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1Institute of Marine Sciences - Okeanos, University of the Azores, Horta, Portugal, 2Biodata Mining
Group, Faculty of Technology, Bielefeld University, Bielefeld, Germany
Introduction: Technological developments have facilitated the collection of

large amounts of imagery from isolated deep-sea ecosystems such as abyssal

nodule fields. Application of imagery as a monitoring tool in these areas of

interest for deep-sea exploitation is extremely valuable. However, in order to

collect a comprehensive number of species observations, thousands of images

need to be analysed, especially if a high diversity is combined with low

abundances such is the case in the abyssal nodule fields. As the visual

interpretation of large volumes of imagery and the manual extraction of

quantitative information is time-consuming and error-prone, computational

detection tools may play a key role to lessen this burden. Yet, there is still no

established workflow for efficient marine image analysis using deep learning–

based computer vision systems for the task of fauna detection and classification.

Methods: In this case study, a dataset of 2100 images from the deep-sea

polymetallic nodule fields of the eastern Clarion-Clipperton Fracture zone

from the SO268 expedition (2019) was selected to investigate the potential of

machine learning–assisted marine image annotation workflows. The Machine

Learning Assisted Image Annotation method (MAIA), provided by the BIIGLE

system, was applied to different set-ups trained with manually annotated fauna

data. The results computed with the different set-ups were compared to those

obtained by trained marine biologists regarding accuracy (i.e. recall and

precision) and time.

Results: Our results show that MAIA can be applied for a general object (i.e.

species) detection with satisfactory accuracy (90.1% recall and 13.4% precision),

when considered as one intermediate step in a comprehensive annotation

workflow. We also investigated the performance for different volumes of

training data, MAIA performance tuned for individual morphological groups

and the impact of sediment coverage in the training data.
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Discussion: We conclude that: a) steps must be taken to enable computer vision

scientists to access more image data from the CCZ to improve the system’s

performance and b) computational species detection in combination with a

posteriori filtering by marine biologists has a higher efficiency than fully

manual analyses.
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1 Introduction

Polymetallic nodules occur in all Oceans at abyssal depths

(>4000 m), but are most abundant in the Pacific Ocean. Within

the north-east Pacific, the Clarion-Clipperton fracture Zone (CCZ)

hosts the most extensive nodule fields that cover 6 million km² and

stretch from 5° to 20° N and 115° to 160°W, covering over 1% of the

world’s surface (Jones et al., 2021). Due to their high metal content

and the relatively straightforward collection by hydraulic separation

from surrounding soft sediment (Oebius et al., 2001), they have

spiked an economic interest since the 1960–1970’s (Jones et al.,

2017). So far, 17 license areas for polymetallic nodule exploration

have been approved by the International Seabed Authority (ISA)

within the CCZ, each up to 75,000 km2 in size (Wedding et al., 2013;

Jones et al., 2017) and in 2021, the first polymetallic nodule collector

test took place in the BGR and GSR areas (https://www.deme-

group.com/news/metal-rich-nodules-collected-seabed-during-

important-technology-trial published 22 April 2021, accessed 9/

02/2022).

Nodules offer hard substrata in an otherwise soft sediment

environment and host a specific nodule-associated fauna. More

than 60% of megafauna depend on the nodules for attachment and

survival (Amon et al., 2016; Vanreusel et al., 2016; Simon-Lledó

et al., 2019a). In order to be able to quantify the impact of potential

deep-sea mining on nodule associated fauna, there is an urgent need

for extensive ecological baselines to understand the natural

biodiversity, variation (spatial and temporal) and possible

resilience of fauna to mining impacts. With regard to megafauna

abundance and diversity assessments, imagery plays an important

role to cover large areas. A recently presented CCZ checklist

contains 436 named species from a total of 5578 recorded across

the CCZ, amounting to an estimated 92% of species new to science

(Rabone et al., 2023). The latter study takes into account all size

classes including less conspicuous species that are not visible on

imagery, but megafauna species make up 28% of the list (Rabone

et al., 2023). The larger-sized megafaunal compartment shows quite

some variation within license areas (e.g. Simon-Lledó et al., 2019b;

Uhlenkott et al., 2023) and across regional scales, depicting a link

with depth and its associated variables as well as geomorphology

and nodule coverage (Vanreusel et al., 2016; Cuvelier et al., 2020;
02
Simon-Lledó et al., 2023a). As mining affects extremely large

seafloor areas, information on spatial variation in biodiversity is

essential to comprehend the ecosystem, its functioning and

possibilities to recover. This information is also fundamental to

assess the usefulness of refuge areas and the similarity to or

representativity of the Areas of Particular Environmental Interest

(APEI’s), where mining will not be permitted (Lodge et al., 2014).

For these areas to be effective, there needs to be an overlap in faunal

composition and connectivity, which is likely to be linked to resource

availability (i.e. nodule size and density) (Cuvelier et al., 2018).

Imagery is a less biased technique for quantifying biodiversity

than sampling since it does not depend on accessibility, is a non-

invasive tool and permits covering large surfaces (Cuvelier et al.,

2012). In a post-mining scenario, it represents the ultimate

monitoring tool in a possible rugged terrain. Moreover, it is cost-

effective and easily replicable, on condition that imagery platform

deployment techniques and sampling set-up are comparable

(Schoening et al., 2020). The counterpart is that a huge amount

of imagery is collected, often adding up to tens of thousands of

pictures of the seafloor, that need to be analysed to adequately

quantify the benthic fauna and its diversity. As illustrated in

(Piechaud et al., 2019), a single AUV dive of 22 h can result in

150,000 digital images collected. The main difficulty with images

from the abyssal nodule fields is that an image often features

multiple morphospecies from different taxonomic groups on an

irregular background with alternating hard and soft substrata.

Accuracy of biodiversity assessments in these ecosystems tends to

increase with sample size, in this case the amount of seafloor

visualized; estimates of taxon richness, based on imagery analyses,

require larger sample size and were shown to stabilise at 1000–1500

m2 of continuous seafloor coverage with >500 individuals (Simon-

Lledó et al., 2019b).

To address the issue of having to analyse large image collections

for representative biodiversity assessments, be it in marine or

terrestrial environments, new computational tools have been

developed and proposed over the last 5 to 10 years. The process

of detecting objects (such as megafauna and deep-sea benthos) in

images and assigning taxonomic labels to them is referred to as

annotation. To make this time-consuming and tedious process

more efficient, online image and video annotation tools have been
frontiersin.org
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proposed such as SQUIDLE+ (Proctor et al., 2018), VIAME

(Dawkins et al., 2017) or BIIGLE (Langenkämper et al., 2017;

Zurowietz and Nattkemper, 2021). In the case of benthic

biodiversity community assessment, as considered here, the

amount of image data collected often greatly exceeds the capacity

of visual inspection by domain experts and the potential of machine

learning–based annotation has gained interest over the last decade

(e.g. Schoening et al., 2012; Möller and Nattkemper, 2021; Mbani

et al., 2023; Yamada et al., 2023). To respond to the growing

amounts of imagery, the BIIGLE system has been equipped with

the MAIA tool (Machine learning Assisted Image Annotation)

(Zurowietz et al., 2018; Zurowietz and Nattkemper, 2020) and

cloud storage so users can upload their image data into the

BIIGLE cloud, and analyse their image data more efficiently,

employing machine learning. Automated object detection tools

can reduce the time needed to analyse huge volumes of images by

an estimated 50% (Zurowietz et al., 2018), allowing to collect

biodiversity data more efficiently. This becomes even more

important in the context of potential underwater mining

activities, where selected areas will be visited repeatedly and more

images will be recorded, not only to detect species and describe the
Frontiers in Marine Science 03
community composition and diversity (baseline) but also to

monitor the changes (impact assessment and subsequent surveys).

In order to efficiently integrate tools such as MAIA in effective

image data analysis workflows it must be investigated how well

these machine learning tools are suited to assist the annotation of

the accumulating data, how much posterior quality control is

required and how performant the species detection is. In contrast

to other related works, we mainly focused on the task of detecting

fauna rather than the classification of pre-selected image patches.

Considering the fact that one single image has an average footprint

of 7 m2 with more than 24 million pixels, the screening of thousands

of images for fauna or objects-of-interest can be considered a crucial

part of the bottleneck problem in image annotation.

The performance and effectiveness of the MAIA in BIIGLE

system in megafaunal assessments in a deep-sea mining context

was tested with data collected at different altitudes from the abyssal

nodule fields and with different degrees of disturbance caused by

prior dredging (to simulate a mechanical disturbance of a potential

mining action). The system was applied in different runs for different

tasks, such as general object detection or the detection of one

particular taxon and tested for different volumes of training data.
FIGURE 1

(A) Clarion-Clipperton Fracture zone and the exploration and reserved areas from the International Seabed Authority (ISA) (May 2023). BGR area is
indicated with *. (B) Localisation of work area (red square) within the BGR license area of the eastern CCZ and (C) Dredge experiment tracks with the
shape of the impacted area (green) and the OFOS transects before (SO268/2_100-1 - OFOS05) and after (SO268/2_160-1 - OFOS11) and (SO268/
2_164-1 - OFOS12) the dredge disturbance.
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2 Materials and methods

2.1 Study site

The Clarion-Clipperton Fracture Zone (CCZ) located in the

abyssal equatorial Pacific is the world’s largest mineral exploration

region featuring polymetallic nodules. Currently, there are 17

contracts for mineral exploration covering 1.2 million km² (Jones

et al., 2017) (Figure 1). In April–May 2019, the SO268 expedition

(Haeckel and Linke, 2021) to the eastern CCZ carried out a small-

scale disturbance experiment with a 1.5 m wide chain dredge in the

BGR (Federal Institute for Geosciences and Natural Resources,

Germany) license area (Figure 1). This dredge was towed 11

times over an area of ca. 100 x 500 m, creating ~5 cm deep

dredge tracks. The area was surveyed with the Ocean Floor

Observation System (OFOS) tow-cam before the disturbance

(SO268/2_100-1 - OFOS05) (Purser et al., 2021a) and 17–18 days

after the impact (SO268/2_160-1 - OFOS11) (Purser et al., 2021b)

and 12 (SO268/2_164-1 - OFOS12) (Purser et al., 2021c)

(Figures 1C, 2). The OFOS tow-cam was equipped with a Canon

EOS 5D Mark IV still camera with 24 mm lens and 3 lasers spaced

40 cm apart. Towing speed was 0.5 knots and one image was taken

every 10 seconds at an altitude of ca. 1.5 m above the seafloor with

an image resolution of 6720 × 4480 pixels.
2.2 Data collection

In this study, we used the data collected during the three

different dives mentioned above (see Table 1 for an overview).

One dataset is referred to as image dataset S (source data) (1813
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images, from two transects (SO268/2_160-1 - OFOS11) and

(SO268/2_164-1 - OFOS12)) and the second dataset is referred to

as T (target data) (343 images from dive (SO268/2_100-1 -

OFOS05)). The average visual area of the images in the dataset T

is 7.1 m². The S dataset was collected in a lower distance to the

ground, showing a visual area of average size 6.2 m² and was used in

training for automated analysis of dataset T. Image annotation, i.e.

location of fauna and taxonomic assignment, was carried out using

BIIGLE. Example images from undisturbed and dredged regions are

shown in Figure 2 to illustrate the impact of the dredging.

Dataset S was annotated by four different expert users and the

smaller dataset T by one expert user. Fauna was annotated at a

higher taxonomic level, mostly Classes, e.g. Ophiuroidea, Crinoidea,

Holothuroidea, Alcyonacea, some Families (e.g. Deimatidae

(Holothuroidea), Isididae (Alcyonacea)) and some with regard to

their ecology (e.g. free-living ophiuroids, stalked Porifera)

(Figure 3). The same faunal taxon catalogue was used containing

in situ photographic examples from the CCZ of the taxa to annotate.

The full list of semantic labels used for annotating both datasets S

and T can be found in the Supplementary Table 1. In dataset S, a

number of 67 different labels were attributed and 57 labels in dataset

T (see Supplementary Mataterial Table 1). The most abundant

higher taxonomic groups/classes (>600 annotations per group)

were used to perform follow-up MAIA experiments (Figure 3,

Table 2). Holothuroidea with <100 annotations were included for

comparison purposes. Selected classes comprised Ophiuroidea,

Alcyonacea, Actiniaria/Corallimorpharia, Bryozoa and

Holothuroidea. Abundances of both datasets are given in Table 2.

Grouped annotations for Porifera were, despite their high

abundances, not included here due to high intra-class/intra-

phylum variation (Figure 3).
FIGURE 2

The dataset contained images from before and after the dredge experiments; the left panel shows an undisturbed view of a nodule field and its
fauna as automatically detected by MAIA (lower panel), while the right panel shows clear disturbance patterns from the dredge experiment (a dredge
track) and the sediment (re)deposition. For interpretation of colour codes used, see Figure 4.
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FIGURE 3

Taxa from the BGR license area (images taken during SO268) in the CCZ, demonstrating different taxa and morphological variability. Scales were
added for size reference. (A–C): Alcyonacea (Anthozoa, Cnidaria), (D) Antipatharia (Anthozoa, Cnidaria) and (E, F) Actiniaria (Anthozoa, Cnidaria).
(G) Ophiuroidea (Echinodermata) and (H, I) Echinoidea (Echinodermata), (J–L) Holothuroidea (Echinodermata), (M, N) stalked Hexactinellida
(Porifera) and (O) a non-stalked Porifera.
TABLE 1 Origin and details about the two image transect datasets T and S used in this study.

Dataset dive number # images # annotations #taxa # annotators average visual area

S SO268/2_160-1
SO268/2_164-1

1813 12224 67 4 6.2 m²

T SO268/2_100-1 343 2879 57 1 7.1 m²
F
rontiers in Marine
 Science
 05
Dataset S (S = source) is used as the reference data, used for training a machine learning system, in this case MAIA, to detect benthic fauna. The dataset T (T = target) represents a new dataset
which is to be processed by the system, without collecting new training data.
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2.3 MAIA

The MAIA system is designed as a multi-step process that aims

to combine the visual experience of domain expert users and

machine learning–based computer vision in an efficient way

inside the BIIGLE system. One objective in the development was

to lower the barrier for machine learning–based marine image

analysis for users without a computer science background.

The MAIA system is described in brief here and for a more

detailed explanation we refer to the original publications (Zurowietz

et al., 2018; Zurowietz and Nattkemper, 2020). MAIA in BIIGLE

offers a way to use existing annotations as training data for the

machine learning algorithm, skipping some of the steps described in

the original publications. The training data is used to train the deep

neural network Faster R-CNN (Ren et al., 2015) with pre-trained

weights of the COCO dataset, which is then employed for detecting

objects of interest in the full image dataset. In the final step of

MAIA, the detected objects, referred to as annotation candidates,

are presented to the user for rapid manual classification in the

LARGO grid view of BIIGLE. Here, the users select and assign labels

to image patches showing objects of interest. As the detection task is

driven by the selection of the training data, the process is adaptive to

different marine image annotation tasks and can reduce the amount

of time spent for image object annotation (Zurowietz et al., 2018).

Other approaches similar to MAIA have been proposed by other

groups such as Yamada et al. (2023) or the CoralNet system (Couch

et al., 2019; Chen et al., 2021), however, those were not aiming for

detection and classification in deep sea benthic communities for

biodiversity assessment. In this study, MAIA was used in two

different set-ups by selecting different training data. In the first

set-up, MAIA was used to detect any kind of object on the ground,

which is referred to as general object detection. This is especially

relevant for biodiversity baseline studies, when the researchers must

conduct a primary census of the species biodiversity and richness.

Here, MAIA was trained with the annotation data from dataset S,

referred to as D67 (i.e. the dataset including 67 taxa). In the second

set-up, MAIA was used to detect five taxonomic groups

Ophiuroidea, Alcyonacea, Actiniaria/Corallimorpharia, Bryozoa

and Holothuroidea individually. To this end, MAIA was trained
Frontiers in Marine Science 06
with the data from each group in five separate runs. The five

individual training datasets were referred to as DO, DAl, DAC, DB

and DH (with O = Ophiuroidea, Al = Alcyonacea etc., see Table 2).

These experiments addressed the hypothetical case of specific

interest in one particular group of organisms with potential

indicator value. In addition, MAIA was applied to detecting the

union of all five groups, referred to as “5 groups union” or DU5.

Subsequently, DU5 was filtered for images showing the undisturbed

(i.e. non-dredged, see Figure 2) seafloor and this subset, referred to

as “5 groups union undisturbed” or DU5u, was used for training to

test whether undisturbed images of this subset were better suited for

training than the disturbed ones. Based on the results of these two

set-ups, we discuss MAIA’s performance in the context of mining-

related environmental monitoring.

Since the annotation of training data is an expensive (human

resources and time) and tedious procedure, the question of how

much MAIA’s performance benefits from increasing amounts of

training data was addressed. To study the impact of this factor, we

conducted experiments with differently-sized subsets of the training

data, i.e. using only 10, 50 100, … training samples. The effects of

these limitations to the training data are shown in the next section.

and compared the results.
3 Results

The performance of MAIA in the different set-ups using

multiple sets of training data (as described above) was measured

counting True Positive detections (TP), False Positives (FP) and

Fa l s e Nega t i v e s (FN) us ing the s t anda rd r e c e i v e r

operator characteristics:

recall = TP/(TP + FN) and precision = TP/(TP + FP).

True Positives were the detections that matched the annotations

(match or found), while False Negatives were the annotations

missed by the automated detection tool (miss) (Figure 4). For the

general object detection in the first set-up, MAIA was trained with

dataset D67 from image collection S and applied for general object

detection in image collection T. The results from this experiment

are shown in the first row of Table 3. Some of the false negative-

cases looked rather similar to the true positive-cases, but

nonetheless were occasionally overlooked (Figure 4). For the false

positive cases, i.e. those that were not manually annotated

previously but were detected by the algorithm, often these were

either Lebensspuren (past-imprints of organisms’ presence),

unidentifiable objects (often unclear if it is an organism or not),

organisms which may be dead, or organisms that previously

escaped our attention due to any of the above similarities. We

report a recall of 90.1% and 13.4% precision for the described

experiment, meaning that 90.1% of the manually annotated

organisms were also detected by MAIA. The precision shows the

percentage of automatically detected objects that were also detected

manually. This implies a false positive rate of 86.6% in the general

object detection. Indeed, many potentially interesting objects were

detected by MAIA, but were considered less relevant by the human

annotators since these were mostly non-biological features (e.g.

nodules) or non-identifiable objects.
TABLE 2 The five taxonomic groups selected from the list of all taxa and
categories (67 in dataset S and 57 in dataset T).

Grouped Taxa # dataset S # dataset T

Ophiuroidea (DO) 1975 369

Alcyonacea (DAl) 2433 514

Actiniaria/Corallimorpharia (DAC) 615 220

Bryozoa (DB) 705 127

Holothuroidea (DH) 96 71

5 groups union (DU5) 5815 1301

5 groups union undisturbed (DU5u) 2949 1301
These five groups comprised subsets of higher resolution identified taxa marked by the
annotators. The variable D() is used to relate to the set of image examples of this group
extracted from the data (see below).
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Next, we analysed the recall of MAIA for each of the 57 label

classes in T in this general object detection set-up. For each class, TP

and FN were determined by matching the positions of the object

detection with their positions as previously annotated by an expert

user. In the context of MAIA, all annotations weare circles and we

defined two annotations to be matching if the Euclidean distance

between the center points is less than the greater radius (also taking

conflicting matches into account, for details see (Zurowietz, 2022).

As a general object detection was performed without classification,

FP cannot be determined for single Classes. Using these counts of

TP and FN, the recall for each Class was computed and the results

were shown in Figure 5 on the right. 38 out of 57 labels were
Frontiers in Marine Science 07
detected with a recall > 85% and 16 out of 57 had a perfect recall of

100%. The three most difficult categories with a recall below 40%

were “Fossil”, “Jellyfish”, “Pennatulacea” and “Holothuroidea”.

These categories were represented with relative low numbers in

the training data, i.e. 1 (Fossil), 1 (Jellyfish), 5 (Pennatulacea) or 5

(Holothuroidea) but many other label classes with lower

observations in the training set S were observed with much

higher recall values in T (see Figure 5), e.g Actinopterygii (2

training samples/100% recall) or Ophiuroidea (19 training

samples/95% recall). In general, we did not observe a clear

relationship between the number of training samples of a class

and the MAIA performance for the same class in this general object
FIGURE 4

Images of correctly found organisms (True Positives, green, left column), missed ones (False Negatives, orange, center column) and newly detected
ones (False Positives, blue, right column). Left column from top to bottom feature: Ophiuroidea + Alcyonacea (Primnoidea) (Figures 3A, G),
Actiniaria/Corralimorpharia, Alcyonacea (Isididae), (possibly stalked) Porifera. Middle column, from top to bottom feature: Echinoidea (Irregularia)
(Figure 3I), Actiniaria/Corallimorpharia, encrusting Porifera and Holothuroidea (Synallactidae). Right column from top to bottom feature objects that
could be organisms or dead organisms, or Lebenspuren, reason why they were not manually annotated to begin with: Lebensspuren (Holothuroidea
feacal casts) or Holothuroidea, Paleodictyon nodosum pattern (unknown if it is a Lebensspuren burrow, organism in burrow or a trace fossil (Rona
et al., 2009), unknown, carnivorous Porifera (Cladorhizidae) - unclear if the organism is alive or dead due to brown colour.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1366078
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cuvelier et al. 10.3389/fmars.2024.1366078
detection set-up. Some results were surprising, as some of the top

missed label classes consisted of larger organisms that are easily

detected with the human eye. For example, Holothuroidea, which

are generally recognisable because of their size, shape and colours

(Figures 3J–L), had on average a low recall (54%), and were not

easily picked up by the algorithm. Other echinoderms performed

rather well (Figure 5): Echinoidea at 86% with Infraclass Irregularia

(Figure 3I) at 96% recall and, from another Echinoidea Infraclass,

the Family Aspidodiadematidae at 100% (Figure 3H); Ophiuroidea

attained a 95% recall. Alcyonacea soft coral families were also well

detected: Isididae (Figure 3B), Taiaroidea, both at 100% recall,

Primnoidea 97% recall (Figures 3A, C) and other Alcyonacea 96%

recall. Other Anthozoa classes, such as Antipatharia had a 83%

recall (Figure 3D) and Actiniaria (e.g. Figures 3E, F), a very

abundant and diverse taxon, had a 86% recall. Overall, Porifera

were well detected, with the non-stalked (Figure 3O) reaching 88%
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and stalked sponges at 96% (Figures 3M, N) and other (not clear if

stalked or not) Porifera at 94%.

In the second set-up, we investigated if the performance of

MAIA increases when the system is applied to only a single group of

taxa. To acquire a more specific model, MAIA was applied to

Ophiuroidea, Alcyonacea, Actiniaria/Corallimorpharia, Bryozoa

and Holothuroidea with the related training datasets DO, DAl, etc.

and the performance was evaluated with recall and precision (see

Table 3). The recall for the groups were compared to the results in

the general object detection set-up trained with D67. To this end, the

macro-average recall for each group was computed (see

Supplementary Table 2). The term macro-average recall refers to

the average recall which is not computed as the average recall over

all individual samples but over the class-specific averages. So label

classes with smaller numbers of observations are considered on the

same level than classes with larger numbers of observations.
TABLE 3 The recall and precision values are presented for the general object detection (“All taxa”), the individual MAIA runs for detecting particular
groups (second to sixth row), the general object detection trained only the union of the five groups (“All 5 groups”) and the training with the union of
the five groups excluding images with disturbed sea floor (“All 5 Groups undisturbed”).

Detection task/training data counts in S counts in T recall (%) precision (%)

All taxa (D67) 12,224 2,879 90.1 13.4

Ophiuroidea/DO 1,975 369 96.6 8.8

Alcyonacea/DAl 2,433 514 94.7 12.4

Actiniaria/Corallimorpharia/DAC 615 220 80.6 3.9

Bryozoa/DB 705 127 96.9 2.6

Holothuroidea/DH 96 73 71.2 0.9

5 Groups union/DU5 5,824 1,303 88.1 12.9

5 Groups union undisturbed (DU5u) 2,949 1,303 86.6 12.1
FIGURE 5

On the top left, the abundances for all 57 classes annotated in image dataset T by the experts are shown in decreasing order according to their
annotation abundances in the dataset D67 from dataset S. On the bottom left, the corresponding recall values computed for results obtained in
dataset T are shown for the plot below in the same order. On the top right, the result recall values of the MAIA object detection are shown for all
classes in decreasing order. In the bottom right plot the corresponding abundances in the expert annotations in the training dataset D67 are shown.
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In each of the five runs, no significant increase in performance

was observed. Instead, each increase in recall was traded for a

significant decrease of precision (see Table 3). When comparing the

performances with the first set-up for general object detection (see

first row in Table 3 and Supplementary Table 2), we observed that

Ophiuroidea, Alcyonacea and Holothuroidea were detected with

higher recall but a lower precision (compared to the general object

detection D67). Holothurians were detected with a low 54% recall in

the general object detection when MAIA was trained with D67 and

71.2% (with a very low precision) when MAIA was trained with DH.

Similarly, Bryozoans were detected with 91% recall in the general

object detection and 96.9% in the group specific MAIA application.

In contrast to that, the recalls for Alcyonacea and Actiniaria/

Corallimorpharia decreased from 98% to 94% and 86% to 80%,

respectively, compared to the general object detection (see

Supplementary Table 2). When MAIA was trained with DU5, for

the detection of all five taxonomic groups we observed 88.1% recall

and 12.9% precision, so again results similar to the training with

D67. No improvement for training with data DU5u which was

filtered for undisturbed regions was found, with a 86.6% recall

and 12.1% precision for this training data.

Finally, we investigatedMAIA’s performance (recall and precision)

for incrementally growing volumes of training data in all set-ups

(Figure 6). In case of learning a general object detection using the

complete dataset D67 of all taxa, MAIA reaches the best performance

with 8,000 or more training samples but does not benefit from further

increase in samples (see top left in Figure 6). The precision stays rather

stable, slightly above 10% for all training datasets with 500 or more
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training samples and does not improve for increasing numbers of

samples. Similar results occur when MAIA is again trained for general

object detection, but with the data from the union of the five taxonomic

groups (DU5) and the subset featuring undisturbed images (DU5u)

(result plots are shown in Supplementary Figure 1).

When MAIA is trained for the individual groups, we observe

slightly different trends for increasing numbers of training samples

in Figure 6. The Ophiuroidea group performance increases until

200–500 annotations, similar to the Bryozoa and the Alcyonacea

that show an increase until 500 annotations and then the learning

does not improve with more data. The Actiniaria/Corallimorpharia

group seem to reach their peak performance quite early, after 200

training samples. Interestingly, we observe a small drop down of

MAIA’s performance for 50 samples which could be explained by

overfitting problems, i.e. the network adapts too much to the low

amount of training data and shows low generalization performance.

The trained MAIA system was evaluated to perform with an

average annotation time of 111 s/image. For comparison, a

traditional purely manual annotation on a subset of 35 images

from our data with identification to a comparable taxonomic level

as wielded by MAIA, took between 94 and 172 s/image when

annotated by a highly trained observer. The discrepancy between

minimum and maximum time was related to the changing

abundances of faunal organisms per image which is clear by the

high standard deviation (an average of 123 ± 30 s/image). There is a

significant positive relationship between the time spent annotating

an image and the faunal abundance observed (r=0.91, p<0.001) as

well as the richness (r=0.78, p<0.05).
FIGURE 6

MAIA was trained with different data volumes generated as subsets of different sizes from the three datasets D67, DO, DAl, DAC, DB and DH. The
orange lines display the precision, the blue lines display the recall. The dotted lines mark the 80% recall and 10% precision as a reference. X-
axis=number of annotations, Y-axis=%.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1366078
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Cuvelier et al. 10.3389/fmars.2024.1366078
4 Discussion

The vastness of the seafloor areas of interest to deep-sea mining is

huge with the CCZ alone spanning 6million km2. A recent checklist for

the CCZ region, comprising all size fractions, included 28%megafauna

species and showed that over 88% of species sampled in the CCZ

region are undescribed (Rabone et al., 2023). While megafauna species

are most easily observed based on imagery due to their larger size (>1

cm), they are also the least abundant species and are rarely collected

(Rabone et al., 2023). As such, rare taxa (≤3 records) represented one

third of the total morphospecies richness in APEI6 (Simon-Lledó et al.,

2019b). The recent publication of a morphospecies catalogue for the

larger CCZ region shows the difficulties in attributing species names to

the megafauna observed (Simon-Lledó et al., 2023b).

In order to allow for quantifiable organism detection and

identification, images need to be collected at an optimal altitude

~1.5 m above the seafloor, which limits the area covered by a single

image acquisition (Schoening et al., 2020). With 5–10 m2 footprints

each, tens of millions of images are necessary to cover a potential

yearly mining area (200–400 km2/year) (Sharma, 2017; Smith et al.,

2020), which is unworkable. Recent studies have shown that

estimations of megafauna species richness need at least sample

units covering 1000–1500 m2 when more than 500 individuals are

present to stabilise, i.e. to approach the real species richness, with

significantly higher richness detectable in samples >1000 m2

(Simon-Lledó et al., 2019b, 2020). Due to high spatial variation

observed across the CCZ (Vanreusel et al., 2016; Simon-Lledó et al.,

2019b; Cuvelier et al., 2020; Uhlenkott et al., 2023; Simon-Lledó

et al., 2023a), replicates remain indispensable, thus adding up to

several thousands of images that remain to be analysed to estimate

representative biodiversity. Within this context, the usefulness of

the MAIA machine learning tool as a detection system can be

extremely valuable and is hereby assessed.

Recently, many studies have applied automated workflows and

deep-learning techniques to deep sea data and discussed their

performances, e.g. (semi-)automated nodule segmentations

(Schoening et al., 2016; Peukert et al., 2018; Dumke et al., 2018;

Gazis et al., 2018; Gazis and Greinert, 2021) and the classification of

nodule associated fauna (Mbani et al., 2023). Our study is the first to

address practicality and applicability of computational species

detection in assessing biodiversity in mining-related monitoring

scenarios. Most related works on machine learning-based

underwater biodiversity assessment focus more on the classification

of hand selected image patches, which is of course very relevant

(Piechaud et al., 2019; Durden et al., 2021). Nevertheless, given the fact

that many (rare) species in the images will not be represented in a

training data set, the computational general detection of fauna without

a detailed taxonomic classification is pertinent and valuable as it would

make the time-consuming and error-prone visual screening of the

entire images obsolete. This process could be replaced by amuchmore

efficient browsing of image patches (selected by a general object

detection) and their manual classification to taxonomic categories.

We believe that ongoing contributions aiming at detection or

classification of underwater taxa will finally provide the basis for the

development of efficient full- or semi-automatic workflows
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customised to special scientific contexts. As MAIA is already

available to more than 3,000 registered BIIGLE users (on biigle.de),

this study gives some insights into the potentials and limitations of

machine learning–assisted annotation in deep-sea monitoring.
4.1 Quality assessment

MAIA achieves high recall values when carrying out the general

species detection, i.e. detecting any kind of fauna, and as such

assessing the overall faunal abundance. While there is still no

consensus on what is an acceptable error rate in ecology (Piechaud

et al., 2019), we can state that our general species detection happens

with satisfactory accuracy (> 90% for all taxa). When increasing the

number of training samples, the precision slightly improves (reaching

13.4% with final result obtained using all data). So theoretically,

further improvement can be envisioned when adding more image

annotation data. Looking at the current trends in machine learning–

based computer vision, it seems likely that new strategies such as self-

supervised learning methods can make use of huge numbers of non-

labelled marine image data for learning purposes in this context. As a

consequence, one may conclude that, in our particular ecological

context, all underwater and marine image data from the CCZ should

be combined in order to provide the best possible training database to

develop AI models. A successful combination of data would depend

on the application of standards in labeling, metadata and platform

(e.g. ROV, AUV) operation protocols.

In general, our levels of recall, sometimes also referred to as

accuracy or sensitivity, are comparable to or higher than numbers

reported in other studies attempting to automatically detect and

classify deep-sea megafauna (Schoening et al., 2012). The precision

is a measure for the (mis-)match between automated and manual

annotation location and is thus a measure for the False Positives.

Our low precision levels can be attributed to the fact that the nodule

fields analysed here feature an irregular background pattern due to

the differences in soft sediment and hard substrates (nodules), their

contrasts, textures and colours. Additionally, the high numbers of

rare morphotypes can cause increased False Positives in the more

common morphotypes, due to the increased variation, which is thus

reflected by a lower precision. However, we observed that within

these False Positives, MAIA also finds potentially interesting objects

and patterns, including environmental features (e.g. nodules,

Lebensspuren) or organisms that were previously left unlabelled

because of human doubts or identification issues. In this

perspective, MAIA can be used as a re-evaluation tool to narrow

down object identification and include additional detections in a

morphospecies catalogue.

The comparison of MAIA trained with different training data

sets shows that the best recall values are obtained with the largest

number of training data. But the performance gain for including

more training data diminishes after a certain amount. Interestingly,

the MAIA precision for the single taxonomic groups (DAl, DO, etc.)

is lower when trained with this special training data than for the

general object detection. So the detection of taxonomic subsets or

groups benefits from the additional training data even if these data
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points represent other species and morphologies. This observation

further supports the necessity to collect or compile as much data as

possible, beyond individual license areas and operators (academia

and contractors). In contrast to observations reported by Piechaud

et al. (2019), we cannot confirm that the performance generally

increases for selected smaller subset of classes.

Large differences in morphological shapes of organisms, as

observed here for e.g. Echinoidea and Porifera, remain one of the

biggest challenges in automated species identification (Wäldchen

et al., 2018). Similarly, and rather surprisingly, because easily

detected by the human eye, was the low detection rate for

Holothuroidea (<90%). While traditionally hard to identify to

species level based on imagery alone, sea cucumbers are generally

easily recognisable, occurring in many shapes, sizes and colours and,

except for several morphospecies, are rarely inconspicuous. One way

to address this in the future is the implementation of feedback loops

to prompt users to add additional training samples for particular less

represented classes. The challenge for machine learning tools here lies

in grouping the considerable differences in morphology, shape, some

more sediment-coloured and others brightly coloured. Beside the

inter-species morphological differences, intraspecific changes in

morphology exist for Porifera and Cnidaria, which show

contractile/expansive behaviour when feeding or reacting to stimuli

such as tides, pressure and respiration (Kahn et al., 2020). Individual

animal modeled forms with morphometric indices could enhance

correct classifications (e.g Aguzzi et al., 2011), but represent a

disproportionate amount of work in a species rich environment

with many rare organisms. Additionally, the performance of these

models is still limited by habitat variations and are thus less applicable

in a complex and textured, irregular habitat.

The MAIA algorithm appeared to learn quickly for Alcyonacea

and Ophiuroidea detections, which might be due to the repetitive

patterns of polyp organisation in the former and symmetrical

patterns for the latter. Additionally, Alcyonacea are most often

whitish in colour which gives an enhanced contrast when compared

to the substrate background.

This study also provides a first look into the effect of sediment

coverage on the network performance. After removing the

sediment-impacted images from the training data, we surprisingly

did not see a strong effect on the network performance except a

small decrease in classification accuracy which may be explained by

a lower number of training data (S).
4.2 Efficiency

The time needed by a highly trained observer to manually

annotate a subset of images in BIIGLE was significantly correlated

with the abundance of fauna as well as with the richness. While the

average manual annotation speed - when restricted to a higher

taxonomic level (Class or Family) - was not significantly slower than

automated MAIA detections, observer errors and lapses in

concentration must be taken into account. Increasing taxonomic

resolution, i.e. identification to (morpho-)species level, besides

implying a different level of accuracy and difficulty for the

annotator, increases taxon richness and thus time necessary for
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manual annotation of each image. Similarly, if a lesser trained

observer would perform the same task of manual annotation, time

spent per image will increase significantly. For comparison, in

Zurowietz and Nattkemper (2021) a median gap between two

consecutive annotations from one user was reported to be 40.3

seconds according to the records in the entire BIIGLE database. To

date, this number is updated to 45.0 seconds, based on the most

recent BIIGLE database (11.2 million image annotations as of

November 2023). As the average number of annotations for the

images in data set T is 8.39, we estimate the predicted annotation

time per image to be 378 s/image for an average skilled user. To

further decrease the required time, one can a) find ways to further

reduce the number of false positives (for instance by improving the

image quality) or b) improve the MAIA filtering interface for the

users by grouping image patches into clusters of similar

morphology, so users can correct or delete image patches in

chunks. The annotation time of 123 ± 30 s/image measured in

this study falls considerably below the above estimated average

annotation time that we have computed from the BIIGLE database.

One reason for this considerable difference may be the advanced

skill level of the annotators having collaborative experience for

working in the area. Another reason could be that the images may

show less objects of interest with a higher foreground-background

contrast than the average marine image in the BIIGLE database.
4.3 Human factor

Based on the results presented here, we want to highlight the

advantages of using an automated detection tool, but with the

emphasis that a human factor is indispensable to guide and correct

the machine learning tools. Often, computer vision algorithms must

be designed specifically to detect and classify particular targets

against different background types (Purser et al., 2009; Aguzzi

et al., 2011). Here, we show that for global baseline assessments,

MAIA can be used efficiently to quantify overall faunal abundance

and assist in assessing the diversity of organisms. In current times,

where data is accumulating faster than the processing power or

human resources of many research institutions, computational

solutions and machine learning tools can prove elemental for

effective data exploitation (Matabos et al., 2017). Accessible

automated tools, as those described here, can accelerate time-

consuming image analyses and can be used to even the playing

field in attributing technical and human capacity to deep-sea

research, exploration and monitoring, which is one of the main

causes of inequity among institutes and countries (Bell et al., 2023).

Additional human intervention in the design and subsequent

quality control is still required to obtain representative ecological

metrics as well as to program or adjust the settings of the imagery

collecting platform (e.g. importance of altitude in concept drift:

(Langenkämper et al., 2020; Schoening et al., 2020)). Regarding

imagery annotations, training is crucial both for scientists as well as

machine learning tools. Training of deep-sea scientists in

recognising and identifying taxa based on imagery and a

posteriori attribution of morphospecies labels after automated

classification in higher taxonomic groups is an important way
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forward. Initiatives such as SMarTar-ID (Howell et al., 2020) and

open access megafauna atlases (Simon-Lledó et al., 2023b) are

therefore indispensable for standardization, uniformisation and

learning. A hybrid computer-vision/human approach appears to

combine the best of both worlds.
5 Conclusion

In light of the above discussion, we conclude that the annotation

of large marine image collections from environmental impact

monitoring can be supported by not only deep learning–based

taxonomic classification but also by deep learning–based object

detection. The free available web tool MAIA in BIIGLE delivers

promising results with sufficient recall with a small speed-up

compared to a manual annotation by a highly trained expert. For

less-experienced users, the speed-up is more significant as well as a

gain in usability and consistency. Future research has to address

speed up in post processing (i.e. filtering false positives) and

increasing precision in object detection in order to further

increase the efficiency and effectiveness in this approach.
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SUPPLEMENTARY TABLE 1

label tree for fauna annotations. Labels exclusively occurring in datasets S or T
are marked as such.

SUPPLEMENTARY TABLE 2

macro-average recall for taxon groups in for the general object detection.
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SUPPLEMENTARY FIGURE 1

MAIA was trained with different data volumes generated as subsets of
different sizes from the three data sets D67, DU5 and DU5u. The red lines

display the precision, the blue lines display the recall. The dotted lines mark

the 80% recall and 10% precision, which might be considered a minimum
performance necessary for an automatic system.
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