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Mesoscale eddies are prevalent mesoscale phenomena in the oceans that alter

the thermohaline structure of the ocean, significantly impacting acoustic

propagation patterns. Accurately predicting acoustic convergence zone

features has become an urgent task, especially when data are limited in deep-

sea mesoscale eddy environments. This study utilizes physics-informed machine

learning to identify and predict the acoustic convergence zone features of

mesoscale eddies under limited data conditions. Initially, a method based on

convex hull ratio was utilized to identify mesoscale eddies from the JCOPE2M

reanalysis dataset and AVISO data in the Kuroshio‐Oyashio Extension.

Subsequently, by integrating physical models and ray acoustics, relevant

features of mesoscale eddies and convergence zones are extracted. Then, K-

fold cross-validation and sparrow search algorithms are employed to select the

optimal machine learning algorithm, ensuring high model accuracy. The

resulting model requires only a thermohaline profile near the eddy center and

sea surface height to predict convergence zone features within the mesoscale

eddy environment, achieving a MAE of approximately 1.00 km and an accuracy

(within 3 km) exceeding 95%. Additionally, leveraging physics-informed machine

learning methods contributes to a maximum reduction of 0.82 km in MAE and an

improvement in accuracy by 2.80% to 11.92% compared to models without

physical information input. Finally, the model’s validity and reliability in the actual

ocean environment are verified by cross-validating it with data from various sea

regions" in bright yellow and Argo profiling float data. The findings provide novel

insights into acoustic propagation in mesoscale eddy environments and

subsequent ocean acoustic research.
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convergence zone, machine learning, mesoscale eddy, environmental feature
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1 Introduction

Mesoscale eddies are a common type of phenomenon in the

global ocean. They can last from a few days to several hundreds of

days and can range in size from tens to hundreds of kilometers

(Chelton et al., 2011). These eddies have a significant impact on the

distribution of various oceanic properties such as temperature,

salinity, chlorophyll, dissolved oxygen, and nutrients (Barone

et al., 2021). They also induce upwelling and downwelling within

their regions, leading to the horizontal and vertical movement of

oceanic materials (Zhao et al., 2021). Additionally, the distinct mass

properties of mesoscale eddies cause the cold and warm water they

carry to affect the speed of sound, thus influencing the propagation

of sound waves through seawater (Etter, 2013). Therefore, studying

the acoustic propagation characteristics of mesoscale eddies in the

ocean is crucial for underwater sonar detection, planning acoustic

anti-submarine warfare missions, submarine stealth, and early

warning detection.

The Kuroshio Extension (KE) is the eastward branch of the

powerful western boundary current known as the Kuroshio Current

at 35°N, and spanning eastward to approximately 160°E. It also mixes

with Oyashio water from high-latitude sea areas and shares the same

characteristics as the Kuroshio: high temperature, high salinity, high

color of water, high clarity, and fast current speed. Additionally, it is a

key area for mid-latitude sea-air interaction and one of the sea areas

with the highest eddy kinetic energy and the most active mesoscale

eddy features (Scharffenberg and Stammer, 2010). Depending on the

generation mechanism, the mesoscale eddies in the KE region are

partially shed from the KE. These can be considered closed water

masses, with the nature of water masses playing a crucial role in the

region for heat, eddies, and material transport (Chelton et al., 2011).

Using satellite altimeter data and Argo data, previous studies have

detailed the basic characteristics of the eddies in the KE region.

Additionally, more anticyclonic eddies are present on the north side

of the KE, moving at a speed of approximately 1–2 cm/s, with longer

life cycles. Meanwhile, more cyclonic eddies are detected on the south

side of the KE and near the flow axis. These eddies move at a speed of

approximately 1–5 cm/s and possess stronger intensity (Itoh and

Yasuda, 2010). Furthermore, according to years of satellite altimeter

data, the eddy kinetic energy of mesoscale eddies in the region is

characterized by strength in summer and weak in winter

(Scharffenberg and Stammer, 2010), and its inter-decadal variations

are positively correlated with the Pacific Decadal Oscillation (PDO)

index. When the PDO is positive, the eddy kinetic energy in the region

is strong, and vice versa (Taguchi et al., 2010).

Numerous researchers have devoted to understanding the

effects of mesoscale eddy environments on underwater acoustic

propagation. They have explored the relationship between eddies

and acoustic propagation through observations and experiments.

Akulichev, Bugaeva (Akulichev et al., 2012) reported the results of

an acoustic survey in the KE region of the NW Pacific Ocean. They

found that a mesoscale eddy significantly affected the horizontal

propagation of acoustic signals through a towed source at a depth of

100 m. Liu, Piao (Liu et al., 2021) detected and tracked a mesoscale

eddy in the western North Pacific Ocean, studying the eddy

strength, oceanographic, and acoustic characteristics. Their study
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revealed that the position of the convergence zone (CZ) shifted

away from the source or near the source when cyclonic and

anticyclonic eddies propagated sound. Additionally, the coupling

coefficients of different-order normal modes also underwent

significant changes during this process. Some studies utilized

physical modeling and numerical simulation methods to examine

the sound speed field distribution and propagation characteristics in

mesoscale eddy environments. Xiao, Li (Xiao et al., 2018)

statistically analyzed the underwater acoustic sound propagation

characteristics in deep-sea mesoscale eddy environments using a

parabolic model. They evaluated the effect of several factors such as

the relative positions of sound sources and eddies on underwater

acoustic sound propagation. Mahpeykar, LARKI (Mahpeykar et al.,

2022) used ray acoustics to analyze the effect of mesoscale eddies on

underwater acoustic propagation in the Persian Gulf. They observed

that the presence of cyclonic eddies increased the transmission loss

(TL), which further increased with the depth of the sound source

passing through the mesoscale eddies. Xiao, Lei (Xiao et al., 2021)

developed a theoretical model of acoustic propagation under the

influence of oceanic mesoscale eddies using finite element analysis.

They discovered that the distance from sound source to CZ

decreases when acoustic energy emitted by the sound source

passes through an anticyclonic eddy. Similarly, Liu, Piao (Liu

et al., 2021) used a ray model, while Chen, Hong (Chen et al.,

2019) reached the same conclusion after simulating in-situ

oceanographic data using the University of Miami Parabolic

Equation model.

With the rapid development of computer technology, machine

learning has gained remarkable results in multiple fields such as

underwater acoustics and oceanography (Doan et al., 2020; Yang

et al., 2020; Jiang and Zhu, 2022; Sadaiappan et al., 2022). It has

been fully applied in research related to mesoscale eddies. Wang,

Wang (Wang et al., 2020) constructed a predictive model for

mesoscale eddy features and trajectories using the Long Short

Term Memory network alongside the Extremely Randomized

Trees. The root mean square error between the predicted and

actual longitude (latitude) of the trajectory ranges from 28.8 km–

47.2 km (23.8 km–37.2 km). Duo, Wang (Duo et al., 2019)

developed a mesoscale eddy automatic identification and

localization network based on the object detection network,

thereby addressing the challenges posed by small samples and

complex regions of mesoscale eddies. They also designed and

optimized the object detection model using the deep residual

network and feature pyramid network as the main structure,

achieving a significantly improved recognition performance.

However, challenges persist in the research and application of

machine learning in mesoscale eddy environments. On one hand,

machine learning relies on establishing input and output datasets

for the model, posing a gap in how to introduce suitable features to

enhance the model’s generalization ability and physical credibility.

On the other hand, the CZ waveguide stands as a crucial underwater

acoustic propagation mode in the deep ocean environment,

significantly impacted by mesoscale eddies (Chen et al., 2022).

The current predicament lies in the difficulty faced by vessels

traversing far-sea routes within mesoscale eddies to access real-

time comprehensive oceanic information pertaining to these
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phenomena. Consequently, there is a pressing need to investigate

the feasibility of utilizing limited mesoscale eddy data for ensuring

underwater acoustic propagation assurance. Presently, the

prediction and assurance of underwater acoustic environments

within mesoscale eddies heavily hinge on the availability of

complete oceanic parameters for accurate simulation and

modeling. However, in instances where mesoscale eddy data are

scarce or absent, maintaining optimal underwater acoustic

performance poses significant challenges. Machine learning can

potentially predict CZ features by fitting some mesoscale eddy

features. Nevertheless, the extent of this predictive capability

requires further exploration and verification.

To address the aforementioned concerns, this study proposes a

predictive model of CZ features in mesoscale eddy environments

based on physics-informed machine learning (PIML), exemplified

in the Kuroshio-Oyashio Extension region. This model integrates

prior knowledge of physics with data-driven machine learning

models, offering an effective approach to mitigate the lack of

training data, enhance the model’s generalization capability, and

ensure the credibility of the results (Meng et al., 2022). This study

expands the acoustic features of mesoscale eddies by incorporating

relevant prior physical knowledge and utilizing methods such as

Snell’s law and Gaussian eddy modeling. This approach improves

data efficiency and enhances the rationality of the model, further

exploiting the potential for enhancing traditional analysis

and modeling.
2 Data and methods

This study initially proposes a mesoscale eddy identification

method based on the convex hull ratio. This method is employed to

identify and screen the mesoscale eddies within the KE region using the
Frontiers in Marine Science 03
high-resolution reanalysis data Japan Coastal Ocean Predictability

Experiment 2 Modified (JCOPE2M) and the mesoscale eddy datasets

provided by Archiving, Validation and Interpretation of Satellite

Oceanographic (AVISO). Physical modeling and ray acoustics are

used to extract features of mesoscale eddies and CZ for constructing

the prediction dataset. Subsequently, 20 machine learning algorithms

are screened using K-fold cross-validation and the Sparrow Search

Algorithm (SSA), and the most accurate algorithm is selected through

various evaluation indexes to construct the predictive model of CZ

features in the mesoscale eddy environment. Finally, the predictive

model is validated by integrating the Oyashio Extension (OE) region’s

mesoscale eddies and Argo data, as depicted in Figure 1. Notably, when

predicting the CZ features under a mesoscale eddy environment,

considering practical application scenarios and the model’s extension

value, the input data comprise a thermohaline contour near the center

of the eddy and the sea surface height data. The study focuses on the

CZ features of a sound source located within mesoscale

eddy environments.
2.1 Data

2.1.1 Reanalysis data
The high-resolution reanalysis dataset, JCOPE2M, covers the

western North Pacific Ocean with a temporal resolution of 1 day

and a horizontal resolution of 1/12°, divided vertically into 46 s-
layers (Miyazawa et al., 2017; Miyazawa et al., 2019). High-

resolution satellite sea surface temperature data, sea surface height

anomaly data, and in-situ data were assimilated into the model by

using the multi-scale three-dimensional variational method. It is

more widely used in studying mesoscale phenomena and flow fields

(Chang et al., 2015; Chang et al., 2018; Liu et al., 2019). In this study,

we utilized temperature and salinity data from the dataset covering
FIGURE 1

Research approach and workflow for CZ prediction model establishment. (The slice map of mesoscale eddy is derived from JCOPE2M data from
January 1, 2020, and the three-dimensional structure of sound propagation is based on simulation results from Bellhop applied to this data.).
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the geographical coordinates of 137°E-165°E and 31°N-43°N,

collected between 2012 and 2021. These data were employed to

compute the sound speed field environment using an empirical

formula for sound speed. Additionally, sea surface height data in

this dataset are utilized to assist in identifying mesoscale eddies,

providing significant reference value in localizing these eddies,

despite the discrepancy between the sea surface height data and

the actual measurements.

2.1.2 Mesoscale eddy data
The eddy dataset is based on eddy data detected by Chelton, Schlax

(Chelton et al., 2011), using multi-year AVISO satellite altimetry data

with a temporal resolution of 1 day and a spatial resolution of 0.25° ×

0.25°. They employed a program to automatically select a sea surface

height threshold and then detected closed sea surface height profiles

defined as mesoscale eddies within the threshold range. In order to

ensure the accuracy of identification, mesoscale eddies in the

JCOPE2M dataset were identified based on convex hull ratio.

Following this process, the mesoscale eddy data were compared and

filtered against the mesoscale eddy data obtained from the JCOPE2M

sea surface height dataset. Only the mesoscale eddy data whose eddy

centers in the reanalysis data deviated less than 1° from the eddy

centers in the dataset provided by Chelton, Schlax (Chelton et al., 2011)

were retained. After screening, data from 2012 to 2021, totaling 29,245

mesoscale eddies (13,849 cyclonic eddies and 15,396 anticyclonic

eddies) were selected for this study.

2.1.3 Argo data
The Array for Real-time Geostrophic Oceanography (Argo) is a

real-time observational network comprising multiple floats placed

across the ocean, aimed at acquiring quasi-real-time, large-scale,

high-resolution observations of the global ocean subsurface

(Roemmich et al., 2009). As Argo floats descend and ascend, they

gather data on the temperature and salinity of the water. Some floats

also measure additional properties related to the ocean’s biology and

chemistry. This study primarily utilizes temperature and salinity data

provided by 10,120 Argo floats between 2012 and 2021, focusing on

measurements within mesoscale eddies. There were 5,506 floats

positioned inside anticyclonic eddies and 4,614 inside cyclonic eddies.

2.1.4 Terrain data
The seafloor topographic model ETOPO1, provided by the

National Centers for Environmental Information (NCEI), is

utilized for underwater acoustic modeling and simulation within

the study area. With a spatial resolution of 1’, this model integrates a

vast array of pertinent modeled and in-situ regional data,

encompassing land topography and ocean depth data from across

the world (Amante and Eakins, 2009).
2.2 Methodology

2.2.1 Mesoscale eddy identification methods
In this study, the Sea Surface Height (SSH) closed contour

method is proposed for mesoscale eddy identification under the
Frontiers in Marine Science 04
constraint of convex hull ratio. Firstly, it calculates all the contours

in the study area within the contour interval of -150 cm–150 cm in

step size of 1 cm, filters the closed contours, and computes the

convex hull ratio of rc for each contour separately. To ensure the

alignment between the identification results and the features of

mesoscale eddies and prevent the inclusion of elongated fronts or

eddy filaments, only the closed contours of rc<1.2 are retained in

this study. The contours are grouped based on the mesoscale eddies

they correspond to, and the outermost closed contour of each group

containing the center of the eddy serves as the outer edge of the

eddy. The advantage of this method lies in its simplicity, clear

physical features, absence of required man-made parameters, and

its capability to identify and track mesoscale eddies solely using the

SSH observed by satellite altimeter. The formula is as follows, where

S represents the area of the closed contour and Sconvex represents the

area of the convex envelope of the closed contour (Equation 1).

rc = Sconvex=S (1)

Due to the large study area of this study, obvious differences are

present in the properties of the water masses of the KE and the OE,

alongside the complex interactions of the eddies within them (Yao

et al., 2023). Therefore, the study area is divided into 2 regions as

illustrated in Figure 2: the KE 31°-38°N, 137°-165°E (Region I) and

the OE 38°-43°N, 142°-165°E (Region II).

2.2.2 Calculation methods for underwater
acoustic propagation

Prior to underwater acoustic simulation, the JCOPE reanalysis

temperature and salt data were first converted to sound speed data

using the Mackenzie empirical formula for sound speed (Mackenzie,

1981). Yang, Lu (Yang et al., 2018) discovered that the Bellhop model

provides an excellent fit to the observed distance from the CZ in actual

underwater acoustic experiments. Bellhop underwater acoustic model

is also employed in this study for underwater acoustic propagation

simulation in a mesoscale eddy environment. The model relies on a

Gaussian beam-tracking algorithm to compute the transmission loss in

a horizontally inhomogeneous environment. Each acoustic ray is

associated with a Gaussian intensity as the central acoustic ray of the

Gaussian ray, and the simulated acoustic ray propagation process aligns

well with the results of the full-fluctuation model (Porter, 2011). The

evolution of acoustic beams in the Bellhop model is determined by the

beamwidth, p(s), and the curvature of the beam, q(s). The differential

equations governing p and q are given by Equations 2 and 3.

dq
ds

= c(s)p(s) (2)

dp
ds

=
cm
c2(s)

q(s) (3)

where cm is the speed of sound and c(r,s) is the second-order

derivative in the path direction as indicated by Equation 4.

cm = crr
dr
dn

� �2+2crz dr
dn

� �
dz
dn

� �
+ czz

dz
dn

� �2
    = crr N rð Þ

� �2+2crz N rð Þ
� �

N zð Þ
� �

+ czz N zð Þ
� �2 (4)
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Where (N(r))(N(z)) is the unit normal in both directions and can

be expressed as Equation 5.

N rð Þ
� �

N zð Þ
� �

=
dz
ds

, −
dr
ds

� �
= c sð Þ z sð Þ,−r sð Þ½ � (5)

In summary, the beam can be defined as Equation 6.

u(s, n) = A

ffiffiffiffiffiffiffiffiffiffi
c sð Þ
rq sð Þ

s
e −iw t sð Þ+0:5 p sð Þ=q sð Þ½ �n2f gð Þ (6)

where A is a constant determined by the nature of the source, n

is the vertical distance of the sound ray, and w is the angular

frequency of the source. Finally, the sound source beam is weighted

as Equation 7.

A(s) = da
1
c0

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q sð Þw cosa

2p

r
e

ip
4ð Þ (7)

where da is the angle between the beams.

The primary difference between Bellhop and the traditional ray

model lies in the utilization of the Gaussian beam tracking method

rather than the traditional geometric beam tracking method. This

method effectively overcomes the shortcomings of the traditional

ray model, where the sound intensity in the shadow area is 0 and the

sound intensity at the focal dispersion line cross section is infinite.

The parameters of the Bellhop model are presented in Table 1, with

the seafloor parameters adopted from Hamilton’s acoustic

parameters of the seafloor substrate (Hamilton, 1980).

Particularly, to mitigate the impact of the mixing layer on

underwater acoustic propagation, the sound source depth in this

study is positioned within the eddy at a depth of 150 m.
Frontiers in Marine Science 05
3 Physics-informed machine
learning modeling

3.1 Feature parameter extraction method

Although machine learning can derive complex relationships

between inputs and outputs from a given set of input-output pairs

by optimizing based on abundant data, the integration of physically

based a priori knowledge remains crucial in discovering optimal

solutions. In this study, the two-dimensional sound speed field

within a mesoscale eddy is inverted using Gaussian eddy modeling

based on the structure of the acoustic profile within the eddy.

Subsequently, the distance to the CZ based on the Gaussian eddy is

calculated. Additionally, theoretical calculations of CZ distance and

turning depth in a layered medium environment are performed

using the Snell’s Law. The three features—CZ distance computed by

the two physical models and turning depth serve as a priori

knowledge for the predictive model. They are incorporated into

the input features to enhance the model’s physical interpretability.
3.1.1 Two-dimensional slow-variable deep-sea
Gaussian eddy ocean models

Based on the spatial configuration of the mesoscale eddy and

the temperature field distribution characteristics under its influence,

acoustic profile data within the mesoscale eddy are used to

construct a Gaussian eddy model, which is widely applied in the

field of mesoscale eddy modeling (He et al., 2021; Zhai and Yang,

2022). In this study, the model is utilized to reconstruct the cross-

section of mesoscale eddies, as shown in Figure 3C. Using the
TABLE 1 Sound source and seafloor parameters settings.

Sound Source Parameters Source Frequency Grazing Angle Range

1 kHz amin°-amax

Seafloor Parameters
Density Compressional Wave Speed Attenuation Coefficient

1.421 g/cm3 1520 m/s 0.12
BA

FIGURE 2

(A) Identification of mesoscale eddies in the Kuroshio‐Oyashio Extension region on January 1, 2020. The red closed contour represents the outer
boundary of the identified mesoscale eddies, and the green circles indicate the positions of the eddy centers. (B) Distribution map of the positions of
the mesoscale eddy center obtained by comparing the identification results of the closed contours based on JCOPE2M SSH data with the selected
AVISO data.
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Bellhop model, simulations are performed on the reconstructed

cross-section’s sound speed field to determine the CZ distance

based on the Gaussian eddy model under limited data conditions.

The sound speed expression of the model is given by Equations 8, 9,

and 10.

c r, zð Þ = c0 zð Þ + dc r, zð Þ (8)

c0 zð Þ = C1 1 + 0:00741 e−h − 1 − hð Þ½ �f g (9)

dc(r, z) = DC � e−
r−Re
DRð Þ2− z−Ze

DZð Þ2 (10)

where r represents the horizontal distance to the eddy center and

z represents the vertical distance to the eddy center. c0 is the Munk

profile model (Munk, 1974), h = 2(z–z1)/1300, c1 is the sound speed

at the sound channel axis, and z1 is the depth at the sound channel

axis. DC is the eddy strength, with negative (positive) DC for cyclonic

(anticyclonic) eddies, DR is the horizontal radius of the eddy, DZ is

the vertical radius of the eddy, Re is the horizontal position of the

eddy center, and Ze is the vertical position of the eddy center. These

parameters, tailored for the Kuroshio‐Oyashio Extension region,

were determined through statistical analysis of data collected

during mesoscale eddy identification in this study, with DC

representing sea surface height, DR as 200 km, and DZ as 150 m,

which are primarily applicable to the region. The schematic diagram

of the Gaussian eddy and the modeling results are shown in Figure 3.

3.1.2 Model of ideal convergence zone based on
Snell’s law

The distribution of the speed of sound along the depth is

arbitrary. It is possible to divide this distribution into multiple
Frontiers in Marine Science 06
layers, ensuring that each layer maintains a constant sound speed

gradient. Consequently, the paths traversed by sound rays through

each layer will either form circles (when there’s a non-zero sound

speed gradient) or remain straight (in the case of zero sound speed

gradients, indicating a homogeneous layer). Let the sound speed

distribution in the ocean be divided into n layers, with the thickness

of each layer being hi, and the sound speed values at the upper and

lower interfaces of each layer being ci–1 and ci i = 1, 2, · · ·nð Þ. The
upper interface of the first layer is the sea surface, and its sound

speed is c0. Additionally, the lower interface of the nth layer is the

sea floor, and its sound speed is cn. Assuming that the source and

receiver are placed at 150 m (the speed of sound at this location is

denoted as cs, depth of sound source s = 150), the formation of the

CZ requires that, in addition to the presence of a very small value of

the speed of sound, it is also necessary to ensure that the line of

sound with an exit angle of a can be flipped in the plane of the

seafloor.

cn > cr       r = s, s + 1, · · ·n − 1 (11)

cr = cs= cosa0 = cs+1= cosa1 = · · ·cn−1= cosan−1 (12)

In the Equations 11 and 12, cr is called the characteristic

parameter of a certain sound ray (a sound ray with an outgoing

angle a0), which is equal to the speed of sound at the turning depth

for that sound ray. Among the countless sound rays emanating

from a non-directional source, only the sound ray at cn>cr
contributes to the CZ. Thus, the maximum sound source

outgoing angle for the formation of the CZ can be obtained as

Equation 13.

amax ≤ arccos cs=cn (13)
FIGURE 3

Schematic of Gaussian eddy: (A) Gaussian eddy model; (B) a mesoscale eddy sound speed section in the study area on January 2, 2021 based on
JCOPE2M reanalysis data; (C) schematic of the sound speed structure constructed based on Gaussian eddy.
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For the sound ray of cn<cr, it will be reflected by the seafloor,

forming a seafloor reflection propagation. If the source layer cs<c0,

i.e. the surface layer, is a mixed layer channel, only the sound ray

cr>c0 will contribute to the CZ. Thus, the minimum sound source

exit angle can be obtained to form the CZ as Equation 14.

amin ≥ arccos c0=cs (14)

Snell’s law explains why the depth of turning plays a key role in

the distance to the CZ. When the source is located at z = zs, the

horizontal distance traveled by a sound ray with an outgoing initial

angle of a is derived by Equation 15.

CZDðSÞ = 2 cosa
Z z

zs

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 zð Þ − cos2 a0

p (15)

where CZD(S) is the horizontal distance that the sound ray

travels, n(z) = c0/c(z) is the refractive index, and z is the reversal

depth, which refers to the depth at which the sound speed reaches

the turning sound speed. Obviously, the turning depth determines

the maximum depth at which the sound ray bends downward

and the horizontal distance of the CZ.
3.2 Model features and model
evaluation criteria

3.2.1 Model input and output features
Mesoscale oceanic phenomena cause significant shifts in the

underwater acoustic environment features such as sound channel

depth, acoustic layer thickness, and surface sound speed, which

undergo drastic changes due to these phenomena. Particularly, the

presence of mesoscale eddies can considerably shift the CZ,

significantly impacting underwater acoustic propagation (Etter,

2013). The input features for the CZ predictive model developed

in this study comprise a total of 10 parameters: 1. Surface Sound

Speed; 2. Sound Channel Axis Depth; 3. Sonic Layer Depth (SLD);

4. Transition Layer of Sound Speed; 5. Sea Surface Height Gradient;

6. Radius; 7. Sea Surface Height; 8. Turning Depth (TD); 9. CZ

Distance based on Gaussian Eddy [CZD (GE)]; 10. CZ Distance

based on Snell’s law [CZD (S)]. Additionally, two parameters are

included in the output features: 1. CZ Distance (CZD); and 2. CZ

Width (CZW). The main feature definitions and computation

methods are detailed in Table 2. Notably, TD, CZD (GE), and

CZD (S) are features computed based on prior physical knowledge,

rather than directly extracted from the marine environment. This

physical information forms the basis for constructing the

predictive model.

Before model training, the extracted features are first analyzed.

Taking the anticyclonic eddy as an example, the degree of mutual

influence between each element is analyzed using Spearman

correlation, considering that the extracted ocean features and the

CZ features are not necessarily all linearly correlated. The relative

importance of the feature variables is calculated based on the

Random Forest algorithm using out-of-bag error (Mitchell, 2011),

as shown in Figure 4. The correlation between the distance to the

first CZ and each feature is investigated as an example.
Frontiers in Marine Science 07
The contribution of different features to CZ distance prediction is

explored. Among the directly extracted marine features, SLD holds

the highest relative contribution to prediction, reaching 13.89%.

Additionally, the physical information displays higher correlation

and features relative importance. For instance, CZD (GE), modeling

and reconstructing mesoscale eddies by the Gaussian eddy model,

demonstrates a high correlation of 0.86 and feature importance of

23.01%. TD shows the highest correlation of 0.90, but its feature

importance is only 12.96%, lower than that of CZD (S) with a

correlation of 0.09 at 15.39%. This might be attributed to the

nonlinear correlation between CZ features and oceanic features.

In summary, the features selected in this study exhibit a high

contribution rate and a relatively uniform distribution in

predicting CZ features. The parameters in Table 2 serve as input

features in the next model construction.

3.2.2 Model evaluation criteria
The model evaluation index uses Mean Absolute Error (MAE)

and Accuracy (Equations 16 and 17). A smaller MAE indicates a
TABLE 2 Feature calculation method.

Hallmark Calculation method Unit
(of
measure)

Surface
sound speed

Sound speed value at the sea surface of
the sound profile

m/s

Sound channel
axis depth

The depth at which the sound speed
reaches its minimum in the
sound profile

m

Sonic layer depth
Maximum depth at which there is a
positive gradient of sound speed near the
sea surface in seawater

m

Transition layer of
sound speed

Vertical gradient of sound speed between
the acoustic channel axis and the
acoustic layer

(m/s)/m

Sea surface
height gradient

The ratio between the difference of the
eddy center height and the eddy edge
height, and the horizontal distance.

cm/km

Radius The radius of the mesoscale eddy km

Sea surface height
Sea surface height of the center of the
mesoscale eddy

cm

Turning depth
The depth at which the speed of
sound turns

m

Convergence zone
distance based on
Gaussian Eddy

The convergence distance obtained from
Gaussian eddy modeling based on the
acoustic profile inside the eddy

km

Convergence zone
distance based on
Snell’s law

The ideal convergence distance was
obtained from the acoustic profile inside
Eddy and Snell’s law

km

Convergence
zone distance

The horizontal position of the turning
point along the acoustic ray with an exit
angle amin from the sound source.

km

Convergence
zone width

The difference in convergence distance
between the acoustic rays with exit
angles of amin and amin

km
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larger Accuracy, lower dispersion between the model’s predicted

value and the real value, and a higher predictive ability of the model.

MAE =
1
no

n

i=1
yi − ŷ ij j (16)

Accuracy (m km) =
o
n

i=1
Ai

n
� 100% (Ai =

1, yi − ŷ ij j ≤ m

0, yi − ŷ ij j > m
)

(
(17)

Where yi represents the real value of CZ prediction, i.e., the value

obtained by Bellhopmodel simulation, and ŷ represents the predicted

value, i.e., the features of CZ obtained by the predictive model.
3.3 Model building and training process

After constructing the dataset of input and output features, this

study predicts the CZ based on 20 regression algorithms, spanning

ensemble approaches (such as SVM and random forest [RF]), deep

learning techniques (including CNN and LSTM), and ensemble

models (e.g., Multilayer Perceptron–RF [MLP-RF], CNN-GRU).

Each algorithm was selected due to its distinctive strengths and

potential to offer high predictive accuracy. The relevant algorithms

and hyperparameters to be optimized are shown in Table 3. The

MLP is optimized using Back Propagation. Ensemble models

primarily focus on the integration of deep learning models

(including CNN and RNN-based models such as CNN-LSTM,

CNN-BiLSTM, and CNN-GRU) as well as the integration of

other commonly used simple models (including MLP-RF, MLP-

DT, MLP-SVM, and SVM-RF).
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The model screening in this subsection is based on the example

of the CZ waveguide where the sound source is located in the

anticyclonic eddy of study area I and propagates southward. Prior to

sample training, the extracted feature dataset is divided into

training, validation, and test sets in the ratio of 8:1:1. To improve

the convergence speed of the model and the interpretability of the

features, the features are firstly standardized. Then, the feature

dataset is divided into 10 parts using k-fold cross-validation with

approximately 707 samples in each part. Two parts are selected as

the validation set and the test set, respectively, and the remaining

samples constitute the training set. In each case, the model is trained

with the training set, tested with the test set, and the process is

repeated 10 times. The average results of these 10 repetitions are

taken as the final generalization accuracy evaluation index. The

formula used is as follows, where Ei represents the model evaluation

index in each training process as shown in Equation 18.

E =
1
10o

10

i=1
Ei (18)

Additionally, apart from the 13 single models listed Table 3, there

are 7 ensemble models. These ensemble models combine multiple

weaker models, adjusting sample weights and model contributions to

achieve significantly better generalization performance compared to

single models. The process involves creating diverse base models using

various sampling or preprocessing techniques on the training data,

which are then combined to improve overall prediction accuracy and

generalization. The key to this method is optimal integration,

determined by a threshold (q = 0.1). If the model difference (|E1–E2|/

max(E1–E2)) exceeds this threshold, no combination occurs.

Otherwise, the model with the smaller error (MAE in this study) is
FIGURE 4

Correlation analysis of oceanic and CZ features extracted from anticyclonic eddies and feature significance based on Random Forest out-of-
bag error.
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chosen as the final model. When amalgamating the weights of the two

models, Equations 19 and 20 are employed, where W denotes the

combination weight and yV represents the prediction result of the two

models:

ŷ = W1yV1 +W2yV2 (19)

W1 =
E2

E1 + E2
,W2 =

E1
E1 + E2

(20)

To ensure reasonable settings for each hyperparameters in

Table 3 during model training, this study uses the SSA. This

algorithm represents a new type of swarm intelligence optimization

algorithm inspired by the foraging and antipredation behaviors of

sparrows. The SSA simulates the strategies and behaviors of sparrows

during foraging. It effectively explores the solution space and aims to

seek the optimal or near-optimal solution. Known for its global

search ability and convergence, SSA is applicable for solving various

optimization problems (Xue and Shen, 2020).

During the training process, this study assesses the prediction effect

of two cases: machine learning with physical information inputs [TD,

CZD (GE), and CZD (S)] and machine learning without physical

information inputs, and the prediction accuracy is assessed as shown

in Figure 5, after training and evaluating each model. RF regression is

found to be the optimal performer in prediction with an Accuracy

(1km) of more than 85% for both its single and ensemble models,

followed by physical information and machine learning, which shows

great potential in the prediction of CZ features. The model achieves a

maximum reduction of 0.82 km in MAE compared to the case of no

physical information input by incorporating an appropriate physical

model. When there is limited data on the marine environment, the

Accuracy (1km) is improved ranging from 2.80 to 11.92%. Taking all

these considerations into account, the ensemble model with the highest
FIGURE 5

Comparison of predictive models for CZD using PIML and no physical information input machine learning algorithms: focus on anticyclonic eddies in
research area I.
TABLE 3 Multiple regression model main parameters settings.

Algorithm Parameters Algorithm Parameters

Generalized
Regression Neural
Network (GRNN)

Spread
coefficient

Decision
Tree (DT)

Minimum
samples per leaf

Extreme Learning
Machine (ELM)

Number of
hidden units

Generalized
Additive
Models
(GAM)

Numbers
of trees

Activation
function

Learning Rate

Random Forest (RF)

Numbers
of trees Least Squares

Boosting
(LSBoost)

Number of
Learning Cycles

Minimum
samples per leaf

Learning Rate

Long Short-Term
Memory (LSTM)/
Bidirectional LSTM
(BiLSTM)/Gated

Recurrent
Unit (GRU)

Number of
hidden layers

Extreme
Gradient
Boosting
(XGBoost)

Maximum
number

of iterations

Number of
hidden

layer units
Minimum depth

Dropout Rate
Minimum

samples per leaf

Convolutional Neural
Network (CNN)

Number of
feature map Support

Vector
Machine
(SVM)

Kernel scale

Stride Box constraint

Multilayer
Perceptron (MLP)

Number of
hidden layers

Epsilon

Number of
hidden

layer units
The main settings of the ensemble model are the same as those of the single models
described above.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1364884
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xu et al. 10.3389/fmars.2024.1364884
accuracy, MLP-RF, was identified as the machine learning model to

perform the prediction of CZ features in the mesoscale eddy

environment in this study, with an MAE of 0.93 km and an

Accuracy(1km) of 87.36% after K-fold cross-validation.
4 Model prediction results

4.1 Two-dimensional prediction results

In this section, the CZ features of the cyclonic and anticyclonic

eddies in the Study Area I are initially predicted. Based on the

optimal predictive model obtained in the previous section—using

extracted ocean features to predict the distance to the CZ— this

subsection still considers the sound source located in the center of

the eddy propagating southward as an example. The trend of the

distance and width of the first CZ can be accurately predicted by

relying solely on one acoustic contour line within the center of the

eddy and the eddy’s features. Figure 6 illustrates the line plots of the

predicted results of the CZ distance and width within Study Area I

(taking the first three hundred predictions as an example), along

with the scatter density plots. The MLP-RF-based CZ predictive

model can effectively predict the CZ features using mesoscale eddy

features under limited data. The machine learning-based prediction

method in the line plot accurately predicts the CZ trends, and the

scatter points in the scatter plot are closely distributed near the 1:1

line. The width of the CZ is calculated from two acoustic lines

emitted from the minimum and maximum outgoing angles, which

introduces more uncertainties and errors than the distance

calculation from one acoustic line. Consequently, the accuracy of

the width prediction is slightly lower than that of the distance. The

Accuracy(1km) of the CZ distance prediction in the anticyclonic

eddy environment is 86.88%, the MAE is 0.92 km, the Accuracy

(1km) of the CZ width prediction is 79.49%, and the MAE is

1.49 km; the Accuracy(1km) of the CZ distance prediction in the

cyclonic eddy environment is 91.40%, the MAE is 0.69 km, and the

predicted Accuracy(1km) of the CZ width is 72.23% with a MAE

of 1.85 km.
4.2 Three-dimensional prediction results

CZ waveguides facilitate long-distance detection and

communication. This study extends the previous research to

investigate the first three CZ within a mesoscale eddy environment.

To simplify the prediction process, the first three CZs are predicted in

four directions: east, south, west, and north, for the sound source

positioned at the center of the eddy. The predicted distances of the CZs

in each direction are averaged and superimposed on the averaged

predicted widths. These predictions are then compared with the 3D

underwater acoustic propagation results obtained by simulating high-

resolution mesoscale eddy ocean data through Bellhop. Figure 7

displays the comparison maps using the anticyclonic eddy on the

first day of each month in 2021 as an example. The evaluation focuses

on the prediction results in different directions. The TL represents the

loss of acoustic energy from the source emissions during propagation,
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which is derived from Bellhop simulations. The concentric area in

Figure 7 with a lower TL corresponds to the CZ.

In this study, the effectiveness of feature prediction for the first

three CZs in the anticyclonic eddy environment and the cyclonic

eddy environment was evaluated (Tables 4 and 5). In the

anticyclonic eddy environment, predictions of distance and width

of the first CZ shows high accuracy in all directions, with MAE

between 0.99 and 1.46 km and an accuracy (within 3 km) of more

than 95%. The prediction accuracy gradually decreases with the

increase of the CZ number, especially when the MAE of the third

CZ distance and width rises to 3.63–4.57 km, and the accuracy

decreases from 76.78% to 82.33%. In the cyclonic eddy

environment, the MAE for predicting the distance and width of

the first CZ range from 0.67 to 2.38 km, and the accuracy (within

3 km) stays at 93.35% to 99.23%. However, the difficulty of

prediction significantly increases with the number of CZs. In the

third CZ, the MAE for distance and width increases to 2.74–6.51

km, while accuracy decreases from 67.88% to 89.59%.

In summary, the model demonstrates the initial feasibility of

using limited data within mesoscale eddy ocean environment to

predict CZ features. It exhibits considerably high accuracy,

particularly in predicting the first CZ. However, as the prediction

span extends (such as in the case of the third CZ, typically around

180 km), relying solely on mesoscale eddy features within a radius

of approximately 100 km for predicting these initial three CZs

inevitably introduces errors. Nevertheless, the current model

showcases adaptability and robustness across diverse mesoscale

eddy environments, maintaining an overall acceptable prediction

error. These evaluation results underscore the model’s potential for

accurate predictions within highly dynamic environments, laying a

strong foundation for future predictions under more complex

oceanographic conditions.
5 Validation and generalization of
the model

5.1 Validation of study area II

Study Area II is a region of OE where mesoscale eddies have a

significant impact on the oceanographic properties of the region

(Yang et al., 2022). This region exhibits different dynamics

compared to the KE region. In this study, the pair of mesoscale

eddies in this region is used as a comparison, and the features of the

CZ in the mesoscale eddy environment in this region are directly

predicted using the model trained in the previous section. By

subtracting the predictions from the full-element ocean

simulation results, the prediction errors in the four directions for

the first three CZs are obtained, and box plot as well as line plots of

the average prediction errors are plotted accordingly (see Figure 8).

The whisker length in the box plot was determined by extending to

1.5 times the interquartile range beyond the box, which is defined by

the first and third quartiles. Data points falling more than 1.5 times

the interquartile range above the third quartile or below the first

quartile were identified as outliers, and whiskers extended to the

furthest non-outlier data points.
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Consistent with the findings in the previous section, the

prediction errors between different CZs exhibit significant

variability. After analyzing 12 sets of data for both types of

eddies, it is observed that the distribution of prediction errors

exhibits a high degree of consistency. The prediction errors in the

first CZ are significantly lower than those in the other two regions,

exhibiting good agreement in their mean and median values. For

the anticyclonic eddy, the median prediction error for the distance

from the first CZ is approximately 0.5 km. The interquartile range

predominantly spans between 0 and 1 km, with the whisker line
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endpoints roughly between -2 and 3 km. Concerning the cyclonic

eddy, the median prediction error is less than 0.1 km, with an

interquartile range predominantly between -0.5 and 0.5 km, and

whisker line endpoints are roughly between -2.5 and 2.5 km. The

prediction errors for the width of the first CZ are similar for both

eddies, with a median of approximately -1 km, an interquartile

range of -2.5 km to 0.5 km, and whisker line endpoints roughly

between -6 and 4 km. In contrast, the prediction errors of the

second and third CZs are relatively high, and the predicted values of

the CZ distances are still smaller than the simulated values, with the
B

C D

E F

G H

A

FIGURE 6

CZ prediction line and scatter density plots in two-dimensional mesoscale eddy environments: (A) anticyclonic eddy CZ distance prediction line plot;
(B) anticyclonic eddy CZ distance prediction scatter density plot; (C) anticyclonic eddy CZ width prediction line plot; (D) anticyclonic eddy CZ width
prediction scatter density plot; (E) cyclonic eddy CZ distance prediction line plot; (F) cyclonic eddy CZ distance prediction scatter density plot;
(G) cyclonic eddy CZ width prediction line plot; (H) cyclonic eddy CZ width prediction scatter density plot.
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interquartile ranges of the second CZ predominantly between -1

and 2 km, and the interquartile ranges of the third CZ

predominantly between -1 and 5 km. The predicted values of

cluster width are still larger than the simulated values, the second

cluster quartile range is predominantly around -5 km–0 km, and the

third cluster quartile range is predominantly around -7 km–1 km.

The comparison of prediction errors among the four directions

suggests significant differences in the four directions eastward,

southward, westward, and northward. Specifically, the prediction

error of the CZ propagating to the west is the smallest, indicating a

stronger prediction ability of the model in that direction. The

relatively higher prediction error for the CZ propagating
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northward may be related to the fact that the Study Area II is

located at the southern end of the OE, and the changes of oceanic

elements are more complicated in this direction, thus negatively

affecting the prediction accuracy of the model.

In summary, based on the analysis results of the grouped box

plot, the prediction error of the CZs in the mesoscale environment

varies across CZ and directions. The prediction error increases with

the prediction span of the CZ, with lower prediction error in the

first CZ and higher prediction error in the second and third CZ. The

prediction errors are lowest for CZ propagating westward and

relatively high for those propagating northward. These results

suggest that the prediction errors of raw CZ in mesoscale eddy
FIGURE 7

The schematic diagram of simulation of mesoscale eddy transmission loss and machine learning-based CZ prediction results in the KE region in
2021 (illustrating one mesoscale eddy per month, with the annular area of low transmission loss as the CZ).
TABLE 4 Evaluation of predictive performance for CZ features in the anticyclonic eddy environment.

Assessment
of indicators

Southward Northward Eastward Westward

Distance Width Distance Width Distance Width Distance Width

First CZ
MAE 1.11 1.45 0.99 1.41 1.09 1.42 1.00 1.46

Accuracy (3 km) 95.01 95.76 96.16 96.28 96.39 96.99 96.51 96.35

Second
CZ

MAE 2.42 2.87 2.17 2.81 2.36 2.84 2.26 2.91

Accuracy (3 km) 86.33 83.87 90.02 84.87 88.67 85.22 88.51 83.91

Third CZ
MAE 3.96 4.30 3.63 4.21 4.00 4.42 3.63 4.57

Accuracy (3 km) 78.80 78.49 80.31 78.09 79.48 78.05 82.33 76.78
The unit of MAE is km, and the unit of Accuracy is %.
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environments are related to the complexity and stability of the

marine environment.
5.2 Validation of underwater acoustic
propagation simulation based on
in-situ data

JCOPE2M assimilates various in-situ data, including Argo and

sea surface height data. As stated in Section 2.1.2, the mesoscale

eddies used in this study are features that are simultaneously

present in the reanalysis data and sea surface height data. This

study considers these eddies to be real.

Therefore, to further verify whether the predictive model

proposed in this study can utilize limited in-situ observational

data to predict the features of sound CZ in the mesoscale eddy

environment, seven input features from the previous model are

extracted using Argo floats. This extraction excludes the height,

radius, and horizontal gradient of the sea surface. The selection

criteria for mesoscale eddies and Argo floats are as follows: using the

distribution data of mesoscale eddies provided by AVISO, this study

selects mesoscale eddies with Argo float data available within 3° of

the eddy center for three days before and after the existence of the

eddy as validation samples for this section. The features of the
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remaining mesoscale eddies without Argo float data are utilized as

the training dataset for the model.

The distribution of Argo and its latitude distribution utilized in

this study are initially plotted, as depicted in Figure 9. These

distributions exhibit similarities to the mesoscale eddy

distribution identified in Figure 2, validating them as

representative mesoscale eddies. In the evaluation, the prediction

performance of anticyclonic eddies shows higher accuracy,

especially in the first CZ (Tables 6 and 7). Specifically, the MAE

of the first CZ distance ranges between 2.36 to 2.50 km, with

accuracy ranging from 81.85% to 84.24%; while the MAE of width

ranges between 2.00 to 2.15 km, with accuracy ranging from 90.65%

to 91.85%. In comparison, the prediction performance of cyclonic

eddies is slightly inferior, with MAE of the first CZ distance ranging

from 2.66 to 2.87 km, and accuracy ranging from 77.26% to 80.99%;

and MAE of width ranging from 2.88 to 3.10 km, with accuracy

ranging from 80.58% to 84.51%. In width prediction, the accuracy

of both anticyclonic and cyclonic eddies is generally higher than

that of distance prediction, possibly due to the smaller scale of width

parameters, exhibiting higher accuracy under the same 3 km

precision evaluation criteria.

As the span of the CZ widens, the prediction accuracy for both

types of eddies decreases. In predicting the third CZ distance, the

MAE values for anticyclonic eddies increase to 6.71–7.24 km and
BA

FIGURE 8

Box plot of prediction errors for mesoscale eddy CZs in the oceanic area of the OE: (A) anticyclonic eddies; (B) cyclonic eddies (where S, N, E, and
W represent the propagation of acoustic rays emitted from the sound source located at the center of the eddies to the south, north, east, and
west, respectively).
TABLE 5 Evaluation of predictive performance for CZ features in the cyclonic eddy environment.

Assessment
of indicators

Southward Northward Eastward Westward

Distance Width Distance Width Distance Width Distance Width

First CZ
MAE 0.76 2.28 0.67 2.38 0.71 2.33 0.68 2.36

Accuracy (3 km) 98.54 93.93 98.77 93.85 98.66 94.81 99.23 93.35

Second
CZ

MAE 1.82 4.15 1.63 4.46 1.73 4.11 1.68 4.39

Accuracy (3 km) 93.74 77.76 95.47 79.64 94.47 77.87 95.47 77.18

Third CZ
MAE 3.00 5.74 2.78 6.51 2.96 5.79 2.74 6.35

Accuracy (3 km) 87.86 68.54 89.40 69.61 89.24 68.57 89.59 67.88
The unit of MAE is km, and the unit of Accuracy is %.
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the accuracy decreases to 59.24%–65.98%. In contrast, the MAE

values of cyclonic eddies increase to 7.37 km–8.45 km and the

accuracy decreases to 56.34%–63.18%. This trend suggests that

more distant CZ pose greater challenges for predictive modeling,

potentially due to the increased complexity of ocean dynamics

associated with a wider CZ span. Overall, anticyclonic eddies tend

to be better predicted than cyclonic eddies. However, both exhibit

significantly lower prediction accuracies than the features extracted

via JCOPE2M. For practical application, incorporating more Argo

float-extracted features and their corresponding 3D mesoscale eddy

structures into the training and test sets could offer a means to

derive the acoustic propagation properties of mesoscale eddies

solely from data returned by Argo floats and satellite altimeters.
6 Conclusion

In this study, a new method is proposed to identify oceanic

mesoscale eddies based on the convex hull ratio. High-resolution

reanalysis data and an AVISO-based mesoscale eddy dataset are

utilized to screen tens of thousands of mesoscale eddies exhibiting

significant features in both datasets. Key features of these eddies and

CZs are extracted using physical modeling and acoustic line

tracking techniques. Subsequently, a robust prediction dataset is

established based on these extracted features. Throughout the

model construction process, K-fold cross-validation and SSA are

employed to select the most accurate algorithms from a pool of 20
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machine learning algorithms. This leads to the formation of a

mesoscale eddy CZ predictive model that demonstrates high

accuracy and strong generalization ability, particularly when

dealing with limited data.

The findings of this study indicate the effectiveness of the

proposed identification method in screening mesoscale eddies

with eddy features within the KE region. The CZ predictive

model, constructed using the MLP-RF algorithm, performs

impressively in accuracy assessment, achieving an MAE of

0.93 km and an accuracy rate (1km) of 87.36%. Moreover, the

integration of physical information into machine learning exhibits

significant potential in predicting CZ features. When marine

environmental data are limited, incorporating suitable physical

information [such as TD, CZD (GE), and CZD (S)] contributes to

a maximum reduction of 0.82 km in MAE and an improvement in

Accuracy (1km) by 2.80% to 11.92% compared to the model

without physical information input.

On this basis, the effectiveness of feature prediction for the first

three CZs in both the anticyclonic and cyclonic eddy environments

was further evaluated. The predictions for distance and width of the

first CZ in both eddy types demonstrate high accuracy in all

directions, with MAE of approximately 1.00 km and accuracy

(within 3 km) exceeding 95%. However, as the sequence number

of the CZ increases, the prediction accuracy gradually diminishes.

Specifically, the MAE for distance and width of the third CZ rises to

approximately 4 km, with an accuracy decrease to 70%–80%. This

result implies an increased challenge for the model when predicting
BA

FIGURE 9

Distribution of Argo screened for CZ prediction in this study: (A) Argo location distribution map; (B) Argo distribution with latitude.
TABLE 6 Assessment of the effectiveness of anticyclonic eddy prediction based on Argo data.

Assessment
of indicators

Southward Northward Eastward Westward

Distance Width Distance Width Distance Width Distance Width

First CZ
MAE 2.49 2.15 2.36 2.01 2.46 2.00 2.50 2.05

Accuracy(3km) 82.55 90.65 83.86 91.63 84.24 91.85 81.85 91.63

Second
CZ

MAE 4.82 4.04 4.56 3.86 4.68 3.98 4.79 3.87

Accuracy(3km) 66.68 80.33 69.46 80.65 68.10 78.04 66.74 81.25

Third
CZ

MAE 6.83 5.96 6.71 5.79 7.24 5.80 7.18 5.91

Accuracy(3km) 60.76 71.90 62.39 74.08 65.98 71.63 59.24 73.15
The unit of MAE is km, and the unit of Accuracy is %.
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more distant CZs. This challenge is associated with the number of

features inputs of mesoscale eddies and the complexity of

ocean dynamics.

To verify the generalizability and practical value of the model,

this study validates the predictive model by cross-validating the sea

area and Argo float data. This validation approach exhibits excellent

performance in assessing the prediction accuracy of CZ features. In

the future, considering more Argo float data and constructing a

dataset closely resembling the actual mesoscale eddy environment

through the 3D mesoscale eddy structure of the in-situ information

can further enhance the predictive capability of the model.

The present study focuses on predicting acoustic CZs in

mesoscale eddy environments in the Kuroshio‐Oyashio Extension

region with limited data. Utilizing a wide range of high-resolution

reanalysis data and screening satellite altimeters as an alternative to

in-situ data are representative techniques to a certain extent.

However, it still has a gap in reflecting the actual environment of

mesoscale eddies. Several challenges persist. Firstly, it remains

challenging to achieve real-time acoustic parameter prediction of

the mesoscale environment with maximum accuracy while building

as few submerged or floating arrays as possible. Secondly, resolving

the scarcity of in-situ mesoscale eddy data and acoustic CZ

observations during model construction is crucial. It is hoped that

the methodology and insights presented in this study will inspire

further investigations and contribute to the ongoing advancements

in the field of ocean acoustics, particularly in establishing robust

and globally applicable predictive models for mesoscale

eddy parameters.
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