on which we focus on the winter cold tongue
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region, where has the strongest cumulative intensity of the MHWs in

the SCS. We systematically investigate MHW events in this region

during winter, with special attention paid to the extreme events in the

winters of 97/98 and 15/16. The main conclusions are as follows:
FIGURE 13

Comparison of the characteristic indices (frequency, mean intensity, duration, and cumulative intensity) of MHW events detected by thresholds
without (blue bar) and with (red bar) 11−year running mean in the winter cold tongue region of the SCS during 1982−2022. The metrics of MHWs are
calculated by selecting the strongest MHW event in each year. The gray line represents the annual mean SST during each winter.
B

A

FIGURE 12

Time series plot of the anomalies of all terms in the MLT equation over the winter cold tongue of the SCS during the period of the (A) 97/98 MHW
event (1998.1.8−1998.3.27) and (B) 15/16 MHW event (2015.11.2−2016.2.5): the MLT tendency term (red line), the surface heat flux term (purple line),
the horizontal advection term (cyan line), the vertical entrainment term (green line). The black line represents the sum of the surface heat flux,
horizontal advection, and vertical entrainment terms. The red shaded areas denote three distinct periods of positive anomalies in the MLT
tendency term.
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Fron
1. MHWs in the SCS exhibit distinct seasonal characteristics.

In winter, the frequency of MHW events is the lowest (~0.4

times), while the intensity is the highest (the mean and

maximum intensity are 1.37°C/time and 1.64°C/time,

respectively), the duration is the longest (9.8 days/time),

and the cumulative intensity is the highest (14.23°C·day/

time). In the winter cold tongue region, MHWs

demonstrate the highest cumulative intensity, which can

exceed 45°C·day/time, corresponding to the high mean

intensity (above 1.5°C/time) and long duration (above 45

days/time) in this region.

2. Significant interannual variations of MHWs are observed in

the cold tongue region of the SCS. From 1982 to 2022, a

total of 16 MHW events occurred in this region, among

which extreme MHW events occurred in the winters of 97/

98 and 15/16. The mean (maximum) intensity for these two

extreme events was 1.41°C/time and 1.40°C/time (1.95°C/

time and 2.20°C/time), respectively, with duration was 79

days/time and 96 days/time, respectively, and cumulative

intensity was 111.74°C·day/time and 134.92°C·day/time

(6.5 and 8.0 times stronger compared to other

MHW events).

3. The analysis of the MLT equation indicates that the

extreme MHW event in the winter of 97/98 in the cold

tongue region of the SCS was mainly caused by the surface

heat flux term, with the vertical entrainment term

contributing secondarily. While in the winter of 15/16,

the extreme MHW event was caused by a combination of

the surface heat flux term, the vertical entrainment term

and the horizontal advection term.
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