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RGB/Event signal fusion
framework for multi-degraded
underwater image enhancement
Xiuwen Bi, Pengfei Wang, Wei Guo, Fusheng Zha*

and Lining Sun

State Key Laboratory of Robotics and System, Harbin Institute of Technology (HIT), Harbin, China
Underwater images often suffer from various degradations, such as color

distortion, reduced visibility, and uneven illumination, caused by light

absorption, scattering, and artificial lighting. However, most existing methods

have focused on addressing singular or dual degradation aspects, lacking a

comprehensive solution to underwater image degradation. This limitation

hinders the application of vision technology in underwater scenarios. In this

paper, we propose a framework for enhancing the quality of multi-degraded

underwater images. This framework is distinctive in its ability to concurrently

address color degradation, hazy blur, and non-uniform illumination by fusing

RGB and Event signals. Specifically, an adaptive underwater color compensation

algorithm is first proposed, informed by an analysis of the color degradation

characteristics prevalent in underwater images. This compensation algorithm is

subsequently integrated with a white balance algorithm to achieve color

correction. Then, a dehazing method is developed, leveraging the fusion of

sharpened images and gamma-corrected images to restore blurry details in RGB

images and event reconstruction images. Finally, an illumination map is extracted

from the RGB image, and a multi-scale fusion strategy is employed to merge the

illumination map with the event reconstruction image, effectively enhancing the

details in dark and bright areas. The proposed method successfully restores color

fidelity, enhances image contrast and sharpness, and simultaneously preserves

details of the original scene. Extensive experiments on the public dataset DAVIS-

NUIUIED and our dataset DAVIS-MDUIED demonstrate that the proposed

method outperforms state-of-the-art methods in enhancing multi-degraded

underwater images.
KEYWORDS

underwater image enhancement, RGB/Event camera, color correction, dehazing,
non-uniform illumination
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1 Introduction

The underwater environment possesses unique physical

properties and complex lighting conditions, resulting in a

degradation of image quality when captured by traditional

cameras. Generally, the selective absorption and light scattering of

water can induce color deviation, reduced contrast, and blurred

details in underwater images (Zhang et al., 2022b). Moreover,

artificial lighting can distribute non-uniform illumination across

images, leading to a bright center, darker periphery, or even

overexposure. These image degradation issues may have adverse

implications for underwater applications, including ocean

exploration (Chen et al., 2020), underwater object detection (Liu

et al., 2020; Wang et al., 2021), and robot control (Cho and

Kim, 2017).

In recent years, various enhancement methods have been

developed to address the problem of decreasing RGB image

quality captured by traditional cameras in underwater

environments (Jian et al., 2021), but they all have their

limitations. Physical model-based methods (Akkaynak and

Treibitz, 2019; Xie et al., 2021) use estimated underwater imaging

model parameters to reverse the degradation process and obtain

more explicit images. However, these methods heavily rely on the

model’s assumptions, lack generalizability, and may produce

unstable results when enhancing multi-degraded images. Non-

physical model-based methods (Fu et al., 2014; Dong et al., 2022)

can enhance image contrast and brightness by adjusting the pixel

values of degraded underwater images but may suffer from the

problem of over-enhancement. Deep learning-based methods (Guo

et al., 2019; Peng et al., 2023) have shown remarkable performance

in underwater image enhancement. However, the complexity and

variability of the underwater environment make it challenging to

obtain high-quality underwater training images, and a single

trained network may not cover multiple underwater degradation

problems. Additionally, due to the limited dynamic range of

traditional cameras, images captured in unevenly illuminated

underwater environments are prone to detail loss, and existing

enhancement methods face difficulties restoring details in bright

areas. Therefore, further research and development are needed to

overcome these limitations and improve the quality of multi-

degraded underwater images, particularly in unevenly

illuminated areas.

Event cameras are novel biological sensors with high dynamic

range and low latency (Gallego et al., 2020), enabling them to

capture scene information in non-uniform illumination

environments. As such, they provide a promising solution to

address the degradation of underwater images. Compared to

traditional cameras, event cameras output asynchronous and

discrete event streams rather than RGB images (Gallego and

Scaramuzza, 2017). Several methods have been proposed to

reconstruct intensity images from the event stream, such as HF

(Scheerlinck et al., 2019), E2VID (Rebecq et al., 2019), etc. These

techniques effectively preserve details within both bright and dark

areas but fall short of retaining color information. To address this

issue, some image restoration methods based on events and RGB

image fusion have been proposed (Pini et al., 2018; Paikin et al.,
Frontiers in Marine Science 02
2021; Bi et al., 2022b, 2023). Among these, Bi et al. (2022b)

proposed an Event and RGB signals fusion method for

underwater image enhancement, successfully restoring details in

bright areas while maintaining the original RGB image’s color.

However, this method overlooks color distortion and detail

blurriness in underwater images, crucial factors impacting

image quality.

In this study, we present an enhanced version of our previous

work introduced in Bi et al. (2022b). The proposed method adds

color correction and dehazing modules, which can effectively

address color degradation, detail blurring, and non-uniform

illumination simultaneously. Our new contributions can be

summarized as follows.
1. We propose a novel method for enhancing multi-degraded

underwater images by fusing Event and RGB signals. To the

best of our knowledge, this is a pioneering attempt to

employ Event and RGB signals fusion to address multiple

degradation problems prevalent in underwater images.

2. A color correction method for underwater images is proposed,

leveraging an adaptive color compensation algorithm and

white balance technology. Notably, the adaptive color

compensation algorithm is introduced guided by the color

degradation characteristics observed in underwater images.

3. An underwater dehazing method that utilizes the fusion of

sharpening maps and artificial multi-exposure images is

proposed. Taking into account the characteristics of event

reconstruction images and RGB images, distinct fusion

strategies are designed to enhance the details of both

image types.

4. We conduct extensive experiments on the public dataset

DAVIS-NUIUIED and our dataset DAVISMDUIED to

assess the effectiveness of the proposed method. The

experimental results establish the superiority of our

method in color correction, contrast enhancement, and

detail recovery of underwater images, as compared to the

state-of-the-art methods.
The rest of the article is organized as follows. Section 2 reviews

existing underwater RGB image enhancement methods and RGB/

Event signal fusion methods. Section 3 provides detailed technical

details and implementation methods of the proposed method.

Section 4 presents experimental studies for performance

evaluation. Section 5 summarizes the key findings of our research.
2 Related works

2.1 Underwater RGB image
enhancement methods

Existing underwater RGB image enhancement methods can be

broadly classified into three categories: physical model-based

methods (Chiang and Chen, 2011), non-physical model-based

methods (Bai et al., 2020), and deep learning-based methods

(Wang et al., 2017).
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2.1.1 Physical model-based methods
The physical model-based approach is employed to estimate the

parameters of underwater image degradation by utilizing manually

crafted prior assumptions, which are then reversed to restore image

quality. These priors include red channel prior (Galdran et al.,

2015), underwater dark channel prior (Yang et al., 2011; Liang et al.,

2021), minimum information loss (Li et al., 2016), and attenuation

curve prior (Liu and Liang, 2021), etc. For example, Serikawa and

Lu (2014) combined the traditional dark channel prior with a joint

trilateral filter to achieve underwater image dehazing. Li et al. (2016)

proposed a novel underwater image dehazing algorithm based on

the minimum information loss principle and histogram distribution

prior, aiming to enhance the visibility and contrast of the image.

Song et al. (2020) proposed an improved background light

estimation model, which applies the underwater dark channel and

light attenuation to estimate the model parameters, achieving color

correction and enhancement of underwater images. Marques and

Albu (2020) created two lighting models for detail recovery and

dark removal, respectively, followed by combining these outputs

through a multi-scale fusion strategy. Similarly, Xie et al. (2021)

introduced a novel red channel prior guided underwater

normalized total variation model to deal with underwater image

haze and blur. Even though physical model-based methods can

improve color bias and visibility of underwater images in some

cases, they are sensitive to prior assumptions. These methods may

not effectively restore underwater images and may lack flexibility in

practical applications if the prior assumptions do not align with the

underwater scene.

2.1.2 Non-physical model-based methods
Utilizing non-physical models to directly adjust the pixel values

of degraded underwater images can improve visual quality. Some of

the representative methods include histogram-based (Hitam et al.,

2013), Retinex-based (Zhuang et al., 2022), fusion-based (Yin et al.,

2023), and white balance methods (Tao et al., 2020). For instance,

Ancuti et al. (2012) and Zhao et al. (2021) introduced a fusion-

based underwater dehazing approach, aiming to restore image

texture details and improve contrast by integrating different

versions of images. Azmi et al. (2019) proposed a novel color

enhancement approach for underwater images inspired by natural

landscape images. This method comprises three stages: color cast

neutralization, dual-image fusion, and mean value equalization.

Zhang et al. (2022b) introduced local adaptive color correction and

local adaptive contrast enhancement methods to enhance

underwater images. Similarly, Zhang et al. (2022a) proposed a

fusion method inspired by Retinex to merge contrast-enhanced

and detail-enhanced versions of underwater images. While non-

physical model-based methods can increase the contrast and visual

quality of underwater images to some extent, they do not account

for the underwater imaging mechanism, which makes it challenging

to achieve high-quality restoration of degraded underwater images.

2.1.3 Deep learning-based methods
Deep learning-based methods have made significant progress in

visual tasks such as underwater image dehazing and super-

resolution (Islam et al., 2020), thanks to powerful computing
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capabilities and abundant training data. Guo et al. (2019)

proposed a new multi-scale dense block method that combines

residual learning, dense connectivity, and multi-scale operations to

enhance underwater images without constructing an underwater

degradation model. Furthermore, Jiang et al. (2022) designed a

target-oriented perception adversarial fusion network based on

underwater degradation factors. Liu et al. (2022) proposed an

unsupervised twin adversarial contrastive learning network to

achieve task-oriented image enhancement and better

generalization capability. Recently, Peng et al. (2023) introduced a

U-shaped Transformer network and constructed a large underwater

dataset, the first application of Transformer models to underwater

image enhancement tasks. However, deep learning-based methods

require a large amount of high-quality underwater image data,

which is challenging to collect. Additionally, the performance of a

singular well-trained network diminishes when confronted with

diverse manifestations of underwater image degradation, thereby

limiting the application of these methods.

In general, the three types of enhancement methods have

demonstrated their ability to improve color and contrast in

specific scenarios. However, these methods primarily focus on

enhancing images with one or two types of degradations. In

reality, underwater image degradation is complex and

encompasses various factors. Additionally, existing methods

encounter difficulties handling uneven illumination caused by

artificial lighting. This limitation primarily arises from the limited

dynamic range of traditional cameras, which results in a significant

loss of details in bright areas of RGB images captured under non-

uniform lighting conditions. Unlike previous underwater image

enhancement methods, we propose a multi-degradation underwater

image enhancement approach that addresses color degradation,

hazy blur, and uneven illumination issues. Significantly, our

framework incorporates event cameras, capitalizing on their high

dynamic range capabilities. This innovative method adeptly

preserves details in both bright and dark areas of the scene, even

when subjected to uneven lighting conditions.
2.2 RGB/Event signal fusion methods

Event cameras are a type of biomimetic sensor that differ from

standard cameras in their working principles (Messikommer et al.,

2020). While standard cameras output intensity frames at a fixed

frequency, each pixel of an event camera can independently sense

changes in the brightness of a moving scene and output them as an

event stream (Rebecq et al., 2018). To bridge the gap between event

cameras and traditional cameras, and to apply traditional camera

algorithms to event cameras, several methods have been proposed

to reconstruct events into intensity images. One approach,

proposed by Scheerlinck et al. (2019), uses complementary filters

and continuous-time equations to generate high dynamic range

images. Cadena et al. (2021) developed a SPADE-E2VID neural

network model inspired by the SPADE model, which employs a

many-to-one training method to shorten training time. Zou et al.

(2021) proposed a convolutional recurrent neural network that

leverages features from adjacent events to achieve fast image
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reconstruction. While the reconstructed images from events have a

high dynamic range, they lack color information.

Recently, researchers have proposed several methods to

reconstruct images with high dynamic range and color by

integrating Event and RGB signals. Pini et al. (2018) proposed a

color image synthesis framework based on conditional generative

adversarial networks. Paikin et al. (2021) introduced an event-frame

interpolation network that combines frames and event streams to

generate high dynamic range images while preserving the original

color information. In addition, for underwater image enhancement,

Bi et al. (2022b) proposed a novel method that leverages the

complementary advantages of event cameras and traditional

cameras to restore details in regions with uneven illumination.

However, this method does not address the issues of color

degradation and detail blurring in underwater images.

Compared with our previous work (Bi et al., 2022b), we add an

adaptive color correction method to adjust the color of underwater

images. Additionally, we introduce an underwater image dehazing

method that combines sharpened images and gamma-corrected

images to improve image visibility. As a result, the proposed

method can simultaneously solve the problems of color

degradation, haze, and uneven illumination in underwater images.
3 Proposed method

In underwater image capture, standard cameras frequently face

challenges such as color distortion, decreased visibility, and non-

uniform illumination. Our previous work (Bi et al., 2022b)

demonstrated that combining event cameras with traditional

cameras can help address the issue of uneven underwater

illumination. However, this method only applies to clear water

and cannot overcome the problems of color degradation and haze
Frontiers in Marine Science 04
in underwater images. To overcome these limitations, we introduce

a framework for the fusion of RGB and Event signals, aiming to

enhance multi-degraded underwater images.

Figure 1 depicts the flowchart of the proposed method, which

comprises three principal components: RGB image enhancement,

event stream preprocessing, and enhanced RGB/Event image

fusion. In the RGB image enhancement process, we propose a

color correction method that uses adaptive color compensation and

white balance to reduce color deviation in underwater

environments. To reduce haze and scattered light, we then apply

a fusion method based on sharpening maps and gamma-corrected

images, combined with a fusion strategy designed for RGB images.

In the event stream preprocessing process, we reconstruct the event

stream into an intensity image using the E2VID method (Rebecq

et al., 2019). Then, we use the proposed fusion dehazing method to

restore the details and clarity of the image. In the fusion process of

the enhanced RGB and event reconstruction images, we utilize the

RRDNET method to extract an illumination map from the RGB

image (Zhu et al., 2020). After that, we employ gamma correction to

adjust the brightness of the illumination map and the event-

reconstructed image to generate two sets of multi-exposure image

sequences. Subsequently, we apply the pyramid fusion strategy to

fuse the images and restore the details of the bright areas. Finally,

relying on the Retinex theory (Li et al., 2018), we convert the fused

image into an RGB, which serves as the final enhanced image.
3.1 Underwater RGB images
color correction

In marine environments, the attenuation rates of various

wavelengths of light vary, leading to potential color distortion in

corrected underwater images if the traditional gray world
FIGURE 1

Flowchart of the proposed method.
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assumption is used without considering this. To avoid such a

situation, it is imperative to perform color compensation for

degraded underwater images. This paper proposes an adaptive

color compensation method for underwater images by analyzing

the color distribution characteristics of natural terrestrial

landscapes and degraded underwater images. Afterward, we

utilize the gray world algorithm (Buchsbaum, 1980) to correct the

color bias of the light source.

Due to the absorption of light by the aquatic medium,

underwater images undergo substantial color degradation, which

differs from the color characteristics of natural landscape images.

Tables 1, 2, respectively, present the average intensity values of the

red, green, and blue (RGB) color channels for typical natural

landscape images and degraded underwater images. Through

comparative analysis, the following conclusions can be drawn:
Fron
1) In natural landscape images captured on terrestrial surfaces

without degradation, colors exhibit a uniform distribution.

2) For images taken in turbid water scenes, the green channel’s

wavelength is less absorbed and relatively well-preserved.

Thus, it is advisable to utilize the green channel as a

reference to compensate for the red and blue channels.

3) When images are acquired from deep-water scenes, the

wavelength of the blue channel is relatively short, which can

be preserved relatively well. Therefore, the blue channel is

utilized as a reference to compensate for the red and

green channels.

4) For images taken in underwater uneven lighting scenes, the

values of the three color channels commonly exhibit relatively

higher levels, thus rendering restoration unnecessary.
We propose an adaptive underwater image color compensation

method in light of the abovementioned investigation on terrestrial

natural scene images and subaquatic scene images. Initially, the

three color channels are categorized based on the mean value of the

RGB color channels. Subsequently, utilizing the least attenuated

channel as a reference, calculate the gain factors and compensate for

the remaining two color channels. The computation of the average

for the red, green, and blue channels is shown in Equation (1).

�Ic =
1

HWoH
x=1oW

y=1Ic(x, y), c ∈ R,G,Bf g (1)

where H and W represent the height and width of the input

image, respectively. We divide the three RGB color channels into

high-quality color channels Ihq, medium color channels Im, and

low-quality color channels Ilq according to their average values in

descending order.

Next, to address the attenuation that occurred in the medium color

channels Im and the low-quality color channels Ilq, the reference

channel is selected to be the high-quality color channel Ihq. The gain

factors J and K are then derived using computation, wherein the gain

factor J is defined as the disparity between the average values of the

high-quality color channel Ihq and the medium color channel Im, and
tiers in Marine Science 05
TABLE 1 Mean values of RGB intensity for natural landscape images.

Images
Mean of

RGB Intensity

Natural
Image 1

Mean of R Intensity
=149.68

Mean of G Intensity
=149.03

Mean of B
Intensity =148.54

Natural
Image 2

Mean of R Intensity
=137.33

Mean of G Intensity
=140.63

Mean of B
Intensity =136.01

Natural
Image 3

Mean of R Intensity
=119.46

Mean of G Intensity
=114.06

Mean of B
Intensity =106.38
TABLE 2 Mean values of RGB intensity for degraded underwater images.

Images
Mean of
RGB

Intensity

Turbid
Scene Image

Mean of R
Intensity
=68.87

Mean of G
Intensity
=168.60

Mean of B
Intensity
=106.06

Deep
Underwater
Scene Image

Mean of R
Intensity
=37.71

Mean of G
Intensity
=96.05

Mean of B
Intensity
=152.41

Non-
illumination
Scene Image

Mean of R
Intensity
=124.06

Mean of G
Intensity
=144.54

Mean of B
Intensity
=118.46
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the gain factor K represents the discrepancy between the high-quality

color channel Ihq and the low-quality color channel Ilq. The gain factors

J and K are calculated as shown in Equations (2) and (3), respectively.:

J =
�Ihq(x, y) − �Im(x, y)
�Ihq(x, y) + �Im(x, y)

(2)

K =
�Ihq(x, y) − �Il(x, y)
�Ihq(x, y) + �Il(x, y)

(3)

where �Ihq, �Im and �Ilq are the average value of Ihq, Im and Ilq,

respectively.

By using the gain factors J and K, we compensate for the

attenuation of the medium and low-quality color channels at

every pixel position (x, y), as calculated in Equations (4) and (5).

Im(x, y) = Im(x, y) + (J � Ihq(x, y)) (4)

Ilq(x, y) = Ilq(x, y) + (K � Ihq(x, y)) (5)

The proposed adaptive underwater image color correction

method effectively mitigates the presence of color casts caused by

underwater conditions. However, it should be noted that the

method cannot fully address color casts in regions influenced by

light sources. To overcome this limitation, the white balance

algorithm based on gray world assumptions (Buchsbaum, 1980) is

employed subsequently to compensate for the attenuation channel.

Adjusting the color of each pixel in the image to a neutral gray that

conforms to the gray world assumption effectively corrects color

degradation in areas influenced by the light source. This procedure

enhances the overall natural appearance of the image and alleviates

color distortion issues caused by underwater conditions.
3.2 Underwater images dehazing

To tackle the challenges of blurriness and haze in underwater

images, we present a straightforward yet efficient underwater

dehazing technique. Drawing inspiration from the methodology

outlined in Ancuti and Ancuti (2013), our approach similarly

adopts a multi-scale fusion framework. However, unlike Ancuti

and Ancuti (2013), our fusion framework incorporates both sharp

images and multi-exposure images as inputs. The inclusion of sharp

images serves to accentuate edge delineation and improve local

visibility by merging them with gamma-corrected images. As

depicted in Figure 1, our approach entails separate processing of

event reconstruction images and RGB images via parallel

dehazing processes.
3.2.1 Intensity image reconstruction from events
We utilize the E2VID method (Rebecq et al., 2019) to reconstruct

intensity images from events captured by event cameras. Initially, we

establish a convolutional recursive network grounded on the UNet

architecture. This network can learn and reconstruct intensity frames

from asynchronous event data. Subsequently, we employ the Event

Simulator (ESIM) (Rebecq et al., 2018) to generate a series of
Frontiers in Marine Science 06
simulated event sequences for network training. The actual event

stream is then partitioned into discrete time blocks and fed into the

trained network to reconstruct events into intensity images.

3.2.2 Derived inputs
We generate a sharpened image and a series of multi-exposure

images from the input image (event reconstruction image or

RGB image).

Sharpened Image. To improve the texture details of an image,

we introduce the concept of a sharpened image, which is a

sharpness-enhanced version of the reconstructed intensity image

or the color-corrected RGB image. We use the normalized unsharp

masking method (Ramponi et al., 1996) to sharpen the input

images, as expressed in Equation (6).

S =  (I + N I − G ∗ If g)=2 (6)

where, G ∗ I denotes the blurred version of the input image I,

and N {·} represents the linear normalization operator.

Gamma-corrected image sequences. We use the gamma

correction method to adjust the dynamic range of images and

generate artificial multi-exposure image sequences that enhance the

contrast in foggy regions. Gamma correction is a method of

adjusting the brightness and contrast of an image by applying a

non-linear transformation to its pixel values. Studies demonstrate

that when g > 1, the visibility of hazy areas in the output image

improves, but the contrast in dark areas decreases. Conversely,

when g < 1, the visibility of details in darker regions is improved,

but it affects the details in bright areas. The formula for gamma

correction is shown in Equation (7).

IG = aIg (7)

where a and g are positive constants. Figure 2 demonstrates the

effects of gamma correction operation on an image. Figure 2A

shows the original image. The resulting image exhibits reduced

contrast and heightened haziness when g < 1, as illustrated in

Figure 2B. Conversely, for g > 1, as depicted in Figures 2C–E, the

gamma-corrected images showcase heightened contrast and

improved visibility, with distinct details in brighter areas.

Figure 2C achieves a softer dehazing effect while preserving

detailed information, whereas Figure 2E emphasizes brightness

contrast and clarity at the expense of some finer details. To

optimize image quality and restore intricate details, we employ

three distinct g values (g = 1.5, 2, 2.5) to generate diverse

exposure images.

3.2.3 Fusion weights of event
reconstruction images

Since event reconstruction images lack color information,

saturation is not a factor to consider during the image fusion. This

study utilizes contrast and exposure as metrics to achieve the fusion of

four inputs I i(i =   1, 2, 3, 4f g) from event reconstruction images: one

sharpened version and three gamma-corrected versions.

Contrast Weight Map Ci(x, y): we apply Laplacian filtering to

each input image’s luminance channel and use the filtering result’s

absolute value to calculate the global contrast. A higher weight value
frontiersin.org
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for contrast indicates better preservation of image texture details,

resulting in a clearer image. The contrast weight map Ci(x, y) is

computed as Equation (8).

Ci(x, y)  =   L ∗  I i(x, y)j j (8)

where L denotes the Laplacian operator and Ii represents the
luminance of the i-th input image.

Exposure Weight Map Ei(x, y): images with different exposure

levels contain varying degrees of detail information, with well-

exposed pixels exhibiting clearer details. In optimal exposure

conditions, pixel brightness values should be close to 0.5. The

calculation of Ei(x, y) is shown in Equation (9).

Ei(x, y) = exp ( −
(I i(x, y) − 0:5)2

2s 2 ) (9)

where s is a parameter representing the standard deviation,

influencing the width of the Gaussian distribution in the

exponential term. s is usually set as 0.2 (Lee et al., 2018; Zhang

et al., 2018; Xu et al., 2022).

To obtain the final weight map Wi(x, y) for each input I i, we

compute the product of the contrast weight map and the exposure

weight map, which g ives us Wi(x, y)  = Ci(x, y)  · Ei(x, y).

Subsequently, we normalize the weight map for every pixel position

by dividing each weight value by the sum of the weight values at that

position, as follows: �Wi(x, y) =
Wi(x,y)

oiWi(x, y). This normalization

ensures that the sum of weight values at each position adds up to 1.
3.2.4 Fusion weights of RGB images
To enhance the visual fidelity of RGB images, we adopt a

contrast weight map, saliency weight map, and saturation weight

map to efficiently blend four inputs I j(j =   1, 2, 3, 4f g) from

RGB images.

Saliency weight map Sj(x, y): we detect the saliency level of

adjacent pixels and extract regions with high saliency for fusion,

resulting in images with clear boundaries. To measure saliency

levels, we employed the saliency estimator developed by Achanta

et al. (2009), which utilizes color and brightness features to estimate

saliency and can swiftly generate saliency maps with clear

boundaries and full resolution.

Saturation weight map Tj(x, y): Regions with high saturation are

extracted to generate images with more vibrant and true-to-life

colors. To compute the weight values, we calculate the standard
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deviation of the color channels Rj, Gj, and Bj at each pixel position,

which reflects the color saturation of that position. Regions with

higher saturation are assigned greater weight values in the map,

resulting in better preservation of their color during the image

fusion process. The saturation weight map Tj(x, y) is expressed in

Equation (10).

Tj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

(Rj − Lj)
2 + (Gj − Lj)

2 + (Bj − Lj)
2

� �r
(10)

where L is the average of the three RGB color channel values.

In the process of RGB images dehazing, the final weight map

calculation formula for each input is Wj (x, y) = Cj (x, y) · Sj (x, y) · Tj
(x, y), and the normalization method for the weight map isWj (x,  y) =
Wj  (x, y)

oj
Wj(x, y)

.

3.2.5 Multi-scale fusion process
To avoid unwanted artifacts in the fused image, we adopt the

multi-scale image fusion method proposed by Burt and Adelson

(1983) to achieve the fusion of the sharpness map and the multi-

exposure images. Taking the RGB image as an example to introduce

the fusion process, we first decompose the sharpness map and

multi-exposed images into Laplacian pyramids L I j

� �
, and their

corresponding normalized weight maps into Gaussian pyramids G
�Wj

� �
. The Laplacian pyramid is employed to represent the detailed

information of an image, while the Gaussian pyramid is utilized to

depict the blurred information in an image. The calculation for the

l-th level of the Gaussian pyramid is shown in Equation (11).

Gl(x, y) = o
2

m=−2
o
2

n=−2
w(m, n)Gl−1(2x +m, 2y + n)

(0 ≤ l ≤ Lev − 1, 0 ≤ x ≤ Rl , 0 ≤ y ≤ Cl)

(11)

where w(m, n) is the Gaussian filter template, N is the maximal

level of the pyramid, Cl and Rl represent the column and row

number of the l-th level pyramid respectively.

Subsequently, derive the Laplacian pyramid by computing the

difference between two layers of the Gaussian pyramid (Wang and

Chang, 2011). The detailed calculation is expressed in Equations

(12) and (13).

G∗
l (x, y) = 4 o

2

m=−2
o
2

n=−2
w(m, n)G∗

l
x +m
2

,
y + n
2

� �
(1 ≤ l ≤ N , 0 ≤ x ≤ Rl , 0 ≤ y ≤ Cl)

(12)
B C D EA

FIGURE 2

The results of gamma correction operations. (A) Original image. (B) Corrected image with g=0.5. (C) Corrected image with g=1.5. (D) Corrected
image with g=2.0. (E) Corrected image with g=2.5.
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Ll =
Gl − G∗

l+1, 0 ≤ l < N

Gl , l = N

(
(13)

where  G∗
l (

x+m
2 , y+n2 ) =

Gl

�
x+m
2 , y+n2

�
, x+m2 , y+n2 are int

0 , other

8><
>:

Then, we combine the Laplacian pyramids and the Gaussian

pyramids at each level using Equation (14).

Fl(x, y) =ojGl
�Wj(x, y)

� �
· Ll I j(x, y)

� �
(14)

where l represents the level of the pyramid, and · denotes

element-wise multiplication.

Finally, we reconstruct the defogged RGB image F̂ R(x, y) by

upsampling and adding up the Laplacian pyramid levels, as shown

in Equation (15).

F̂ R(x, y) =olUpFl(x, y) (15)

where Up is the upsampling operator.
3.3 RGB/Event image fusion

To tackle the issue of uneven illumination in degraded

underwater images, we utilized a multi-scale fusion method to

blend the enhanced event-reconstructed image F̂ E(x, y) with the

enhanced RGB image F̂ R(x, y). This method is similar to Bi et al.

(2022b) and aims to recover fine details in both bright and dark

areas while retaining color information. The following are the

specific steps taken:
Fron
1) Extraction of illuminance map. We employ the RRDNET

image decomposition method proposed in Zhu et al.

(2020), a three-branch convolutional neural network that

extracts an illuminance map from the enhanced RGB

image. This is done to prepare for subsequent fusion with

the enhanced event reconstruction image.

2) Generation of artificial multi-exposure image sequences. We

use the gamma correction method (Equation 7) to adjust the

exposure of the illuminance map and the enhanced event

reconstruction image, resulting in two multi-exposure

image sequences.

3) Designing weight maps. To ensure that more scene details

are preserved and have consistent brightness during the

image fusion process, we use the three features, namely

contrast, exposure, and average luminance, to set the weight

map for each artificial exposure image.

4) Image fusion. We use the multi-scale fusion strategy

described in Section 3-B of this article to fuse the multi-

exposure image sequences and weight maps, generating the

fused image Î (x, y).

5) Image restoration. Based on the Retinex theory (Li et al., 2018),

we restore the fused image Î (x, y) to an RGB image, and the

specific calculation method is represented as Equation (16).
F(x, y) = F̂ R(x, y) · Î (x, y) (16)
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4 Experiments

This section thoroughly assesses the proposed method’s

effectiveness, utilizing four distinct approaches: qualitative analysis,

quantitative analysis, ablation study, and application testing.

Qualitative and quantitative analyses are performed to compare the

performance of our method with other state-of-the-art underwater

image enhancement methods on two datasets and to assess its

effectiveness in multi-degraded underwater scenes. Ablation

experiments are conducted to measure the contribution of different

components of the proposed method to its overall performance.

Lastly, application testing is carried out to verify the feasibility and

efficacy of our method in practical underwater applications.
4.1 Experimental settings

4.1.1 Comparison methods
We conduct a comparative analysis of the proposed method

with 9 state-of-the-art methods, namely, color balance and fusion

(CBAF) method (Ancuti et al., 2017), image blurriness and light

absorption (IBLA) method (Peng and Cosman, 2017), contrast and

information enhancement of underwater images (CIEUI) (Sethi

and Sreedevi, 2019), contour bougie morphology (CBM) method

(Yuan et al., 2020), texture enhancement model based on blurriness

and color fusion (TEBCF) method (Yuan et al., 2021), underwater

shallow neural network (Shallow-uwnet) (Naik et al., 2021),

minimal color loss and locally adaptive contrast enhancement

(MLLE) method (Zhang et al., 2022b), hyper-laplacian reflectance

priors (HLRP) method Zhuang et al. (2022) events and frame fusion

(EAFF) non-uniform illumination underwater image enhancement

method (Bi et al., 2022b).

4.1.2 Datasets
Our experiment employed two datasets: the DAVIS-NUIUIED

dataset (Bi et al., 2022a) and the multi-degraded underwater image

enhancement dataset (DAVIS-MDUIED). Both datasets were

captured using the event camera DAVIS346, which can

simultaneously acquire RGB images and event streams. The

DAVIS-NUIUIED dataset was captured in unevenly illuminated

clear water scenes. We selected 5 representative recording scenes

(“Head”, “Mountain”, “Rockery”, “Flowerpot”, and “Vase”) from it,

as shown in Figure 3A. This dataset serves as a benchmark for

evaluating the ability of various algorithms to restore details in

underwater images with non-uniform illumination. The DAVIS-

MDUIED dataset was collected in scenes with both uneven

illumination and turbid water quality. As depicted in Figure 3B,

we constructed 5 different recording scenes (“Bottle”, “Flowerpot”,

“Head”, “Rockery”, and “Vase”). This dataset was specifically

designed to evaluate the capability of various methods to address

haze, color degradation, and uneven illumination simultaneously.
4.1.3 Evaluation metrics
We employ four popular no-reference image assessment

metrics to evaluate enhanced image quality.
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These metrics include Average Gradient (AG) (Du et al., 2017),

Edge Intensity (EI) (Wang et al., 2012), Underwater Image Quality

Measurement (UIQM) (Panetta et al., 2015), and Natural Image

Quality Evaluator (NIQE) (Mittal et al., 2012).

Average Gradient (AG): AG is a metric that quantifies the

average gradient of an image, with a higher AG score indicating the

presence of greater texture detail within the image. The formula for

calculating AG is shown in Equation (17).

AG =
1

(M − 1)(N − 1) o
M−1

x=1
o
N−1

y=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(F(x + 1, y) − F(x, y))2 + (F(x, y + 1) − F(x, y))2

2

r

(17)

where M and N represent the height and width of the image

F, respectively.

Edge Intensity (EI): EI evaluates the edge intensity of an image,

and a higher score implies improved edge intensity in the image. EI

can be represented by Equation (18).

EI =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
x + G2

y

q
(18)

where G2
x and G2

y denote the gradients in the horizontal and

vertical directions, respectively. The calculation is expressed as

Equations (19) and (20).

Gx =

−1 0 1

−2 0 2

−1 0 1

2
664

3
775 ∗ F (19)

Gy =

−1 −2 −1

0 0 0

1 2 1

2
664

3
775 ∗ F (20)

Underwater Image Quality Measurement (UIQM): UIQM is a

linear combination of three individual metrics, i.e., underwater

image colorfulness measure (UICM), underwater image sharpness

measure (UISM), and underwater image contrast measure

(UIConM), which collectively represent the quality of an

underwater image. A higher score in UIQM indicates the
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enhanced quality of the underwater image. UIQM is represented

as Equation (21).

UIQM = c1 � UICM + c2 � UISM + c3 � UIConM (21)

where c1, c2, and c3 are obtained through multiple linear

regression (MLR).

Natural Image Quality Evaluator (NIQE): NIQE evaluates the

overall naturalness of the image, where a lower score implies better

naturalness. This approach begins by independently extracting

Natural Scene Statistics (NSS) features from natural and test

image corpus. These features are then individually modeled using

a Multivariate Gaussian (MVG) approach. The divergence between

these models is subsequently calculated, serving as a measure of the

quality of distorted images.
4.2 Comparisons on the DAVIS-
NUIUIED dataset

4.2.1 Qualitative comparisons
To illustrate the effectiveness of the proposed methodology in

enhancing underwater images with non-uniform illumination, we

conduct a series of comparative experiments using the DAVIS-

NUIUIED dataset. The enhancement results achieved by diverse

methods are depicted in Figures 4–8. Figures 4A, 5A, 6A, 7A, 8A are

the original RGB images(RGB images), and Figures 4B, 5B, 6B, 7B,

8B are the intensity images reconstructed by the E2VID method

from event stream (Event images). Among these methods, the

CBAF and HLRP methods perform well in eliminating color

aberration. However, CBAF falls short in terms of contrast

enhancement and restoration of details in dark and bright areas.

On the other hand, the HLRP method effectively enhances image

contrast but may lead to overexposure, causing a more severe loss of

details in bright areas. The IBLA method can restore details in the

dark areas but oversaturates the colors and introduces halos around

the bright areas, as exemplified by the green rectangle in Figures 4D,

5D. The CIEUI, TEBCF, and Shallow-uwnet methods can

somewhat suppress halos, but they still exhibit inadequate

contrast and fail to address color degradation, especially the
B

A

FIGURE 3

Experimental datasets. (A) Five scenes from the DAVIS-NUIUIED dataset. (B) Five scenarios in the DAVIS-MDUIED dataset.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1366815
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Bi et al. 10.3389/fmars.2024.1366815
results shown in Figures 5E, G, H, 8E, G, H. Specifically, the CIEUI

method excessively compensates for red and blue light, resulting in

a purple-enhanced image; the TEBCF method generates images

with a dark tone, and the Shallow-uwnet method introduces a
Frontiers in Marine Science 10
yellow tone. Although the CBM and MLLE methods can improve

image contrast somewhat, they can still not restore details in the

dark and bright regions, such as the rectangle in Figures 4F, I, 5F, I,

6F, I, 7F, I, 8F, I. On the other hand, the EAFF method can recover
B C D E F

G H I J K L

A

FIGURE 4

Visual comparison on the image ‘Head’ in the DAVIS-NUIUIED dataset (Bi et al., 2022a). (A) Original RGB image. (B) Event reconstruction image. (C)
CBAF (Ancuti et al., 2017). (D) IBLA (Peng and Cosman, 2017). (E) CIEUI (Sethi and Sreedevi, 2019). (F) CBM (Yuan et al., 2020). (G) TEBCF (Yuan et al.,
2021). (H) Shallow-uwnet (Naik et al., 2021). (I) MLLE (Zhang et al., 2022b). (J) HLRP (Zhuang et al. 2022). (K) EAFF (Bi et al., 2022b). (L) Ours.
B C D E F

G H I J K L

A

FIGURE 5

Visual comparison on the image ‘Mountains’ in the DAVIS-NUIUIED dataset (Bi et al., 2022a). (A) Original RGB image. (B) Event reconstruction image.
(C) CBAF (Ancuti et al., 2017). (D) IBLA (Peng and Cosman, 2017). (E) CIEUI (Sethi and Sreedevi, 2019). (F) CBM (Yuan et al., 2020). (G) TEBCF (Yuan
et al., 2021). (H) Shallow-uwnet (Naik et al., 2021). (I) MLLE (Zhang et al., 2022b). (J) HLRP (Zhuang et al. 2022). (K) EAFF (Bi et al., 2022b). (L) Ours.
B C D E F

G H I J K L

A

FIGURE 6

Visual comparison on the image ‘Rockery’ in the DAVIS-NUIUIED dataset (Bi et al., 2022a). (A) Original RGB image. (B) Event reconstruction image.
(C) CBAF (Ancuti et al., 2017). (D) IBLA (Peng and Cosman, 2017). (E) CIEUI (Sethi and Sreedevi, 2019). (F) CBM (Yuan et al., 2020). (G) TEBCF (Yuan
et al., 2021). (H) Shallow-uwnet (Naik et al., 2021). (I) MLLE (Zhang et al., 2022b). (J) HLRP (Zhuang et al. 2022). (K) EAFF (Bi et al., 2022b). (L) Ours.
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details in the dark and bright regions effectively and improve

contrast, but it cannot eliminate color aberration, as depicted in

Figures 4K, 5K, 6K, 7K, 8K. In contrast, the proposed method can

effectively recover details in dark and bright regions, improve

contrast and visibility, correct color deviation, and generate

images with realistic colors and clear details.

4.2.2 Quantitative comparisons
To accurately assess the performance of the proposed method in

improving underwater image color correction and detail

restoration, we conduct the quantitative assessment using four

well-established metrics on the DAVIS-NUIUIED dataset: AG

(Du et al., 2017), EI (Wang et al., 2012), UIQM (Panetta et al.,

2015), and NIQE (Mittal et al., 2012). The evaluation results are

presented in Table 3. Our approach attains the top rankings in AG

and EI, indicating that the enhanced images exhibit richer texture

details. Although the proposed method ranked second on

individual image enhancement results for UIQM and NIQE

metrics, it secures first place in the average value, demonstrating

the robustness of the proposed method in enhancing underwater

image quality and visual experience. The qualitative and
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quantitative comparison results establish the outstanding

capability of our method in color correction and detail restoration

of underwater images.
4.3 Comparisons on the DAVIS-
MDUIED dataset

4.3.1 Qualitative comparisons
To further validate the capability of the proposed method to

simultaneously address color degradation, haze, and non-uniform

illumination of underwater images, we undertook comparative

experiments on the DAVIS-MDUIED dataset. Figures 9C–L,

10C–L, 11C–L, 12C–L, 13C–L displays the enhancement results

of 9 state-of-the-art methods and our method on the DAVIS-

MDUIED dataset. We find that IBLA, CIEUI, Shallow-uwnet, and

EAFF methods are unable to eliminate color deviations, leading

to unwanted color distortions in the enhanced images.

Furthermore, IBLA, Shallow-uwnet, and EAFF methods fail to

completely remove haze, particularly in the overexposed areas

(green rectangles in Figures 9–13), resulting in low contrast in the
B C D E F

G H I J K L

A

FIGURE 7

Visual comparison on the image ‘Flowerpot’ in the DAVIS-NUIUIED dataset (Bi et al., 2022a). (A) Original RGB image. (B) Event reconstruction image.
(C) CBAF (Ancuti et al., 2017). (D) IBLA (Peng and Cosman, 2017). (E) CIEUI (Sethi and Sreedevi, 2019). (F) CBM (Yuan et al., 2020). (G) TEBCF (Yuan
et al., 2021). (H) Shallow-uwnet (Naik et al., 2021). (I) MLLE (Zhang et al., 2022b). (J) HLRP (Zhuang et al. 2022). (K) EAFF (Bi et al., 2022b). (L) Ours.
B C D E F

G H I J K L

A

FIGURE 8

Visual comparison on the image ‘Vase’ in the DAVIS-NUIUIED dataset (Bi et al., 2022a). (A) Original RGB image. (B) Event reconstruction image. (C)
CBAF (Ancuti et al., 2017). (D) IBLA (Peng and Cosman, 2017). (E) CIEUI (Sethi and Sreedevi, 2019). (F) CBM (Yuan et al., 2020). (G) TEBCF (Yuan et al.,
2021). (H) Shallow-uwnet (Naik et al., 2021). (I) MLLE (Zhang et al., 2022b). (J) HLRP (Zhuang et al. 2022). (K) EAFF (Bi et al., 2022b). (L) Ours.
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enhanced images. Additionally, CIEUI, Shallow-uwnet, and

MLLE methods do not effectively restore details in the dark

regions (red rectangles in Figures 9–13), reducing the visibility

of the enhanced images. Moreover, CBAF, IBLA, CIEUI, CBM,

TEBCF, MLLE, and HLRP methods do not satisfactorily restore

details in the bright regions and may introduce over-

enhancement and local halo issues. In contrast, our method

effectively corrects color deviations and eliminates haze while

successfully restoring details in both dark and bright regions,

without introducing over-enhancement and halo. As a result, the

proposed method exhibited the best visual effects among all the

evaluated methods.
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4.3.2 Quantitative comparisons
Table 4 presents the quantitative analysis results of our image

enhancement methods on the DAVIS-MDUIED dataset. Our

method exhibits outstanding performance in the AG (Du et al.,

2017), EI (Wang et al., 2012), UIQM (Panetta et al., 2015), and

NIQE (Mittal et al., 2012) metrics and ranks among the top-

performing methods. Specifically, our method performs the best

results in the AG and EI metrics, indicating that it can better

restore valuable details and enhance contrast. As for the UIQM

and NIQE metrics, our method is superior to most of the

comparison methods and ranks in the top two, which indicates

that it enhances underwater images with satisfactory chromaticity,
TABLE 3 Quantitative comparisons on the DAVIS-NUIUIED Dataset (Bi et al., 2022a).

CBAF IBLA CIEUI CBM TEBCF Shallow-
uwnet

MLLE HLRP EAFF Ours

Head

AVG ↑
EI ↑
UIQM↑
NIQE ↓

6.315
66.807
5.171
3.585

8.029
83.188
3.618
3.089

6.564
69.924
3.986
4.354

7.739
81.243
3.005
3.872

7.566
79.386
4.205
4.282

6.428
68.902
3.761
4.264

9.598
97.363
3.875
6.836

10.671
108.041
4.741
3.349

10.267
105.093
3.586
3.589

10.901
111.424
5.073
3.258

Mountains

AVG ↑
EI ↑
UIQM↑
NIQE ↓

6.696
70.645
4.611
3.135

7.242
75.806
4.439
3.032

6.635
70.585
5.151
3.460

7.760
81.090
4.752
3.227

8.410
88.611
4.846
3.362

5.390
57.815
4.927
6.343

10.210
102.879
5.265
4.561

10.115
101.440
4.455
3.156

8.816
91.970
4.678
3.753

10.261
106.303
5.183
3.041

Rockery

AVG ↑
EI ↑
UIQM↑
NIQE ↓

6.780
71.609
4.863
4.038

8.659
91.076
3.355
3.432

6.965
74.510
4.170
4.224

7.464
79.089
3.849
4.161

7.334
77.952
4.344
4.643

6.081
65.271
3.732
5.839

9.471
97.766
4.225
7.014

10.543
109.388
4.730
4.295

9.389
99.170
3.258
4.962

10.634
110.848
4.918
3.597

Flowerpot

AVG ↑
EI ↑
UIQM↑
NIQE ↓

5.055
52.708
4.987
3.060

6.40
65.669
4.264
2.953

4.373
46.140
4.110
3.355

6.001
62.240
4.296
2.815

7.433
77.047
4.570
2.927

4.091
43.750
4.508
4.404

7.910
78.149
4.436
8.059

8.314
84.562
3.6946
3.9482

8.991
92.378
4.473
3.617

9.658
98.075
4.858
2.861

Vase

AVG ↑
EI ↑
UIQM↑
NIQE ↓

5.311
54.050
4.668
2.950

7.722
77.061
4.073
4.627

4.255
44.044
5.027
3.459

6.240
62.663
4.408
3.515

6.291
63.748
4.987
3.275

2.936
30.878
4.427
4.953

6.732
65.390
3.639
6.756

10.0771
100.830
5.016
3.495

9.373
94.237
3.979
3.020

10.561
106.910
5.072
2.993

Average

AVG ↑
EI ↑
UIQM↑
NIQE ↓

6.031
63.164
4.860
3.354

7.610
78.560
3.945
3.427

5.758
61.041
4.489
3.770

7.041
73.265
4.062
3.518

7.407
77.349
4.590
3.698

4.985
53.323
4.271
5.161

8.784
88.310
4.288
6.645

9.944
98.718
4.527
3.649

9.367
96.570
3.995
3.788

10.403
106.712
5.021
3.150
fro
The Best Result is in Red, the Second-Best Result is in Green.
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A

FIGURE 9

Visual comparison on the image ‘Bottles’ in the DAVIS-MDUIED dataset. (A) Original RGB image. (B) Event reconstruction image. (C) CBAF (Ancuti
et al., 2017). (D) IBLA (Peng and Cosman, 2017). (E) CIEUI (Sethi and Sreedevi, 2019). (F) CBM (Yuan et al., 2020). (G) TEBCF (Yuan et al., 2021).
(H) Shallow-uwnet (Naik et al., 2021). (I) MLLE (Zhang et al., 2022b). (J) HLRP (Zhuang et al. 2022). (K) EAFF (Bi et al., 2022b). (L) Ours.
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sharpness, and contrast, creating pleasing visual effects. The

consistency between the qualitative and quantitative analysis

results validates the efficacy of our method in correcting color

distortions, improving visibility and contrast, and restoring details

in both dark and bright regions of underwater images.
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4.4 Complexity evaluation

To assess the runtime performance of the proposed method, we

conducted a comparative analysis against other competing

methods. Matlab was utilized for implementing CBAF, CIEUI,
B C D E F

G H I J K L

A

FIGURE 10

Visual comparison on the image ‘Flowerpot’ in the DAVIS-MDUIED dataset. (A) Original RGB image. (B) Event reconstruction image. (C) CBAF
(Ancuti et al., 2017). (D) IBLA (Peng and Cosman, 2017). (E) CIEUI (Sethi and Sreedevi, 2019). (F) CBM (Yuan et al., 2020). (G) TEBCF (Yuan et al., 2021).
(H) Shallow-uwnet (Naik et al., 2021). (I) MLLE (Zhang et al., 2022b). (J) HLRP (Zhuang et al. 2022). (K) EAFF (Bi et al., 2022b). (L) Ours.
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FIGURE 11

Visual comparison on the image ‘Head’ in the DAVIS-MDUIED dataset. (A) Original RGB image. (B) Event reconstruction image. (C) CBAF (Ancuti et
al., 2017). (D) IBLA (Peng and Cosman, 2017). (E) CIEUI (Sethi and Sreedevi, 2019). (F) CBM (Yuan et al., 2020). (G) TEBCF (Yuan et al., 2021). (H)
Shallow-uwnet (Naik et al., 2021). (I) MLLE (Zhang et al., 2022b). (J) HLRP (Zhuang et al. 2022). (K) EAFF (Bi et al., 2022b). (L) Ours.
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FIGURE 12

Visual comparison on the image ‘Rockery’ in the DAVIS-MDUIED dataset. (A) Original RGB image. (B) Event reconstruction image. (C) CBAF (Ancuti
et al., 2017). (D) IBLA (Peng and Cosman, 2017). (E) CIEUI (Sethi and Sreedevi, 2019). (F) CBM (Yuan et al., 2020). (G) TEBCF (Yuan et al., 2021).
(H) Shallow-uwnet (Naik et al., 2021). (I) MLLE (Zhang et al., 2022b). (J) HLRP (Zhuang et al. 2022). (K) EAFF (Bi et al., 2022b). (L) Ours.
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CBM, HLRP, TEBCF, MLLE, and HLRP methods, while Python

was employed for IBLA, SHALLOW, EAFF, and our method.

Table 5 presents the comparison results of the average runtime

for various underwater image enhancement methods. Notably, the

proposed method exhibits a relatively prolonged runtime in

comparison to other methods, constituting a primary limitation.

This limitation primarily arises from the time-intensive process of

extracting the luminance map from RGB images through the

RRDNET method before integration with event reconstruction

images, requiring approximately 10 seconds. Our future research

efforts will concentrate on resolving this challenge.
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4.5 Ablation study

To demonstrate the efficacy of our method’s core components,

we perform several ablation experiments on the DAVIS-MDUIED

dataset, namely: (a) the proposed method without underwater RGB

image color correction (w/o URICC), (b) the proposed method

without underwater image dehazing (w/o UID), (c) the proposed

method without RGB/Event image fusion (w/o REIF).

Figure 14 illustrates the visual comparison results of these

ablation experiments. Our findings are as follows: 1) w/o URICC

fails to perform color correction on underwater images; 2) w/o UID
B C D E F

G H I J K L

A

FIGURE 13

Visual comparison on the image ‘Vase’ in the DAVIS-MDUIED dataset. (A) Original RGB image. (B) Event reconstruction image. (C) CBAF (Ancuti
et al., 2017). (D) IBLA (Peng and Cosman, 2017). (E) CIEUI (Sethi and Sreedevi, 2019). (F) CBM (Yuan et al., 2020). (G) TEBCF (Yuan et al., 2021).
(H) Shallow-uwnet (Naik et al., 2021). (I) MLLE (Zhang et al., 2022b). (J) HLRP (Zhuang et al. 2022). (K) EAFF (Bi et al., 2022b). (L) Ours.
TABLE 4 Quantitative comparisons on the DAVIS-MDUIED dataset.

CBAF IBLA CIEUI CBM TEBCF Shallow-
uwnet

MLLE HLRP EAFF Ours

Bottles

AVG ↑
EI ↑
UIQM↑
NIQE ↓

5.463
56.328
5.177
3.104

5.978
61.238
4.210
3.453

3.565
37.752
5.296
3.358

4.283
44.506
4.601
3.382

5.280
54.819
4.979
3.303

2.682
28.678
4.937
4.744

5.783
57.917
3.964
4.210

9.558
98.404
3.715
3.701

7.676
79.298
4.280
2.939

11.025
111.783
5.187
2.846

Flowerpot

AVG ↑
EI ↑
UIQM↑
NIQE ↓

4.085
43.363
4.693
3.676

5.006
52.491
3.803
3.295

3.858
41.127
4.183
3.609

5.335
55.488
4.409
3.367

7.630
78.762
4.844
3.501

3.610
38.793
5.035
5.363

7.548
75.144
4.760
6.082

7.087
73.450
3.333
3.901

6.255
64.466
3.742
3.588

7.981
80.913
5.055
3.320

Head

AVG ↑
EI ↑
UIQM↑
NIQE ↓

6.637
68.623
5.464
2.902

6.486
66.422
4.510
2.776

5.819
61.25
5.454
3.090

6.708
69.578
4.382
3.20

7.557
78.933
5.094
2.708

4.764
50.748
5.257
4.411

10.334
102.957
3.976
6.366

10.549
106.515
4.437
3.358

8.995
92.241
4.613
2.968

11.312
113.205
5.521
2.603

Rockery

AVG ↑
EI ↑
UIQM↑
NIQE ↓

5.827
61.798
5.341
3.065

6.262
65.721
3.787
3.485

5.068
54.345
5.347
2.999

6.136
64.711
4.910
3.274

6.487
69.176
5.115
3.416

4.30
46.418
5.423
4.180

9.005
92.046
4.333
4.412

9.660
100.799
4.479
3.469

7.650
80.723
3.839
3.116

9.909
102.359
5.446
3.016

Vase

AVG ↑
EI ↑
UIQM↑
NIQE ↓

5.291
55.835
5.239
3.916

5.997
62.054
4.134
2.932

5.022
53.365
5.533
3.833

6.726
70.01
4.966
3.533

8.015
83.907
4.967
3.503

4.136
44.182
5.232
4.376

9.521
95.677
4.524
4.660

10.501
107.332
4.366
4.070

8.620
88.506
4.351
3.131

10.558
108.218
5.324
3.048

Average

AVG ↑
EI ↑
UIQM↑
NIQE ↓

5.461
57.189
5.183
3.333

5.946
61.585
4.089
3.188

4.666
49.568
5.163
3.378

5.838
60.859
4.654
3.351

6.994
73.131
4.999
3.286

3.898
41.764
5.177
4.615

8.438
84.748
4.311
5.146

9.471
97.3
4.165
3.700

7.839
81.047
4.066
3.148

10.157
103.296
5.307
2.967
fro
The Best Result is in Red, the Second-Best Result is in Green.
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successfully removes color deviation and restores image texture, but it

is unable to eliminate haze; 3) w/o REIF restores color and improves

visibility, but it cannot restore details in bright areas; 4) The complete

implementation of the proposed method, which includes all essential

components, produces the most visually appealing outcome.

The quantitative analysis results of the ablation models on

the DAVIS-MDUIED dataset using four non-reference metrics

are shown in Table 6. Based on the outcomes delineated in

Table 6, the full model performs superior performance across

the AVG, EI, and UIQM metrics, indicating that our method

enhances underwater images with rich texture details and good
Frontiers in Marine Science 15
quality. As for the NIQE metric, the w/o REIF model attains the

best results, exhibiting relatively small disparities when

compared to the full model. However, in terms of the AVG,

EI, and UIQM metrics, the full model significantly outperforms

the w/o REIF model. This suggests that our method entails a

slight compromise in terms of image naturalness during the

fusion of RGB images and event-reconstructed images to achieve

better restoration of image details and overall improvement in

underwater image quality. Overall, the combination of these key

components facilitates the commendable performance exhibited

by our method.
B C D E FA

FIGURE 14

Ablation results for each core component of the proposed method on the DAVIS-MDUIED dataset. (A) Raw RGB images. (B) Event reconstruction
images. (C) w/o URICC. (D) w/o UID. (E) w/o REIF. (F) Our method (full model).
TABLE 5 Comparison of runtime for ten underwater image enhancement methods (Unit: Second).

Method CBAF IBLA CIEUI CBM TEBCF Shallow-
uwnet

MLLE HLRP EAFF Ours

Platform Matlab Python Matlab Matlab Matlab Python Matlab Matlab Python Python

Runtime 0.968 5.491 261.624 0.677 2.469 1.496 0.113 0.214 9.452 9.921
fro
TABLE 6 Ablation study on the DAVIS-MDUIED dataset.

-w/o
URICC

-w/o
UID

-w/o
REIF

Ours

Bottles

AVG ↑
EI ↑
UIQM ↑
NIQE ↓

6.934
71.551
4.275
2.876

6.8618
71.467
5.261
3.346

4.3814
45.627
4.599
2.706

11.025
111.783
5.187
2.846

Head

AVG ↑
EI ↑
UIQM ↑
NIQE ↓

8.116
83.268
4.819
2.649

8.162
84.022
5.377
3.220

6.273
65.414
4.945
2.597

11.312
113.205
5.521
2.603

Rockery

AVG ↑
EI ↑
UIQM ↑
NIQE ↓

7.151
75.706
4.440
3.061

6.992
73.897
4.992
3.641

6.001
63.961
5.297
2.963

9.909
102.359
5.446
3.016
The Best Result is in Red, the Second-Best Result is in Green.
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4.6 Applications

To provide a comprehensive evaluation of the proposed

method, we choose to apply it to two common computer vision

tasks: feature point detection and edge extraction.

4.6.1 Feature point detection
Image feature point detection is a fundamental task in computer

vision, which aims to automatically detect points with significant

features. These feature points have broad applications in computer

vision, such as image matching, target tracking, and 3D

reconstruction. We utilize the Harris algorithm (Harris et al., 1988)

to detect feature points in two original underwater images and their

enhanced versions, and the detection results are presented in

Figure 15A. The Harris local feature matching points obtained from

the two original underwater images and their corresponding enhanced

versions are 18, 21, 55, 36, 56, 46, 14, 52, 54, 50, and 64, respectively.

The experimental results demonstrate that the images enhanced by

our method perform well in detecting key points, leading to a

significant increase in the number of detected feature points.
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4.6.2 Edge extraction
Image edge extraction is a crucial feature in computer vision,

with the primary objective of extracting the position and shape of

object edges. It has diverse applications, such as object detection,

image segmentation, and 3D reconstruction. We use the Sobel

operator (Kutty et al., 2014) to extract significant edges from two

original underwater images and their enhanced versions. As

depicted in Figure 15B, our method produces clearer and more

complete edge structures for prominent targets in the enhanced

underwater images, indicating that our method performs well in

underwater image edge extraction.
5 Conclusion

In this paper, we propose a novel approach for enhancing multi-

degraded underwater images via the fusion of RGB and Event

signals. The proposed method comprises three main modules:

adaptive color correction, dehazing through the integration of a

sharpened image and artificial multi-exposure images, and RGB/
BA

FIGURE 15

Application testing on two computer vision tasks. (A) Testing on feature point detection. (B) Testing on edge extraction.
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Event image fusion. Extensive experiments conducted on the

DAVIS-NUIUIED and DAVIS-MDUIED datasets demonstrate

the superior performance of the proposed method in enhancing

multi-degraded underwater images. The quantitative and

qualitative comparison results show that the proposed method

generates images with natural colors, enhanced contrast,

improved details, and superior visual quality. Furthermore,

ablation studies confirm the effectiveness of the three key

modules in our method. Additionally, we further validate the

practical value of our enhanced images through application

experiments. However, the use of the RRDNET algorithm in

our method leads to increased computation time. In future

work, we aim to refine the algorithm’s details and reduce its

computational complexity.
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