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on machine learning algorithm
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and Chunqing Chen2,3

1College of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang, China,
2College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China,
3College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
The particulate nitrogen (PN) isotopic composition (d15NPN) plays an important

role in quantifying the contribution rate of particulate organic matter sources and

indicating water environmental pollution. Estimation of d15NPN from satellite

images can provide significant spatiotemporal continuous data for nitrogen

cycling and ecological environment governance. Here, in order to fully

understand spatiotemporal dynamic of d15NPN, we have developed a machine

learning algorithm for retrieving d15NPN. This is a successful case of combining

nitrogen isotopes and remote sensing technology. Based on the field observation

data of Zhanjiang Bay in May and September 2016, three machine learning

retrieval models (Back Propagation Neural Network, Random Forest and Multiple

Linear Regression) were constructed using optical indicators composed of in situ

remote sensing reflectance as input variable and d15NPN as output variable.

Through comparative analysis, it was found that the Back Propagation Neural

Network (BPNN) model had the better retrieval performance. The BPNN model

was applied to the quasi-synchronous Ocean and Land Color Imager (OLCI) data

onboard Sentinel-3. The determination coefficient (R2), root mean square error

(RMSE) andmean absolute percentage error (MAPE) of satellite-groundmatching

point data based on the BPNN model were 0.63, 1.63‰, and 20.10%,

respectively. From the satellite retrieval results, it can be inferred that the

retrieval value of d15NPN had good consistency with the measured value of

d15NPN. In addition, independent datasets were used to validate the BPNN

model, which showed good accuracy in d15NPN retrieval, indicating that an

effective model for retrieving d15NPN has been built based on machine learning

algorithm. However, to enhance machine learning algorithm performance, we

need to strengthen the information collection covering diverse coastal water

bodies and optimize the input variables of optical indicators. This study provides

important technical support for large-scale and long-term understanding of the

biogeochemical processes of particulate organic matter, as well as a new

management strategy for water quality and environmental monitoring.
KEYWORDS

particulate nitrogen, d15NPN, remote sensing, machine learning algorithm, Sentinel-3,
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1 Introduction

Nitrogen is one of the main nutrients for marine organisms, and

it is the two most basic elements in marine ecosystems along with

carbon (Eppley and Peterson, 1979; Falkowski, 1997; Galloway

et al., 2004). There is a transformation of nitrogen forms between

particulate and dissolved states, and the mutual transformation of

different nitrogen forms constitutes a complex marine nitrogen

cycle (Pajares and Ramos, 2019). The marine nitrogen cycle is

closely related to the carbon cycle, and nitrogen limitation or excess

can lead to a decrease or increase in the absorption of CO2 by

phytoplankton, so the nitrogen cycle can indirectly affect climate

change by regulating the carbon cycle (Falkowski, 1997; Voss et al.,

2013). Consequently, accurately grasping the spatiotemporal

characteristics of ocean nitrogen is of great significance for deeply

understanding the ocean nitrogen cycle and climate change.

Although particulate nitrogen (PN) only accounts for 0.5% of

the total nitrogen pool in the ocean, it has the characteristics of easy

degradation and fast cycling speed, and is an important component

of the nitrogen pool in the ocean (Capone et al., 2008). The main

sources of coastal marine particulate nitrogen include marine

phytoplankton production, riverine inputs and sewage effluent,

and there are significant differences in the isotopic values of

particulate nitrogen from different sources (Montoya et al., 2002;

Wu et al., 2007; Lu et al., 2021). Particulate nitrogen isotope

(d15NPN) is a potential indicator of particulate organic matter

sources, and the contribution ratio of different sources of

particulate organic matter can be quantitatively calculated using

d15NPN and particulate organic carbon isotope (d13C) (Chen et al.,

2021; Huang et al., 2021; Lu et al., 2021). d15NPN can also indicate

the pollution of the water environment, as it reflects the source of

absorbed nutrients (Sarma et al., 2020). One of the main sources of

nitrogen-containing nutrients in coastal waters comes from sewage,

and d15NPN is significantly enriched (>10%) for sewage (Sarma

et al., 2020). In addition, the variation of particulate nitrogen

isotope values is also affected by isotope fractionation during

nitrogen conversion processes such as nitrification, denitrification,

and biological assimilation absorption (Cifuentes et al., 1988;

Granger et al., 2010). Therefore, knowledge of the distribution

and variation of d15NPN, and the factors controlling their

distribution is essential to elucidate the sources and

biogeochemical processes of particulate organic matter (Huang

et al., 2020).

The traditional particulate nitrogen isotope values are obtained

by collecting in situ water sampling and laboratory determination

(Chen et al., 2021; Lu et al., 2021). However, this method is time-

consuming, labor-intensive, inefficient, and cannot obtain

particulate nitrogen isotope values on a large-scale and for a long-

time. It is worth exploring how to more conveniently and effectively

obtain particulate nitrogen isotope values. Ocean color remote

sensing is a method of retrieving water parameters by establishing

a response relationship between the remote sensing reflectance and

the water parameters (Wang et al., 2022). It has the advantages of

large-scale and long-term continuous observation (Shen et al.,

2020). In the past several decades, some environmental

parameters in water have been retrieved by remote sensing, such
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as chlorophyll a (Chl a), total suspended matter (TSM), colored

dissolved organic matter (CDOM), total phosphorus (TP), total

nitrogen (TN), and dissolved inorganic nitrogen (DIN) (Xu et al.,

2010; Ondrusek et al., 2012; Mathew et al., 2017; Du et al., 2018;

Watanabe et al., 2018; Shen et al., 2022). Among these retrieving

elements, the spectral response of other elements may not be

significant compared to Chl a, TSM and CDOM, which makes

traditional empirical fitting methods difficult to retrieve (Zheng

et al., 2024). Machine learning methods generally produce better

performance than simple empirical fitting methods (Liu et al.,

2021). Recently, inland, coastal, and oceanic water environments

have been studied using machine learning methods (Cao et al.,

2020; Liu et al., 2021; Shen et al., 2022; Tian et al., 2024; Maciel et al.,

2021; Pahlevan et al., 2020). Machine learning algorithms can not

only combine multiple input features that are sensitive to the target

variable, but also have stronger fitting ability to capture the

relationship between the input variable and the target variable

(Liu et al., 2021). Sentinel-3, the third of the Copenhagen

mission’s six satellites, is equipped with the most sophisticated

water color sensor, the Ocean and Land Color Imager (OLCI)

instrument. It will regularly monitor the ocean in almost real-time,

with its data being made publicly accessible worldwide. And it has a

widespread application in the field of water color remote sensing

(Du et al., 2018; Pahlevan et al., 2020; Shen et al., 2020, 2022).

Thus, this study aims to explore the potential of machine

learning methods for d15NPN satellite retrieving. To achieve this

aim, based on determining the optical indicators for retrieving

particulate nitrogen isotope values, and then constructing optimal

machine learning retrieval model of d15NPN is applied to the

Sentinel-3 OLCI data to obtain spatiotemporal information of

d15NPN in the Zhanjiang Bay (a typical eutrophic bay in China).

The results from this study could improve the ability of remote

sensing monitoring of coastal d15NPN and comprehensively

understand the biogeochemical processes of marine nitrogen cycle.
2 Materials and methods

2.1 Study area

Zhanjiang Bay is located in the northwest of the South China Sea

and is a typical bay with a small mouth and large belly (Figure 1). The

connection between Zhanjiang Bay and the South China Sea is

mainly through a narrow channel with a width of approximately

2 km (Zhang et al., 2020b). Zhanjiang Bay is located in the subtropical

monsoon climate zone, with a rainy season from April to September,

and less rainfall from November to February of the following year

(Chen et al., 2019). There are many industrial zones, agricultural

zones, aquaculture zones, ports, and densely populated areas along

the coast of Zhanjiang Bay. A large amount of industrial and

agricultural wastewater and domestic sewage are discharged into

the bay, bringing a large amount of nutrients and organic matter to

Zhanjiang Bay, which has a certain impact on the ecological

environment of Zhanjiang Bay (Zhang et al., 2023). Previous

studies have shown that the degree of eutrophication in the water

of Zhanjiang Bay is gradually becoming severe (Zhang et al., 2020b).
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2.2 Field data collection and analysis

The sample collection was conducted in Zhanjiang Bay in May

and September of 2016, respectively, with 23 surface water samples

collected in May and 29 surface water samples collected in

September. The sampling stations are shown in Figure 1. The

water samples were placed in polyethylene bottles (each bottle

was acid-cleaned and rinsed with ultrapure water) and

refrigerated at 4°C in a refrigerator. The water samples were

taken back to the laboratory for further analysis on the same day.

Furthermore, a spectroradiometer (USB2000+, Ocean Optics, Inc.,

USA) was used to measure the remote sensing reflectance spectra

above the water’s surface between 200 and 1100 nm (1 nm interval)

in accordance with the protocols proposed by Mobley (Mobley,

1999). Remote sensing reflectance was determined from an above-

water method with an azimuth angle of 135° from the sun and 45°

from the nadir (Mobley, 1999). At every water sampling site, the

radiances from the sky, the water, and the reference panel were

measured. Remote sensing reflectance (Rrs(l)) was calculated using

the following Equation 1:

Rrs(l) =
(Lu(l) − r*Ls(l))* rp (l)

Lp(l)* p
(1)

where l is the wavelength, Lu(l) is the upwelling spectral

radiance, Ls(l) is the incident spectral sky radiance and r is the

proportionality coefficient, with a value of 0.025 (Yu et al., 2023). Lp
(l) is the radiance from gray reference panel, rp(l) is the known

reflectance of the gray panel (Yu et al., 2023).

Glass fiber filter membranes (pre-combustion at 450 °C for 4 h,

GF/F, Whatman) with a 47-mm diameter were used to filter the

TSM, Chl a, and PN samples. The weight method was used to

calculate TSM concentrations (Zhou et al., 2021). Chl a in the GF/F

filter was extracted using 90% acetone and analyzed using the

fluorometric method (Lao et al., 2021; Zhou et al., 2021). An

element analyzer, coupled with a stable isotope ratio mass
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spectrometer (EA Isolink-253 Plus, Thermo Fisher Scientific, Inc.

USA) was used to measure the concentration of PN and d15NPN

(Chen et al., 2021). The mean standard deviation of d15NPN and PN

concentration was ±0.3‰ and ±0.3%, respectively (Chen

et al., 2021).
2.3 Satellite data acquisition
and processing

The satellite data for this study was selected from the Ocean and

Land Color Instrument (OLCI) data carried by Sentinel-3. The

OLCI data contains a total of 21 spectral bands, ranging from 400 to

1020 nm, including 16 water-color bands, with a spatial resolution

of 300 m and a global coverage time of 1-2 days (Su et al., 2021). It

can achieve global multispectral medium resolution ocean/land

observation capabilities. Sentinel-3 OLCI image data can be

downloaded through the European Space Agency’s official website

(ESA, https://scihub.copernicus.eu/dhus/#/home). We used the

C2RCC (case 2 regional coast color) algorithm integrated into

Sentinel Application Platform (SNAP) software to perform

atmospheric correction on Sentinel-3 OLCI data. The image data

after atmospheric correction was further processed and analyzed in

SNAP software.
2.4 d15NPN retrieval algorithms

2.4.1 Back Propagation Neural Network
Back Propagation Neural Network (BPNN) is a common multi-

layer feedforward neural network in artificial neural networks,

which uses backpropagation algorithm to train network weights

(Liu et al., 2017). Its main characteristics are strong nonlinear fitting

ability and self adaptive learning performance. BPNN is widely used

to retrieve water parameters in oceans and lakes (Wang et al., 2023a;

Chen et al., 2015; Ju et al., 2023). This study used a three-layer
FIGURE 1

Study area and field sampling stations. S1-S23 and A1-A29 mark the sampling stations in May and September 2016, respectively.
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BPNN, which includes one input layer, one hidden layer, and one

output layer. The hidden layer transfer function was selected as the

S-type tangent function “tansig”, the output layer function was

selected as the linear function “purelin”, and the training function

was used as “trainlm”. The maximum training frequency was set to

1000 times, the learning rate was 0.3, and the training error was

0.001. The determination of hidden layer nodes is a key step in the

BPNN model, and the basic principle for determining the number

of hidden layer nodes is to select as few hidden layer nodes as

possible while meeting accuracy requirements (Sun et al., 2009).

This study set up 1 to 10 hidden layer nodes and conducted

experiments to determine the optimal number of nodes in the

hidden layer. In addition, due to the small number of training

samples in this study, in order to prevent overfitting, Bayesian

regularization was introduced (MacKay, 1992), which has been

achieved through the function “trainbr”. The neural network

models for each node were trained separately, and the

determination coefficient (R2), mean absolute percentage error

(MAPE) and root mean square error (RMSE) of the measured

and predicted values of the training samples were calculated to

select the optimal number of nodes (Table 1). Moreover, we applied

the trained model to the testing samples and obtained the R2,

MAPE, and RMSE of the measured and predicted values of the

testing samples (Table 2). From Table 1 and Table 2, it can be seen

that the network with regularization has strong generalization

ability, and the selection of hidden layer nodes has little impact

on the model training results, which eliminates the tentative work

required to determine the optimal network size. Based on Table 1

and Table 2, we select 10 hidden layer nodes for our BPNN model.

The training and testing of the BPNN model were conducted in

MATLAB R2018a software.

2.4.2 Random Forest
Random Forest (RF) is a powerful machine learning algorithm.

As an ensemble learning technique, RF uses several decision trees,

each of which is trained using randomly chosen feature and sample

subsets (Belgiu and Drăgut,̧ 2016; Wang et al., 2023a). By averaging

or voting the predictions from each individual tree, the final
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prediction is obtained (Belgiu and Drăgut,̧ 2016; Wang et al.,

2023a). This study utilized the “TreeBagger” tool in MATLAB

R2018a to construct a random forest model. Through experiment

(Figure 2), the optimal number of trees and optimal number of leaf

nodes were determined to be 200 and 5, respectively.

2.4.3 Multiple Linear Regression
Multiple Linear Regression (MLR) describes how the dependent

variable changes with multiple independent variables. This

algorithm is simple, fast, low computational complexity, and

suitable for local scale, widely used in remote sensing estimation

of water parameters (Qing et al., 2013; Olmanson et al., 2016; Yang

et al., 2017). This study used d15NPN as the dependent variable and

optical indicators composed of remote sensing reflectance as the

independent variable for multiple linear regression fitting. The

fitting tool was the “regress” function in MATLAB R2018a software.
2.5 Accuracy evaluation

The accuracy evaluation of this study mainly includes four

indices. Specific calculation formula of Pearson correlation

coefficient (r), determination coefficient (R2), mean absolute

percentage error (MAPE) and root mean square error (RMSE)

are following Equations 2–5:

r =o
n

i=1
(Xi − Z)� (Yi −W)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(Xi − Z)2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(Yi −W)2

s
(2)

R2 = 1 −o
n

i=1
(Xi − Yi)

2=o
n

i=1
(Xi − Z)2 (3)

MAPE =
1
no

n

i=1

Xi�Yi

Xi

����
����� 100% (4)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(Xi�Yi)

2

s
(5)
TABLE 1 R2, MAPE and RMSE of the measured and predicted values of training samples with different hidden layer nodes.

Hidden layer nodes 1 2 3 4 5 6 7 8 9 10

R2 0.64 0.64 0.64 0.63 0.64 0.64 0.64 0.64 0.64 0.64

MAPE 0.15 0.17 0.16 0.16 0.15 0.16 0.15 0.15 0.15 0.15

RMSE 1.31 1.34 1.31 1.34 1.31 1.32 1.32 1.33 1.32 1.31
fro
TABLE 2 R2, MAPE and RMSE of the measured and predicted values of testing samples with different hidden layer nodes.

Hidden layer nodes 1 2 3 4 5 6 7 8 9 10

R2 0.82 0.85 0.85 0.84 0.84 0.83 0.84 0.83 0.84 0.84

MAPE 0.15 0.11 0.12 0.12 0.12 0.12 0.13 0.13 0.11 0.11

RMSE 1.69 1.06 1.17 1.09 1.09 1.11 1.18 1.20 1.04 1.00
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where n is the number of samples, Xi and Yi refer to the value of

two variables, Z and W denote the mean value of two variables in

the sample.
3 Results

3.1 In situ distribution of TSM and Chl
a concentration

As is shown in Figure 3, the TSM concentration ranged from

5.25 to 45.35 mg/L (averaged at 13.70 mg/L) in May. It should be

noted that operational errors prevented us from obtaining the Chl a

concentration outside the bay in May. Chl a concentration inside

the bay ranged from 0.68 to 19.33 mg/L (averaged at 5.49 mg/L) in
May. While in September, the concentration of TSM and Chl a

ranged from 2.60 to 62.40 mg/L (with an average of 11.63 mg/L)

and from 1.62 to 21.88 mg/L (with an average of 7.53 mg/L),
respectively (Figure 3).
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3.2 In situ distribution of d15NPN and
PN concentration

During the survey period, PN concentration ranged from 0.026

to 0.135 mg/L in May, with an average value of 0.048 mg/L. In

September, PN concentration ranged from 0.022 to 0.09 mg/L, with

an average value of 0.043 mg/L. Overall, the PN concentration in

September was slightly lower than that in May. In addition, as

shown in Figure 4, the average concentration of PN outside the bay

was higher than that inside the bay in May and September. In May,

the average concentration of PN outside and inside the bay was

0.062mg/L and 0.044mg/L, respectively. In September, the average

concentration of PN outside and inside the bay was 0.053mg/L and

0.034mg/L, respectively. The d15N value ranged from 5.89‰ to

10.14‰ (average 7.77‰) in May and 3.73‰ to 12.08‰ (average

7.77‰) in September, respectively. Similar to the distribution of PN

concentration, the average d15N outside the bay was higher than

that inside the bay in May and September. Figure 4 presents that the

average value of d15N outside and inside the bay in May was 8.71%

and 7.43%, respectively. In September, the average value of d15N
outside and inside the bay was 10% and 5.9%, respectively. The

spatial distribution differences of d15N inside and outside the bay

were more pronounced in September (Figure 4).
3.3 Development, validation, and
application of d15NPN retrieval model

Firstly, we conducted correlation analysis using in situ Rrs(l)
and d15NPN, and found that single band remote sensing reflectance

retrieval was not effective, with low correlations (P>0.05), which will

not be presented here. In order to obtain the best band combination

of retrieval bands, we designed 6 optical indicators (Table 3). The

method of optical indicators refers to the Rrs(l) combination forms

designed by Ling et al (Ling et al., 2020). Concretely, 240 possible

combinations of Rrs(l) with the sixteen OLCI bands (400 nm, 413

nm, 443 nm, 490 nm, 510 nm, 560 nm, 620 nm, 665 nm, 674 nm,

681 nm, 709 nm, 754 nm, 761 nm, 764 nm, 768 nm, and 779 nm)
FIGURE 2

Determination of the optimal number of leaf nodes and trees.
BA

FIGURE 3

In situ distribution of the TSM and Chl a concentration in (A) May and (B) September.
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were trained by using MATLAB R2018a software to determine

those optimal results for each form, X. After training, based on the

correlation coefficient (r) between X and d15NPN, the highest value

was taken, and the selection of l1 and l2 was ultimately determined

(Table 3). From Table 3, it can be seen that X2 and X5 perform well,

with r values of -0.78 (P<0.01) and -0.77 (P<0.01), respectively. We

selected these two optical indicators as input variables for the model

to construct d15NPN retrieval model.

We randomly divided the dataset (input and output variables)

into a training set (35 samples) and a testing set (17 samples),

trained the model separately, and verified its performance. As

shown in Figure 5, from the evaluation indices R2, MAPE, and

RMSE (Figure 5A-F), BPNN, RF and MLR methods perform well

on the training sets (BPNN: R2 = 0.64, MAPE = 14.93%, RMSE =

1.32‰; RF: R2 = 0.70, MAPE = 13.84%, RMSE = 1.20‰; MLR:
Frontiers in Marine Science 06
R2 = 0.65, MAPE = 15.14%, RMSE = 1.29‰) and testing sets

(BPNN: R2 = 0.84, MAPE = 10.71%, RMSE = 0.99‰; RF: R2 = 0.65,

MAPE = 13.66%, RMSE = 1.22‰; MLR: R2 = 0.84, MAPE = 11.94%,

RMSE = 1.03‰), which can meet our retrieval requirements for

d15NPN. To further validate the performance of BPNN, RF andMLR

methods for d15NPN retrieval, we obtained quasi-synchronous

Sentinel-3 data (September 20, 2016) during the sampling period,

and obtained 20 satellite-ground matching points that were less

affected by clouds, shadows, and solar flares. The established BPNN,

RF and MLR models were applied to Sentinel-3 data. As shown in

Figure 6, the BPNN and MLR model (BPNN: R2 = 0.63, MAPE =

20.10%, RMSE = 1.63‰; MLR: R2 = 0.63, MAPE = 20.71%, RMSE =

1.63‰) perform slightly better than the RF model (R2 = 0.55, MAPE

= 21.99%, RMSE = 1.67‰), with points more evenly distributed on

both sides of the trend line. From Figure 6, it can be seen that the
B

A

FIGURE 4

In situ distribution of the d15NPN and PN concentration in (A) May and (B) September.
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overall accuracy of the BPNN model is comparable to that of the

MLR model, but the MAPE of BPNN model is slightly lower than

that of the MLR model. Therefore, we used the BPNN model as the

model for retrieving d15NPN. It is worth noting that there is a certain

degree of overestimation or underestimation of satellite retrieval

value of d15NPN (Figure 6). This may be due to the fact that the

sampling time and satellite transit time are not synchronized in

real-time (exceeding 24 hours), and the time window is an

important factor affecting the accuracy of retrieval (Fu et al.,

2023). On the other hand, it may be due to errors caused by

atmospheric correction (Zhao et al., 2022). Moreover, Figure 7

shows the comparison between the OLCI-derived values of optical

indicators (X2 and X5) and the measured values, demonstrating

acceptable performance. The band combination reduces the errors

caused by atmospheric correction in the algorithm implementation

process to some extent (Zhao et al., 2022).

As shown in Figure 8, the spatial distribution map obtained by

applying the BPNN model to Sentinel-3 data shows that d15NPN

outside Zhanjiang Bay is slightly higher than inside Zhanjiang Bay.

However, a few areas affected by factories, docks, and aquaculture

areas (circled in Figure 8) (Lu et al., 2020; Zhang et al., 2020a; Zhou

et al., 2022), these areas are highly susceptible to the influence of

sewage or wastewater, resulting in higher dynamic changes in d15NPN

in these areas. Therefore, the d15NPN retrieval results in these regions

may have some differences from the measured values. But overall, the

retrieval results are relatively consistent with the measured results,

which also indicates that the BPNN model has a certain reliability in

retrieving d15NPN. Simultaneously utilizing Sentinel-3 data to retrieve

d15NPN has great potential for application.
4 Discussion

4.1 Influencing factors of d15NPN and
PN concentration

PN concentration and d15NPN in the ocean are influenced by

various processes such as water mass mixing, nutrient gain and loss,

and phytoplankton production (Sigman and Casciotti, 2001; Dagg

et al., 2004; Ye et al., 2017). For bays strongly affected by human
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activities, PN concentration and d15NPN will also be affected by

terrestrial factors such as soil, land runoff, and discharge of

wastewater (Cloern et al., 2002; Bristow et al., 2013; Ye et al.,

2017). Under the joint action of multiple factors, PN concentration

and d15NPN in Zhanjiang Bay exhibited different characteristics in

different months and regions.

TSM is the main carrier of terrestrial particulate matter (Chester

and Jickells, 2012). As shown in Figure 9, there was a significant

positive correlation between PN concentration and TSM

concentration in May (r=0.746, P<0.01), but there was no

significant correlation between PN concentration and TSM

concentration in September. This indicated that terrestrial

particulate matter in May had an important impact on PN

concentration, while the terrestrial component content of PN in

September was relatively low. To a certain extent, the Chl a

concentration reflects the status of phytoplankton production

(Luhtala et al., 2013). As illustrated in Figure 9, there was a

certain positive correlation between PN concentration and Chl a

concentration in May and September (r=0.647, P<0.01 for May;

r=0.476, P<0.01 for September), indicating that phytoplankton

production had a certain impact on PN concentration. In general,

d15NPN can effectively indicate the source of PN (Ye et al., 2017;

Chen et al., 2021). The d15NPN composition of marine organic

matter range from 3‰ to 12‰ (Chen et al., 2021; Huang et al.,

2021), while wastewater and livestock usually have the d15NPN

values of 10‰ to 22‰ (Huang et al., 2021). The d15N values ranged

from 3.73‰ to 12.08‰ (average 7.77‰) in this study. Therefore,

the source of PN in Zhanjiang Bay may be mainly marine organic

matter, but terrestrial input was also mixed in, such as wastewater.

In addition, there was a significant correlation between d15NPN and

Chl a concentration in May and September (r=0.574, P<0.05 for

May; r=0.806, P<0.01 for September; Figure 9). Both PN

concentration and d15NPN showed a good correlation with Chl a

concentration, indicating that phytoplankton production had a

significant contribution to the source of PN.

Significantly, stations with higher d15NPN (>10 ‰) generally had

higher Chl a concentration (>10 mg/L) (Table 4). The reception of

hypereutrophic municipal wastewater in the bay area can easily lead to

the bloom of phytoplankton, resulting in higher concentrations of Chl

a (Gao et al., 2021). When the growth rate of phytoplankton
TABLE 3 Design of optical indicators and selection of optimal band combinations.

X Optical indicator Best band combination r (N=52)

X1 Rrs(l1)-Rrs(l2) l1 = 413nm and l2 = 443nm 0.55

X2 Rrs(l1)/Rrs(l2) l1 = 674nm and l2 = 681nm -0.78

X3 Rrs(l1) − Rrs(l2)
Rrs(l1)=Rrs(l2)

l1 = 709nm and l2 = 510nm 0.67

X4 Rrs(l1)=Rrs(l2)
Rrs(l1) − Rrs(l2)

l1 = 490nm and l2 = 400nm -0.63

X5 Rrs(l1) − Rrs(l2)
Rrs(l1) + Rrs(l2)

l1 = 674nm and l2 = 681nm -0.77

X6 Rrs(l1)=Rrs(l2)
Rrs(l1) + Rrs(l2)

l1 = 764nm and l2 = 510nm 0.53
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accelerates, the isotopic fractionation that occurs during the rapid

absorption of inorganic nitrogen by phytoplankton can lead to a

heavier nitrogen isotope composition of particulate organic matter

(Mariotti et al., 1984). Due to the preferential absorption of NH4
+

during the growth process of phytoplankton, the strong nitrification in

coastal water and the preferential utilization of 14N in NH4
+ by

phytoplankton can lead to the accumulation of residual NH4
+ in

water by 15N (Cifuentes et al., 1988).When phytoplankton continue to

absorb these enriched 15N in NH4
+, it will cause an increase in the

d15NPN value of the produced particulate organic matter (Cifuentes
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et al., 1988; Ke et al., 2017). Moreover, due to the rapid economic

development and increased human activities in Zhanjiang, the process

of heterotrophic bacteria has been intensified (Li et al., 2021). The

strong biodegradation process prioritizes the degradation of organic

matter containing lighter isotopes, leading to the enrichment of

residual organic matter with heavy nitrogen isotopes (Li et al.,

2021). It is worth noting that the d15NPN value at station S13 and

A29 was relatively high (>10‰), but the Chl a concentration was not

high (5.34 mg/L and 6.75 mg/L, respectively), this may be due to the

impact of sewage or wastewater input, as S13 and A29 are located near
B

C D

E F

A

FIGURE 5

Scatter plots between the estimated d15NPN of BPNN (A, B), RF (C, D), and MLR (E, F) models and the measured d15NPN.
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the factory and aquaculture industry, respectively. Previous study

showed that in the region of algal uptake, sewage-derived NH4
+ and

sewage-derived NO3
- could raise the d15NPN value by 9.0-17.2‰ and

10-15‰, respectively (Estep and Vigg, 1985; Leavitt et al., 2006). In

addition, Zhou et al. (2021) also indicated that during non-typhoon

periods in Zhanjiang Bay, the PN heavy isotopes can be attributed to

the utilization of mineralized NH4
+ from wastewater by

phytoplankton. Therefore, the relatively heavy d15NPN component

in Zhanjiang Bay and its adjacent waters can be attributed to

phytoplankton production and sewage or wastewater input.
4.2 Evaluation of d15NPN remote sensing
retrieval model

In section 4.1, we obtained that the PN source in Zhanjiang Bay

is mainly phytoplankton production, and d15NPN had a good
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correlation with concentration of Chl a. Therefore, the d15NPN

can be linked to the water color parameter Chl a, which can

establish a suitable d15NPN remote sensing retrieval model. It is

well-known that there is an absorption peak in the spectral

reflectance near the wavelength of 674 nm due to the absorption

of phytoplankton pigments, while there is a fluorescence peak near

the wavelength of 681 nm, both of which are spectral characteristic

bands specific to Chl a (Su et al., 2021). Consequently, choosing

these two bands to retrieve d15NPN has a certain scientificity and

reliability. In the RF model, due to the dominance of measured

values between 5 and 11 in the training dataset, there may be biases

in the decision tree constructed by decision tree learners, resulting

in predicted values being concentrated within the range of 5 to 11.

In addition, during prediction, each tree is given a predicted value,

and the average of all predicted values is taken. This results in the

predicted value of the random forest being within the range of the

training sample’s predicted values, so it cannot be extrapolated. The

predicted value can only be between the minimum and maximum

values of the training sample’s predicted values, resulting in a set of
FIGURE 6

Scatter plots between the satellite-retrieved d15NPN using BPNN, RF
and MLR models and the measured d15NPN in September 2016.
BA

FIGURE 7

Comparison of measured and OLCI-derived values for match-up points at (A) Rrs(674)/Rrs(681) and (B) Rrs(674)-Rrs(681)/Rrs(674)+Rrs(681).
FIGURE 8

d15NPN retrieved from Sentinel-3 OLCI image (20 September 2016)
in Zhanjiang Bay and its adjacent waters.
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identical estimated values between 10 and 11 in the testing set.

When we need to infer independent or non independent variables

that are beyond the range, the random forest does not do well

(Wang et al., 2023b). The solution is to expand the scope of the

dataset in the future to maintain balance. The BPNN model and

MLR model performed well on both the training and testing sets,

and they also performed well in the application of Sentinel-3 data.

Although the multiple linear regression algorithm is simple and

ease of implement, it should be noted that the regression coefficients

of this model is only suitable for the Zhanjiang Bay and its adjacent

sea areas. For other sea areas, parameter regionalization may be

required, and the applicability of the model needs further

verification. The samples in this study were collected during the

rainy season. During the rainy season, increased rainfall leads to an

increase in nutrients carried into the sea by land runoff, resulting in

an increase in phytoplankton biomass (Baek et al., 2009). There was

a good correlation between Chl a, and d15NPN in May and

September. This provides a good foundation for the establishment

of d15NPN remote sensing model. However, during the dry season,
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the decrease in rainfall leads to changes in the physical, chemical,

and biological conditions of the water, as well as changes in the

activity of phytoplankton. Whether Chl a and d15NPN still maintain

a good correlation remains to be further explored. Whether the

d15NPN retrieval model we established is still applicable depends on

further sample collection and verification.

In order to better evaluate the d15NPN remote sensing retrieval

model established in this study, we selected six widely used Chl a

retrieval algorithms (Table 5), including 3 empirical algorithms

(Three-band algorithm: TBA; Fluorescence Line Height algorithm:

FLH; Maximum Chlorophyll Index algorithm: MCI) (Gower et al.,

1999; Dall'Olmo et al., 2005; Gower et al., 2005) and 3 semi-

analytical algorithms (Gons; Simis; Quasi-Analytical Algorithm

improved form: QAA750E) (Gons et al., 2002; Simis et al., 2005;

Xue et al., 2019), to attempt to retrieve d15NPN. As shown in Table 5,

we substituted the in situ remote sensing reflectance into the

expressions of the following six algorithms, and then perform

comparison analysis between the results of the expressions with

measured d15NPN. It is worth mentioning that the comparison

analysis between the absorption coefficient of phytoplankton (aph
(l)) obtained by the semi-analytical algorithm and d15NPN was

conducted. From Table 5, it can be seen that the BPNN algorithm

proposed in this study has the highest accuracy (R2 = 0.66,

MAPE=13.52%, RMSE=1.19‰), followed by the TBA algorithm

(R2 = 0.49, MAPE=14.32%, RMSE=1.46‰). The Gons and Simis

semi-analytical algorithms also have a good performance (Gons:

R2 = 0.46, MAPE=16.31%, RMSE=1.49‰; Simis: R2 = 0.42,

MAPE=16.81%, RMSE=1.56‰), indicating that semi-analytical

algorithms have certain application potential in retrieving d15NPN.

In addition, MCI algorithm, FLH algorithm and QAA750E

algorithm perform poorly. Therefore, the algorithms composed of

more bands may lead to more indeterminacy factors introduced,

which directly affects the retrieval accuracy.

Additionally, we obtained 18 measured d15NPN values in

September 2017 and applied the BPNN model established in this

study to the Sentinel-3 OLCI image data (18 September 2017). The

retrieval results were shown in Figure 10. From the perspective of
BA

FIGURE 9

Correlation of PN concentration, d15NPN and related environmental parameters in the surface water of Zhanjiang Bay in May (A) and September (B).
TABLE 4 Stations with higher d15NPN.

Station d15NPN (‰) Chl a concentration (mg/L)

S13 10.13 5.34

S16 10.13 14.95

A19 10.08 11.45

A21 11.83 15.84

A23 10.30 10.43

A24 11.16 10.51

A25 10.69 21.88

A26 11.94 19.23

A27 12.08 20.51

A29 11.40 6.75
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retrieval accuracy (Figure 11), the R2, RMSE and MAPE were 0.59,

1.78‰, and 34.06%, respectively. The retrieval results can meet the

requirements to a certain extent, indicating that our d15NPN

retrieval model has certain applicability.
4.3 The advantages and prospects of
developing d15NPN remote sensing model

Isotope fractionation gives PN from different sources specific

nitrogen stable isotope characteristic values, which provides the

possibility of determining the source and destination of PN, making

d15NPN a valuable tracer for tracking PN sources and understanding

N cycling in water systems (Chen et al., 2021; Huang et al., 2021; Lu

et al., 2021). Although traditional field surveys and chemical
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methods can accurately obtain d15NPN, they consume a lot of

time, manpower, and resources. How to improve efficiency and

enable us to quickly and extensively understand the dynamic

changes of d15NPN? Satellite remote sensing has developed rapidly

in recent decades, and various high-performance sensors have been

developed for marine environmental monitoring, which is very

conducive to our research and exploration of the ocean. Satellite

remote sensing has irreplaceable advantages in large-scale spatial

and long-term series monitoring. We only need to sacrifice a small

amount of accuracy to obtain acceptable results, which is of great

significance for the biogeochemical processes and nitrogen cycling

research of PN in the ocean. According to the analysis above, water

environmental pollution can also be distinguished by d15NPN
TABLE 5 Expressions of 6 Chl a retrieval algorithms and the comparison analysis between algorithm results and d15NPN..

Algorithms Expressions
R2

(N=52)
MAPE
(N=52)

RMSE
(N=52)

References

TBA Rrs(754)
Rrs(665)

−
Rrs(754)
Rrs(709)

0.49 14.32% 1.46‰
Dall'Olmo
et al. (2005)

FLH Rrs(681) − Rrs(665) + ½Rrs(665) − Rrs(709)� � (
681 − 665
709 − 665

) 0 24.01% 2.05‰
Gower

et al. (1999)

MCI Rrs(709) − Rrs(665) + ½Rrs(665) − Rrs(754)� � (
709 − 665
754 − 665

) 0.14 20.27% 1.89‰
Gower

et al. (2005)

Gons bb = 1:61� Rrs(709)
0:082 − 0:6� Rrs(779)

, aph(665) =
Rrs(709)
Rrs(665)

½aw(709) + bb� − b1:062b − aw(665) 0.46 16.31% 1.49‰
Gons

et al. (2002)

Simis bb=1:61�
Rrs(709)

0:082 − 0:6� Rrs(779)
, aph(665)=½

Rrs(709)
Rrs(665)

½aw(709) + bb� − bb − aw(665)�=0:68 0.42 16.81% 1.56‰
Simis

et al. (2005)

QAA750E

rrs=
Rrs(l)

0:52 + 1:7Rrs(l)
, u(l)=

−0:084 + ½0:0842 + 4� 0:17� rrs�1=2
2� 0:17

a(754) ≈ aw(754)bbp(754)

=
u(754)� a(754)

1 − u(754)
− bbw(754)Y = 3:99 − 3:59exp½−0:9 rrs(443)

rrs(560)
�bb(l) = bbp(754)(

754
l

)Y +

bbw(l)anw(l) = bb(l)
1 − u(l)
u(l)

− aw(l)aph(674) =
anw(674) − 0:882� anw(665)

1 − 0:882� 0:839

0 24.12% 2.04‰
Xue

et al. (2019)

BPNN Black box 0.66 13.52% 1.19‰ This study
FIGURE 10

d15NPN retrieved from Sentinel-3 OLCI image (18 September 2017) in
Zhanjiang Bay and its adjacent waters.
FIGURE 11

Scatter plots between the satellite-retrieved d15NPN using BPNN
model and the measured d15NPN in September 2017.
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values, which can indirectly indicate the pollution level of water

bodies. This also provides a new method and strategy for traditional

water quality monitoring and management.

However, the d15NPN remote sensing model established in this

study only involves data from two cruises, and it cannot be denied

that the limitations of the model exist. Meanwhile, the quality of

satellite images and atmospheric correction can also bring

uncertainty to d15NPN estimation. In the future, we will increase

the sampling frequency and use more data from different seasons

and regions to validate our established model, enhancing its

robustness and universality.
5 Conclusions

Based on the measured d15NPN values and remote sensing

reflectance in Zhanjiang Bay in May and September 2016, this study

constructed three machine learning models (BPNN, RF, MLR) for

d15NPN retrieval. After screening and analysis, the model input

variables consisted of two optical indicators, namely Rrs(674)/Rrs

(681) and Rrs(674)−Rrs(681)
Rrs(674)+Rrs(681)

. Through the accuracy evaluation of the

training sets and test sets and the analysis of the retrieval results of

Sentinel-3, it was found that the BPNN model performed better

compared to the other two models. In addition, PN source in

Zhanjiang Bay was mainly phytoplankton production, and

phytoplankton production was closely related to chlorophyll a, which

provided a reliable basis for remote sensing retrieval of d15NPN. This

basis was also confirmed by the fact that the two sensitive bands (674

nm and 681 nm) that respond to d15NPN were also the spectral

characteristic bands of chlorophyll a. However, due to limited data

sets and insufficient model optimization, the performance of the

d15NPN retrieval model that we established still needs to be

improved. In the future, we will continue to expand the data sets,

optimize the model input variables, and construct a more robust

d15NPN retrieval model for continuous and long-term monitoring.
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