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The effect of exopolysaccharides
from EMS-induced Porphyridium
cruentum mutant on human
epidermal and dermal layers
Sang-Il Han1†, Young Mok Heo2†, Min Seo Jeon1,
Seoyeon Kyung2, Seunghyun Kang2, Soon-Jae Kwon1,
Jai Hyunk Ryu1, Jae Hoon Kim1 and Joon-Woo Ahn1*

1Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup,
Republic of Korea, 2Research & Innovation Center, COSMAX BTI, Seongnam, Republic of Korea
Introduction: Microalgae biotechnology utilizes species like Porphyridium

cruentum for their valuable phycobiliproteins and exopolysaccharides, which

have potential industrial applications and health benefits, particularly in skin

condition improvement.

Methods: A mutant of P. cruentum LIMS-PS-1061 was developed through ethyl

methanesulfonate mutagenesis and subsequent colony screening to study

changes in its biomass production and pigment composition under different

lighting conditions.

Results and discussion: Themutant exhibited a 33.9% increase in dry weight under

white light compared to the wild type. Despite maintaining the total pigment

content, specific components changed significantly: chlorophyll content

decreased 2.20- and 3.61-fold under white and blue light respectively, while

phycobiliproteins increased 1.59- and 1.23-fold under the same conditions. These

alterations suggest a compensatory mechanism for maintaining photosynthetic

capacity. Furthermore, the exopolysaccharides of P. cruentum upregulated genes

related to skin moisturization, barrier enhancement, and elasticity, and promoted

wound healing through fibroblastmigration. This supports the proposedmechanism

of action for P. cruentum’s exopolysaccharides in improving human skin conditions

by integrating the effects of aquaporin 3, filaggrin, involucrin, loricrin, elastin, and

fibrillin-1.
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Porphyridium cruentum, ethyl methanesulfonate, phycobiliproteins, exopolysaccharides,
skin moisturization, elasticity, barrier enhancement, wound healing
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2024.1365311/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1365311/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1365311/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1365311/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1365311&domain=pdf&date_stamp=2024-05-21
mailto:joon@kaeri.re.kr
https://doi.org/10.3389/fmars.2024.1365311
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1365311
https://www.frontiersin.org/journals/marine-science


Han et al. 10.3389/fmars.2024.1365311
1 Introduction

Marine microalgae are known as promising sources of high-value

compounds, such as carotenoids, phycobiliproteins, polysaccharides,

and polyunsaturated fatty acids (Li et al., 2019). Among them,

Porphyridium sp., unicellular red microalgae belonging to

Rhodophyta, are particularly notable for their capacity to produce

large amounts of commercially valuable compounds, including sulfated

polysaccharides (SPs; major components of exopolysaccharides (EPS)

in Porphyridium sp.) and phycobiliproteins (PBs) composed of

phycoerythrin (PE), phycocyanin (PC), and allophycocyanin (APC)

(Han et al., 2020). PBs, characterized by their striking coloration and

intense fluorescence, serve as key components of the light-harvesting

antenna complexes found in cyanobacteria and certain algal groups,

including Rhodophyta and Cryptomonads (Lauceri et al., 2019). From

a commercial perspective, PBs have several applications, such as

fluorescent markers, ingredients in cosmetics, and natural colorants

in food products (Leney et al., 2018). In particular, PE exhibits the

highest level of fluorescence among natural pigments because of its

superior absorption coefficient and quantum yield compared to other

fluorescent pigments (Isailovic et al., 2006). Also, both PC and APC are

known to have potential health benefits, including antioxidant and

anti-inflammatory properties (Liu et al., 2012; Ashaolu et al., 2021).

SPs synthesized by Porphyridium sp. are complex high-molecular-

weight polymers composed primarily of sugar residue with sulfated

modifications (Sun et al., 2009). The harvesting process of SPs is

facilitated by their characteristic exogenous secretion, which leads to

the formation of a protective matrix encapsulating the cells. This

feature significantly simplifies the extraction of SPs from culture.

Moreover, SPs derived from Porphyridium sp. exhibit a multitude of

bioactivities, including antioxidant, anti-inflammatory, antiviral,

anticoagulant, immunomodulatory, and skin-hydrating activities

(Andrew and Jayaraman, 2021; Casas-Arrojo et al., 2021);

furthermore, recent studies indicate that they stimulate the immune

response to vibriosis and are non-toxic (Risjani et al., 2021). Owing to

the efficient extraction methods and the diverse bioactive properties,

SPs from Porphyridium sp. have garnered interest from various

industrial fields, notably the pharmaceutical and cosmetic industries.

Despite the several benefits presented, the strategic development

of economically viable strains is essential to advance the current state

of the microalgae industry. The development of microalgae strains

possessing superior industrial attributes serves to bolster the growth

and productivity of the microalgae industry by mitigating production

costs and reducing the time required.

The development of microalgal strains encompasses a diverse

array of methodologies, including random mutagenesis and genetic

engineering techniques (Park et al., 2019). Of these, genetic

engineering entails direct modification of microalgal DNA to

introduce or augment specific traits. Although this approach offers

a speed advantage over random mutagenesis, it faces regulatory

restrictions pertaining to the use of genetically modified organisms

(GMOs) in many countries. Also, the application of GMOs requires

high costs associated with the strain development process

(transformation and selection) and downstream processing, along

with regulatory considerations and biosafety concerns (Schiano di
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Visconte et al., 2019). Conversely, random mutagenesis is not

categorized as GMO technology, and it is characterized by its low

cost and high throughput, particularly in the selection of phenotypic

mutants. Therefore, the commercialization of improved strains using

random mutations is more promising in terms of market demand

and regulatory issues (Trovão et al., 2022). Ethyl methanesulfonate

(EMS) is an alkylating agent that introduces random point

mutations into DNA by guanine alkylation. EMS mutagenesis is a

simple and effective method widely used in many organisms,

including microalgae such as Chlorella sp., Nannocloropsis sp., and

Botryococcus sp (Thurakit et al., 2022).

In this study, a phenotypic mutant with improved industrial

traits was developed from P. cruentum (also known as P.

purpureum) using EMS-induced mutagenesis. The productivity of

biomass and EPS between the wild type and the phenotypic mutant

was compared. The pigment contents and composition ratios

between them were also compared. Furthermore, relative mRNA

expression levels and wound healing effects in human skin cells

were investigated, and the skin improvement effect of EPS derived

from a phenotypic mutant was estimated. We also proposed a skin

condition improvement mechanism of P. cruentum’s EPS on

human skin by integrating the individual skin care mechanisms

of six genes. Collectively, our findings underscore the potential of

this novel P. cruentum mutant as a promising candidate for the

large-scale production of high-value compounds.
2 Materials and methods

2.1 Preparation of wild type
microalgal culture

The WT of Porphyridium cruentum LIMS-PS-1061 was

obtained from the Library of Marine Samples of Korea. Cells

were axenically maintained in an artificial seawater (ASW),

according to the previous conditions (Jeon et al., 2021).
2.2 Ethyl methanesulfonate - induced
mutagenesis and mutant screening

EMS (Sigma-Aldrich Co., MO, USA) was employed as a

chemical mutagen to initiate random mutagenesis. Cells at the

exponential stage were harvested and washed twice with distilled

water (pH = 4) to eliminate excess exopolysaccharides (EPS) around

the cells. Cells were resuspended in ASW supplemented with 0.5%

(v/v) EMS, followed by continuous agitation for 1 h at 25°C in the

dark. Then, cells were washed twice with ASW to remove excess

EMS. To avert potential light-induced DNA repair, cells were

incubated overnight under the same dark conditions as above.

Subsequently, mutagenized cultures were spread onto 1% agar-

ASW plates supplemented with 2 μg mL−1 zeocin and the plates

were further incubated at 25°C under constant illumination

(approximately 60 mmol photons m−2 s−1). Zeocin served as the

selection marker. After 15 d, surviving colonies were separated.
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2.3 Cultivation of wild type and mutants

Cells at the exponential stage were inoculated at a concentration

of 0.2 g L−1. Then, cells were cultivated in ASW at 25°C under

constant illumination (approximately 60 mmol photons m−2 s−1) on

a rotary shaker at 120 rpm (Han et al., 2020). As a light source,

white (400–700 nm) and blue (420–450 nm) light-emitting diodes

(LEDs) were used (Han et al., 2021).
2.4 Analytical methods

2.4.1 Determination of algal growth
Algal growth was evaluated from cell dry weight. Cells were

harvested and washed six times with distilled water (pH = 4),

followed by filtration using a 1.2 mm glass fiber filter (GF/C;

Whatman, Maidstone, UK). Subsequently, the cells were dried at

60°C until the attainment of a steady weight.

EPS extraction was performed using an alcohol precipitation

method (Chen et al., 2010). The cells and culture medium were

separated by centrifugation at 3500 rpm for 10 min at 4°C.

Subsequently, a threefold volume of 95% (v/v) ethanol was

introduced to the supernatant and the mixture was left to stand

at 4°C. After a 24-h period, the mixture was centrifuged at 3500 rpm

for 10 min at 4°C to separate the precipitate. The precipitate was

rinsed six times with distilled water (pH = 4) to remove residual

impurities and then lyophilized.

Pigment contents were quantified using a GENESYS 10S UV-

Vis Spectrophotometer (Thermo Scientific, MA, USA). The

phycobiliproteins (PBs) were extracted using the freeze-thaw

method (Coward et al., 2016). The freeze-thaw cycle was repeated

three times to obtain the PBs extract. The absorbances of the

extracts were measured at 565 nm, 620 nm, and 650 nm using a

spectrophotometer. The concentrations of phycoerythrin (PE),

phycocyanin (PC), and allophycocyanin (APC) were calculated

using the following equations (Munier et al., 2014):

PE (mg L−1) = (A565 − 2:8� PC – 1:34� APC)=12:7

PC (mg L−1) = (A620 – 0:7� A650)=7:38

APC (mg L−1) = (A650 – 0:19� A620)=5:65

Chlorophyll was extracted using an acetone extraction method

(Han et al., 2019). All cells were thoroughly disrupted with 90% (v/

v) acetone using a Mini-Beadbeater-16 (Biospec Products, OK,

USA) to obtain the extract. Absorbances of the extracts were

measured at 646 nm and 663 nm using a spectrophotometer. The

concentration of chlorophyll was calculated using the following

equations (Lee et al., 2016):

Chlorophylla (mg L−1) = (12:21� A663) – (2:81� A646)

2.4.2 Elemental analysis of exopolysaccharides
The elemental contents of carbon (C), hydrogen (H), nitrogen

(N), and sulfur (S) in the EPS were analyzed using a Vario-Micro
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Cube (Elementar Analysensysteme GmbH, Hanau, Germany). The

analysis was performed on completely lyophilized EPS. The weight

percentage (Wt%) of each element was evaluated for 1.8 mg of a

sample at 1150°C. The sulfanilic acid served as the standard for

this analysis.

2.4.3 Assessing the bioactivity
of exopolysaccharides

The completely lyophilized EPS derived from PPE was used.

EPS was dissolved in distilled water to a concentration of 4 mg

mL−1. Then, the EPS solution was diluted to 0.1% (v/v; 4 ppm) and

1% (v/v; 40 ppm) and used for analysis.

2.4.3.1 Human cell culture

Immortalized human keratinocytes (HaCaT) and human

dermal fibroblast (Hs68) were obtained from American Type

Culture Collection (VA, USA) and cultured in Dulbecco’s

Modified Eagle Medium (DMEM; HyClone Laboratories, Inc.,

UT, USA) containing 10% (v/v) fetal bovine serum (FBS;

HyClone Laboratories, Inc., UT, USA) and 1% (v/v) antibiotic-

antimycotic (AA; HyClone Laboratories, Inc., UT, USA) solution at

37°C in a 5% (v/v) CO2 atmosphere. When the cells reached about

80% confluence, cells were subcultured using a solution of 4-(2-

hydroxyethyl)-1-piperazine ethanesulfonic acid-buffered saline and

trypsin/ethylenediaminetetraacetic acid (EDTA).

2.4.3.2 RNA extraction and real-time RT-PCR analysis

To evaluate the skin benefits of EPS, the expression levels of

aquaporin 3 (AQP3), filaggrin (FLG), involucrin (IVL), and loricrin

(LOR) were assessed in epidermal cells (HaCaT), while elastin

(ELN) and fibrillin-1 (FBN) were evaluated in dermal cells

(Hs68). HaCaT and Hs68 cells were harvested after 24 h of

treatment with EPS. Retinoic acid, adipoRon, and epigallocatechin

gallate (EGCG) were purchased from Sigma Aldrich (MO, USA)

and used as positive controls. Total RNA was isolated using TRIzol

reagent (TaKaRa, Shiga, Japan) according to the manufacturer’s

instructions. Approximately 2 mg of total RNA was synthesized to

cDNA using Reverse Transcription Premix (Elpis-biotech, Daejeon,

Korea). Gene expression levels were quantified, and the data were

analyzed using the StepOne Plus™ system software (Applied

Biosystems, CA, USA). Real-time RT-qPCR amplification

reactions were performed using SYBR Green PCR Master Mix

with premixed ROX (Applied Biosystems, CA, USA). The following

primer pairs (Bioneer, Daejeon, Korea) were used in the reactions,

which were performed on an ABI 7300 instrument accordance with

the manufacturer’s protocol (Applied Biosystems, CA, USA): b-
actin (F: 5’-GGCCATCTCTTGCTCGAAGT-3’ and R: 5’-GACAC

CTTCAACACCCCAGC-3’), AQP 3 (F: 5’-GTCACTCTGGGCA

TCCTCAT-3’ and R: 5’-CTATTCCAGCACCCAAGAAGG-3’),

FLG (F: 5’-AGTGCACTCAGGGGGCTCACA-3’ and R: 5’-CCG

GCTTGGCCGTAATGTGT-3’), IVL (F: 5’-TGAAACAGCCAAC

TCCACTG-3’ and R: 5’-GGAGCTCCAACAGTTGCTCT-3’), LOR

(F: 5 ’-AATAGATCCCCCAGGGTACCA-3 ’ and R: 5 ’-

CGGTGCCCCTGGAAAAC-3’), ELN (F: 5’-CACCTTGCCC

TTGTAGAATCCA-3’ and R: 5’-CCATGACAGGTCAACCAGG

TT-3’), FBN1 (F: 5’-AATGTCAGACGAAGCCAGGG-3’ and R:
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5’-GATTTGGTGACGGGGTTCCT-3’). The mRNA expression of

b-actin was used as an internal control.

2.4.3.3 Fibroblast migration assay

Hs68 cells (2 × 104 cells well−1) were seeded into IncuCyte®

ImageLock 96-well plates (Essen BioScience, MI, USA) at almost

100% confluence and incubated in an atmosphere of 5% CO2 at 37°C

overnight. Cells were scratched by the IncuCyte® WoundMaker tool

(Essen BioScience, MI, USA) to create precise, uniform cell-free

zones. And then, the EPS was treated into the cells with FBS-free

DMEM media, and the cell plate was placed into the IncuCyte Live-

Cell Analysis System (Essen BioScience, MI, USA) to allow the plate

to be warmed to 37°C for 30 min prior to scanning. Wound closure

was monitored by taking digitized images of the culture fields every

2 h for up to 16 h after scratching. The images were captured and

analyzed using the IncuCyte Live-Cell Analysis System.
2.5 Statistical analysis

Each experiment was conducted with at least three independent

specimens. One-way analysis of variance (ANOVA) with Tukey’s

tests was performed for statistical analysis using SAS 9.4 software.

The p-value of< 0.05 was considered to be statistically significant.

The data are presented as mean values ± standard error (SE).
3 Results and discussion

3.1 Changes in growth parameters
between wild type and phycobiliprotein
production-enhancing mutant

Ethyl methanesulfonate (EMS)-induced mutagenesis and

zeocin selection were employed for the development and

screening of P. cruentum mutants. EMS-induced mutagenesis is a

simple and cost-effective method to generate extensive mutations.
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time and effort are required to isolate only specific mutants in which

DNA is extensively altered. Zeocin is an antibiotic to which

numerous species of microalgae present sensitivity (Osorio et al.,

2019). Also, zeocin can act as a mutagen that induces mutations in

microalgae (Lin et al., 2017). Therefore, zeocin was used as a

subsequent mutagen and selection marker. The mutant was

selected based on colony size on zeocin-containing agar medium

and subsequent experiments were performed.

Differences in growth parameters between the WT and the

mutant were compared under white light and blue light conditions.

Under white light conditions, the cell dry weight of the mutant

(0.854 g L−1) increased by 33.9% compared to the WT (0.638 g L−1)

(Figure 1A). Under blue light conditions, however, there was no

significant difference between the cell dry weights of the mutant

(0.736 g L−1) and the WT (0.756 g L−1). Additionally, there was no

significant difference in the yield of exopolysaccharides (EPS)

between the WT and the mutant under both conditions

(Figure 1B). Interestingly, the mutant exhibited prominent cell

growth under white light conditions, while the WT exhibited

prominent cell growth under blue light conditions. Various

factors such as light source, temperature, pH, salinity, and the

availability of nutrients influence the cellular growth of microalgae

(Lee et al., 2015; Srinuanpan et al., 2018). Among these, the light

source is considered the most critical factor influencing cell growth.

Photosynthesis is a fundamental process through which microalgae

produce energy, and this process is heavily reliant on light. The

intensity, quality, and photoperiod of the light source can

profoundly impact the photosynthetic efficiency in microalgae,

with the energy generated being vital for cell growth and

reproduction (Kwan et al., 2021). In addition, microalgae collect

light through antenna pigments and convert it into energy.

Microalgae possess a diversity of pigments, which are categorized

into primary and accessory pigments, each absorbing light within a

specific wavelength range and exerting a significant influence on cell

growth (Sirisuk et al., 2018). Moreover, light is not just instrumental

in energy production but also plays a critical role in the
A B

FIGURE 1

Differences in cell growth between wild type (WT) and the strain PPE. (A) The dry weight of WT and PPE. (B) Exopolysaccharides (EPS) yield of WT
and PPE. White and Blue indicate incubation under white and blue LEDs, respectively. There was no statistically significant difference in EPS yield.
Data are shown as mean ± standard error (n = 3). Each lowercase letter indicates a group that is statistically distinct.
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physiological regulation of microalgae. For instance, variations in

light intensity and duration can have direct effects on the cell cycle

as well as various metabolic pathways (Jaubert et al., 2017). In this

experiment, all other environmental factors were kept constant

except for the light source. Therefore, based on the observed cell

growth results, it can be inferred that alterations in pigment

occurred in the mutant.

Fascinating changes in pigment were observed between the WT

and mutant. There was no statistically significant difference in the

total amount of major pigments (chlorophyll and phycobiliproteins,

referred to as ‘PBs’) between the WT and mutant under white light

conditions (Figure 2A). Under white light, the total amounts of

major pigments in the WT and mutant were 7.80 mg g−1 and 8.06

mg g−1, respectively. Under blue light conditions, the total amount

of major pigments in the WT and mutant significantly increased to

12.7 mg g−1 and 11.4 mg g−1, respectively, but there was no

statistical difference between them. However, despite the total

amount of pigment being similar, the composition of pigments

exhibited a dramatic difference. Under white light, the chlorophyll

content in the mutant was 1.74 mg g−1, which was 2.20 times lower

than that of the WT (3.83 mg g−1) (Figure 2A). In contrast, the

phycobiliproteins (PBs) content in the mutant was 6.33 mg g−1,

which was 1.59 times higher than that of the WT (3.97 mg g−1).

Similarly, under blue light, the chlorophyll content in the mutant

was 1.25 mg g−1, which was 3.61 times lower than that of the WT

(4.50 mg g−1), while the PBs content was 10.1 mg g−1, which was

1.23 times higher than that of the WT (8.22 mg g−1). Based on these

remarkable differences in pigment content, the mutant was

designated as a phycobiliprotein production-enhancing

mutant (PPE).

To investigate the pigment composition profiles in greater

detail, the contents of chlorophyll, phycoerythrin (PE),

phycocyanin (PC), and allophycocyanin (APC) in the WT and

PPE were analyzed (Figures 2A, B). The significant increase in PB

content in PPE was primarily attributed to increases in APC and
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PC. Under white light, the contents of APC and PC in PPE

increased by 2.23- and 1.63-fold, respectively, compared to the

WT, while PE increased only by 1.07-fold. The weight percentages

of PBs in the total amount of major pigment in WT and PPE were

50.9% and 78.5%, respectively. Similarly, under blue light, the

contents of APC, PC, and PE in PPE increased by 1.28-, 1.20-,

and 1.18-fold, respectively, compared to the WT. The weight

percentages of PBs in the total amount of major pigment in WT

and PPE were 64.6% and 89.0%, respectively. These alterations in

pigment composition between WT and PPE are presumed to be a

consequence of chlorophyll deficiency. In P. cruentum, chlorophyll

and PBs have a complementary relationship. It is known that a

deficiency in chlorophyll promotes the production of PBs as a

compensatory mechanism to maintain the photosynthetic capacity

of cells (Jeon et al., 2021). In addition, the increase in PBs observed

in both WT and PPE under blue light is inferred as a defense

mechanism against stress induced by blue light. Blue light has a

short wavelength (typically 380–500 nm) and has higher energy

photons than are required for photosynthesis (Schulze et al., 2014).

Excess photon energy can cause photooxidative damage to cells due

to the generation of reactive oxygen species (ROS) (Coward et al.,

2016). In P. cruentum, PBs play a role in scavenging ROS (Peña-

Medina et al., 2023). It has been demonstrated that PE acts through

the primary pathway by directly sequestering ROS and possesses

high reducing power. In contrast, PC and APC function through

both primary and secondary pathways, notably serving as chelators

of metal ions that are involved in ROS synthesis (Sonani et al.,

2015). Indeed, it has been reported that PB production is enhanced

for stress reduction in Porphyridium sp. under blue light (Coward

et al., 2016; Huang et al., 2021).

These results support our hypothesis that the difference in cell

growth between WT and PPE was due to variations in pigment

composition. In P. cruentum, chlorophyll absorbs light at 400–500

nm and 650–720 nm (Dagnino-Leone et al., 2022), while PE absorbs

at 490–570 nm (Sepúlveda-Ugarte et al., 2011), PC at 550–650 nm
A B

FIGURE 2

Changes in major pigment content between wild type (WT) and the strain PPE. (A) Amounts of the four major pigments per cell dry weight.
(B) Percentages of the four major pigments. The dotted line represents the change in pigment content between WT and PPE under the same culture
conditions. White and Blue indicate incubation under white and blue LEDs, respectively. The error bars and significance shown in (A) represent the
results for the total amount of pigment, while the error bars and significance shown in (B) represent the results for the ratio of each pigment. Data
are shown as mean ± standard error (n = 3). Each lowercase letter indicates a group that is statistically distinct.
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(Ma et al., 2008), and APC at 600–680 nm (Dagnino-Leone et al.,

2020). The wavelengths of the white and blue LEDs used in the

experiment were 400–700 nm and 420–450 nm, respectively. In

terms of photosynthetic pigments, PBs have the capacity to absorb

light across a broad spectrum (490–680 nm), allowing them to

support photosynthesis by absorbing light in ranges where

chlorophyll absorption is less efficient (500–650 nm) (Watanabe

and Ikeuchi, 2013). Furthermore, in P. cruentum, light energy is

sequentially transmitted along the pathways of PE, PC, APC, and

chlorophyll a, with electron flow correlating with the quantity of

PBs (Yokono et al., 2011). Consequently, cell growth in PPE was

more pronounced than that of WT under white light conditions. On

the other hand, interestingly, there was no significant difference in

cell growth between WT and PPE under blue light, despite

chlorophyll being more adept at absorbing blue light compared to

PBs. As previously mentioned, it is inferred that this is due to the

high energy levels of blue light and the stress-reducing effects of

PBs. Blue light is absorbed by chlorophyll and utilized for cellular

energy metabolism through photosynthesis, but it also acts as a

stress-inducing factor that can inhibit cell growth. Under blue light,

WT possesses a higher light energy conversion efficiency than PPE,

owing to its higher chlorophyll content. Conversely, PPE exhibits

higher stress resistance due to its higher PB content compared to

WT. In other words, under blue light, WT has high light absorption

efficiency but low stress tolerance, whereas PPE has high stress

tolerance but low light absorption efficiency. Consequently, no

significant difference in cell growth was observed between PPE

and WT under blue light conditions. These results imply that the

relationship between pigment and cell growth in microalgae

involves the collective action of several pigments rather than the

isolated function of individual pigments, and both light absorption

efficiency and light inhibition should be taken into account.
3.2 Assessment of skin improvement
potential of exopolysaccharides derived
from phycobiliproteins production-
enhancing mutant

A subsequent analysis was conducted on the EPS produced from

PPE to ascertain its industrial potential. The EPS originated from P.

cruentum is primarily composed of sulfated polysaccharides (SPs)

and exhibits biological activities such as antioxidant, anti-

inflammatory, anti-cancer, and UV protective properties, making it

a valuable biological material in the cosmetic and medical industries

(Li et al., 2019). Also, the biological activity of EPS is generally

positively correlated with its sulfur content (Liberman et al., 2020).

Elemental analysis revealed no significant differences in the weight

percentages of carbon (C), hydrogen (H), and sulfur (S) between the

EPS produced fromWT and PPE (Figure 3). The weight percentages

of C, H, and S in the EPS derived from WT were 0.243 ± 0.028%,

0.848 ± 0.047%, and 14.3 ± 0.7%, respectively. The weight percentages

of C, H, and S in the EPS derived from PPE were 0.485 ± 0.100%,

0.817 ± 0.003%, and 12.6 ± 0.4%, respectively. On the other hand,

nitrogen (N) was not detected in both EPS, indicating that cell debris
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(especially lipids and proteins) and nucleic acids were absent from the

extracted EPS. Despite the slight difference in weight percentage, an

analysis of variance (ANOVA) revealed that these differences in the

elemental compositions of both EPS were not statistically significant.

These results suggest that the EPS produced from PPE likely has

biological activity comparable to that of EPS from WT. Thus, the

potential for skin improvement of EPS produced from PPE was

evaluated in human skin cells.

Since AQP3, FLG, IVL, and LOR are all expressed in

keratinocytes and play roles in water transport, hydration, and skin

barrier formation, changes in the expression of these genes were

investigated in epidermal cells (HaCaT). In contrast, ELN and FBN,

which are fibrous proteins involved in maintaining skin elasticity, are

produced in dermal fibroblasts; therefore, changes in the expression

of these genes were evaluated in dermal cells (Hs68). The results of

the real-time RT-PCR analysis showed that EPS could potentially be

used for skin improvement (Figure 4). Expression levels of aquaporin

3 (AQP3) in the EPS-treated groups were 1.66- and 2.80-fold higher

at concentrations of 4 ppm and 40 ppm respectively, compared to the

control (Figure 4A). In addition, expression levels of filaggrin (FLG)

in the EPS-treated groups were 1.72- and 3.23-fold higher at

concentrations of 4 ppm and 40 ppm respectively, compared to the

control (Figure 4B). Retinoic acid, used as a positive control, exhibited

AQP3 and FLG expression levels that were 2.30- and 1.72-fold higher,

respectively, compared to the control. AQP3 and FLG are two pivotal

proteins that play crucial roles in skin moisturization. AQP3, a water

channel protein located in the cell membranes of skin cells, facilitates

the transport of moisture, helping to maintain the moisture content

of the skin (Bollag et al., 2020). Also, AQP3 has a glycerol transport

capability, so it plays an important role in strengthening the
FIGURE 3

Differences in the elemental composition of exopolysaccharides
(EPS) originated from wild type (WT) and the strain PPE. C, H, N, and
S represent the weight percentages of carbon, hydrogen, nitrogen,
and sulfur in the EPS, respectively. Nitrogen was not detected. There
was no statistically significant difference in the weight percentages
of C, H, and S between WT and PPE. The sulfanilic acid was used as
a standard. Data are shown as mean ± standard error (n = 3).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1365311
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Han et al. 10.3389/fmars.2024.1365311
moisturizing and barrier functions of the skin. FLG, which is present

in the epithelial layer of the skin, enhances the adhesion between skin

cells, minimizing water loss and protecting the skin against external

stimuli (Kim et al., 2012). Also, FLG is involved in the production of

natural moisturizing factors within the skin. Thus, an increase in the

gene expression levels of AQP3 and FLG suggests an enhancement of

skin moisturization.

In addition to FLG, the expression levels of involucrin (IVL) and

loricrin (LOR), which are related to skin barrier enhancement, were

also analyzed. The expression levels of IVL were 1.12- and 2.60-fold

higher in the EPS-treated groups at concentrations of 4 ppm and 40
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ppm, respectively, compared to the control (Figure 4C). In addition, the

expression levels of LOR were 1.86- and 3.60-fold higher in the EPS-

treated groups at concentrations of 4 ppm and 40 ppm, respectively,

compared to the control (Figure 4D). AdipoRon was used as a positive

control and exhibited 1.30-fold higher IVL and 2.35-fold higher LOR

expression levels than the control. IVL is a protein present in the

epithelial cells of the skin and is one of the principal components

involved in forming the keratinized epidermis, which serves as a

protective barrier in the skin (Furue et al., 2015). IVL functions as a

scaffold for the formation of the keratinized epidermis by cross-linking

with other proteins through the catalytic action of an enzyme known as
A B

D

E F
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FIGURE 4

Changes in relative mRNA expression levels of genes related to skin moisturization, barrier enhancement, and elasticity improvement. (A) Relative
mRNA expression of aquaporin 3. (B) Relative mRNA expression of filaggrin. (C) Relative mRNA expression of involucrin. (D) Relative mRNA
expression of loricrin. (E) Relative mRNA expression of elastin. (F) Relative mRNA expression of fibrillin-1. The human cells were harvested 24 h after
treatment with phycobiliprotein production-enhancing mutant-derived exopolysaccharides (EPS). The mRNA expression of b-actin was used as an
internal control. Retinoic acid, adipoRon, and epigallocatechin gallate (EGCG) were used as a positive control. Data are shown as mean ± standard
error (n = 3). Each lowercase letter indicates a group that is statistically distinct.
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transglutaminase. LOR is another essential protein of the keratinized

epidermis, which constitutes a significant part of the keratinized

epidermis and is involved in the aggregation of keratin fibers (Furue

et al., 2015). This aggregation and subsequent cross-linking result in a

densely packed protective layer that is highly resistant to mechanical

stress, thereby contributing to skin barrier enhancement. Thus, an

increase in the gene expression levels of IVL and LOR is intimately

associated with the strengthening of the skin barrier.

Subsequently, the expression levels of elastin (ELN) and

fibrillin-1 (FBN1), which are associated with the improvement of

skin elasticity, were analyzed. When treated with 40 ppm of EPS, the

expression levels of ELN and FBN1 were 1.45- and 1.47-fold higher,

respectively, compared to the control (Figures 4E, F). No statistical

significance was observed when both genes were treated with 4 ppm

of EPS. These results suggest that an improvement in skin elasticity

can be expected when treated with EPS of a certain concentration or

higher. Epigallocatechin gallate (EGCG) was used as a positive

control and exhibited 1.91-fold and 1.63-fold higher expression

levels of ELN and FBN1, respectively, compared to the control. ELN

encodes elastin, which is a key protein in the skin that provides

elasticity. Elastin allows the skin to stretch and then return to its

original shape (Romana-Souza et al., 2020). As elastin levels

decrease with age, the skin loses its ability to regain its shape,

leading to sagging and wrinkles. In addition, FBN1 encodes

fibrillin-1, a component of microfibrils that plays a crucial role in

maintaining skin elasticity and structure (Romana-Souza et al.,

2020). Moreover, fibrillin-1 interacts with elastin, aiding in the
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support of the skin’s microstructure, and helps the skin withstand

physical stress, such as stretching. Thus, an increase in the

expression levels of the ELN and FBN1 genes can contribute to

improved skin elasticity and structural reinforcement, which can

help slow down the aging of the skin and reduce wrinkles.

Finally, a scratch assay was conducted on Hs68 cells to test the

ability of EPS to promote cell migration, which is related to wound

healing (Figure 5). In the absence of any treatment, the cells

spontaneously migrated to induce re-epithelialization. Interestingly,

when the cells were treated with EPS at a concentration of 40 ppm, a

significant enhancement in wound closure was observed (Figure 5A).

Indeed, the wound recovery rate after 16 hours was 54.7% with EPS

treatment, which was significantly higher than that of EGCG (46.3%)

used as a positive control, or untreated cells (control; 40.3%)

(Figure 5B). Moreover, it was also confirmed that EPS has the

potential to enhance the skin absorption rate of other skin active

ingredients (Supplementary Figure S1). These results demonstrate the

potential of EPS derived from PPE for skin improvement and suggest

that it can be applied in the cosmetic or medical industry.
3.3 Suggested role of Porphyridium
cruentum-derived exopolysaccharides in
improving human skin condition

Integrating the aforementioned results, we estimated the

mechanism through which EPS derived from P. cruentum improves
A

B

FIGURE 5

The evaluation of fibroblast migration for wound healing. (A) The scratch test of Hs68 cells. (B) The recovery rates in the scratch test. Wound closure
was monitored by taking digitized images of culture fields every 2 h after scratching. Exopolysaccharides (EPS) derived from the phycobiliprotein
production-enhancing mutant were used. The epigallocatechin gallate (EGCG) was used as a positive control. The scale bars = 400 µm. Data are
shown as mean ± standard error (n = 3).
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the condition of human skin cells (Figure 6). The EPS was found to

enhance skin moisturization, elasticity, barrier enhancement, and

wound healing through the upregulation of six genes.

Aquaporin-3 (AQP3), a membrane transporter of water and

glycerol, is expressed in the plasma membrane of basal

keratinocytes in normal skin epidermis. This transporter plays a

pivotal role in the stratum corneum’s (SC) water retention,

elasticity, and biosynthesis. Notably, glycerol transport by AQP3

is more critical than water transport for skin physiology and

phenotype alterations (Hara-Chikuma and Verkman, 2005).

AQP3 enhances skin moisturization and elasticity by increasing

glycerol content, a key determinant of skin hydration. Additionally,

AQP3 facilitates re-epithelialization, an essential stage in wound

healing, by promoting keratinocyte migration and proliferation

from the surrounding epidermis and appendages such as hair

follicles and sweat glands. The water and glycerol transport

facilitated by AQP3 enhances keratinocyte migration and

proliferation, respectively (Hara-Chikuma and Verkman, 2008).

Increased glycerol contents due to AQP3 not only aid in skin

barrier recovery but also contribute to the enhancement of

epidermal barrier functions (Hara and Verkman, 2003). In

summary, AQP3-facilitated water transport is involved in

accelerating wound healing, also its glycerol transport contributes

to skin hydration and elasticity, as well as cell proliferation.

Natural moisturizing faction (NMF) is a key factor in

maintaining skin moisture, is present in keratinocytes, and

contributes to both moisture retention and epidermal barrier

functions. NMF, synthesized from filaggrin (FLG) in the SC,

typically comprises amino acids (40%), pyrrolidone carboxylic acid

(PCA, 12%), lactate (12%), and urea (7%). Its synthesis follows a
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sequence of processes (Tsukui et al., 2022): FLG is initially produced

by the precursor protein profilaggrin (proFLG), which is metabolized

to FLG through dephosphorylation and other mechanisms,

subsequently binding with keratin in keratinocytes. In the upper

SC, proteolytic enzymes degrade FLG from keratin. The arginine in

FLG is citrullinated (Cit) by the protein arginine deiminase, and Cit

residues are released and then fragmented into amino acids by

bleomycin hydrolase. These amino acids are further transformed by

degradative enzymes, with Glu and Gln converting into PCA, His

into urocanic acid, and Arg into urea (Tang et al., 2016). Additionally,

mammalian epidermal cells feature a cornified cell envelope (CE), a

15 nm thick protein layer cross-linked by isodipeptide and disulfide

bonds. FLG, along with involucrin (IVL) and loricrin (LOR), forms

this complex structure. The human epidermal CE comprises 65–70%

LOR, about 10% FLG and cysteine-rich protein (CRP), and 2–5%

IVL, small proline-rich proteins (SPRRs), and cystatin A (Tharakan

et al., 2010). The formation of CE in vivo is a multistage process,

starting with the initial attachment of IVL, SPRR, CRP, and cystatin

A to the cell membrane, followed by a heavy deposition of LOR with

some FLG. In summary, an increase in FLG expression enhances

NMF biosynthesis, thereby strengthening the SC’s capacity for

moisture retention. FLG also collaborates with IVL and LOR in

forming the CE, further strengthening epidermal barrier functionality

and moisture retention.

Elastic fibers are a crucial component of the extracellular

matrix, imparting stretchability, resilience, and cellular interaction

to a wide range of elastic tissues. Elastin (ELN) constitutes the

majority of elastic fibers and is formed by the hierarchical assembly

of its monomer, tropoelastin (Ozsvar et al., 2021). Fibrillin

microfibrils, extensible polymers present in both elastic and non-
FIGURE 6

Proposed mechanisms for Porphyridium cruentum exopolysaccharides-dependent skin hydration, wound healing, barrier enhancement, and skin
elasticity improvement.
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elastic tissues, provide long-range elasticity to connective tissue.

These microfibrils also act as a scaffold for elastin deposition during

elastic fiber synthesis, playing a vital role in maintaining tissue

integrity (Ramirez and Sakai, 2010). In elastic fiber assembly, elastin

globules are directly deposited onto microfibril templates, forming

elastic fiber composed of an amorphous elastin central core

surrounded by a fibrillin microfibril sheath (Thomson et al.,

2019). An increase in the expression of both ELN and FBN1,

therefore, leads to an enhanced biosynthesis of elastic fibers,

significantly contributing to the improvement of skin elasticity.

In summary, EPS derived from P. cruentum enhances skin

moisturization, elasticity, barrier enhancement, and wound

healing. This improvement is mediated through the individual

or synergistic effects of six key genes implicated in skin health: (1)

AQP3 enhances skin hydration, elasticity, wound healing, and

barrier function. (2) FLG contributes to skin hydration. (3) FLG,

IVL, and LOR jointly improve skin hydration and barrier

function. (4) ELN and FBN1 play a significant role in enhancing

skin elasticity.

This research introduces a mutant strain of P. cruentum,

developed through EMS-induced mutagenesis, which exhibits

superior industrial traits. This study further elucidates the

relationship between pigment and cell growth in P. cruentum and

the mechanisms by which EPS derived from P. cruentum ameliorates

skin conditions. Given its skin care and pharmacological properties,

EPS from P. cruentum is poised for varied industrial applications.

Consequently, we anticipate that our findings will have broad

implications and utility across industries utilizing P. cruentum.
4 Conclusion

In this study, an ethyl methanesulfonate (EMS)-induced mutant

of Porphyridium cruentum was developed, exhibiting enhanced

growth rates and phycobiliprotein content. This mutant, termed

phycobiliprotein production-enhancing mutant (PPE), displayed

variations in pigment composition, which influenced cell growth

via light absorption, energy conversion, and stress reduction.

Additionally, PPE-derived exopolysaccharides (EPS), similar in

composition to the wild type, showed potential for skin

improvement through real-time RT-PCR and fibroblast migration

assays. By integrating the mechanisms of six genes related to skin

care, a mechanism by which P. cruentum EPS affects skin hydration,

wound healing, barrier enhancement, and skin elasticity

improvement was proposed. The study provides insight into the

pigment-cell growth relationship in P. cruentum and an

understanding of the mechanisms by which P. cruentum EPS

improves skin conditions.
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