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There has been a surge of research in the aquaculture industry investigating

probiotic, prebiotic, and synbiotic interventions on the physiological

mechanisms of fish, specifically digestive enzymes, oxidative stress, and

antioxidant defense. In fish, probiotics have been shown to improve nutrient

utilization and growth performance by stimulating digestive enzymes.

Meanwhile, probiotics, prebiotics and synbiotics have also been studied for

their ability to modulate oxidative stress and antioxidant defense mechanisms

in fish, highlighting their multifaceted health benefits. This review identified

current trends, research gaps, and future considerations in this evolving field.

Although promising findings have been made, a significant research gap exists in

understanding the specific role of probiotics prebiotics, and synbiotics in

modulating digestive enzymes, oxidative stress, and antioxidant defense

systems in a variety of fish species. As this study investigate into the existing

body of literature, it becomes evident that while certain aspects of these

interactions have been elucidated, a nuanced and comprehensive

understanding still needs to be discovered. The variations in experimental

design, species-specific responses, and the lack of standardized

methodologies contribute to the complexity of the field. Digestive physiology

and antioxidant defense mechanisms vary among different fish species, so future

research should focus on species-specific responses to probiotic, prebiotic, and

synbiotic formulations. It will also be possible to establish robust correlations

between dietary interventions and observed effects through a systematic

experimental design and methodology approach. Accordingly, further research

is needed to understand the interactions between probiotics, prebiotics, and
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synbiotics in fish and digestive enzymes, oxidative stress, and antioxidant

defense. Identifying research gaps and adopting standardized methodologies

can help develop tailored strategies to optimize aquaculture fish health and

growth performance.
KEYWORDS

oxidative damage, antioxidant systems, digestive health, nutritional supplements,
synbiotic effects, aquaculture
1 Introduction

In the ever-evolving landscape of aquaculture, the delicate

balance between maximizing fish production and ensuring the

health and well-being of aquatic organisms remains a paramount

concern (Ribas and Piferrer, 2014; Ibrahem, 2015; Dawood and

Koshio, 2016; Mukherjee et al., 2019). One of the pivotal aspects in

achieving this equilibrium lies in comprehending the complex

interaction between digestive enzymes, oxidative stress, and

antioxidant defense mechanisms in fish (Hoseinifar et al., 2015a;

Hoseinifar et al., 2015b; Hoseinifar et al., 2021). Over the years,

significant strides have been made in elucidating the multifaceted

relationship between these physiological processes (Schieber and

Chande, 2014; Hoseinifar et al., 2021). Nonetheless, a conspicuous

research gap persists, necessitating a comprehensive review to

synthesize existing knowledge, identify current limitations, and

chart the course for future investigations.

The digestive system of fish is a complex network of enzymatic

reactions that orchestrate the breakdown and assimilation of

nutrients essential for growth, development, and overall

physiological function (Mata-Sotres et al., 2016; Assan et al.,

2022; Amenyogbe et al., 2022a; Amenyogbe et al., 2022b;

Amenyogbe et al., 2022c). In tandem with these digestive

processes, oxidative stress and antioxidant defense mechanisms

play a pivotal role in maintaining cellular homeostasis (Hoseinifar

et al., 2021). Recent studies have underscored the potential

modulatory effects of probiotics, prebiotics, and synbiotics on

these crucial physiological pathways in fish (Olmos-Soto, 2014;

Wang C. et al., 2019; Wang et al., 2021; Assan et al., 2022).

Probiotics, live microorganisms with documented health benefits,

prebiotics, non-digestible compounds that selectively stimulate the

growth and activity of beneficial microorganisms, and synbiotics,

combinations of probiotics and prebiotics, have emerged as

promising candidates for enhancing the digestive efficiency and

oxidative stress resilience of fish (FAO/WHO, 2001; Beck et al.,

2014; Olmos-Soto, 2014; Dawood et al., 2016a, b; Van Doan et al.,

2016; Xia et al., 2018; Hoseinifar et al., 2019; Wang C. et al., 2019;

Zuo et al., 2019; Wang et al., 2021).

While individual studies have investigated the influence of

probiotics, prebiotics, and synbiotics on either digestive enzymes

or oxidative stress in fish (Table 1), there exists a discernible gap in
02
the literature that systematically integrates these disparate aspects

into a unified framework (Olmos-Soto, 2014; Hoseinifar et al.,

2015a, b; Wang Y. et al., 2019; Wang et al., 2021; Assan et al.,

2022). This review aims to bridge this gap by comprehensively

synthesizing current research findings, highlighting interactions,

and identifying areas that require further exploration. By doing so,

the study aspire to offer a holistic understanding of how probiotics,

prebiotics, and synbiotics collectively impact fish’s digestive

enzymes and oxidative stress responses.

As this study probe into the existing body of literature, it becomes

evident that while certain aspects of these interactions have been

elucidated, a nuanced and comprehensive understanding still needs

to be discovered. The variations in experimental design, species-specific

responses, and the lack of standardizedmethodologies contribute to the

complexity of the field. Consequently, this review will critically evaluate

the methodologies employed in existing studies and propose

standardized approaches to facilitate cross-study comparisons and

data extrapolation. Looking ahead, it is imperative to outline a

roadmap for future investigations. Identifying specific strains, doses,

and application methods of probiotics, prebiotics, and synbiotics that

yield optimal outcomes in different fish species represents a critical

avenue for further exploration. Moreover, the molecular mechanisms

underlying the observed effects still need to be more understood and

warrant in-depth investigation. By addressing these research gaps, the

study aim to contribute to the sustainable advancement of aquaculture

practices, fostering a balance between increased production efficiency

and preserving fish health and welfare.
2 Data availability, materials
and methods

Following the methods used by Amenyogbe (2023), in brief,

detecting or identifying papers was conducted using Web of

Science, Google Scholar, and subscribed journals as Core

Collections. In order to retrieve papers published up to 2023,

several keywords were initially used as hunt criteria. According to

the preliminary search results, studies related to fish probiotics,

prebiotics, and synbiotics were distinguished. A total of 233

publications describing aquaculture probiotics, prebiotics, and

synbiotics have been obtained in full text.
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TABLE 1 An overview of the application of probiotics in regulating digestive enzymes in cultured fish.

Probiotic Source Recommended
dosage

Duration Route
of
admin.

Stimulated
enzyme

Fish species Reference

Bacillus subtilis commercial 3.5 × 1011 CFU 56 days Diet A,L,P P. hypophthalus Abdel-Latif
et al., 2023

Enterococcus faecium commercial 2.0 × 1011 CFU 56 days Diet A,L,P P. hypophthalus Abdel-Latif
et al., 2023

Lactobacillus plantarum commercial 2.0 × 1011 CFU 56 days Diet A,L,P P. hypophthalus Abdel-Latif
et al., 2023

lactic acid
bacteria 119

Native 1 × 108 CFU/g 56 days. Diet A,L,P Channa argus Kong
et al., 2021

Saccharomyces
cerevisiae

commercial 1.0 × 1010 CFU Diet A,L,P P. hypophthalus Abdel-Latif
et al., 2023

Enterococcus
faecalis W24

Native 1 × 108 CFU/g 56 days. Diet A,L,P Channa argus Kong
et al., 2021

Pantoea
agglomerans RCS2

Native 1× 1012 CFU/mL−1

and 1× 1010

CFU/mL−1

10 weeks Diet A,C,L,P , T cobia
(Rachycentron
canadum)

Amenyogbe
et al., 2022a

Lactobacillus casei commercial 5 × 107 CFU L. casei
kg−1

75 days A, L, P , T Cyprinus carpio Mohammadian
et al., 2019

Bacillus sp. RCS1 and
Bacillus cereus
RCS3

Native 1 × 1010 and 1 × 1012

CFU/mL−1
10 weeks Diet A,C,L,P , T cobia

(Rachycentron
canadum)

Amenyogbe
et al., 2022b

Bacillus sp. RCS1,
Pantoea agglomerans
RCS2, and Bacillus
cereus RCS3 mixture

Native 1 × 1012

CFU mL−1
10 weeks Diet A,C,L,P , T cobia

(Rachycentron
canadum)

Amenyogbe
et al., 2022c

Bacillus licheniformis Commercial 1 × 106 cfu g-1 8 weeks Diet P, L, A Lates calcarifer (Adorian
et al., 2018)

Bacillus subtilis Commercial 1 × 106 cfu g-1 8 weeks Diet P, L, A Lates calcarifer (Adorian
et al., 2018)

Lactobacillus sp. Cyprinus carpio 2.0 X 107 cfu g-1 60 days Diet P, L, A Cyprinus carpio (Yanbo
et al., 2006)

Micrococcus MCCB 104 Commercial 103 cfu animal-1 day-1 28 days Diet A, L Etroplus suratensis
Oreochromis
mossambicus

(Sankar
et al., 2017)

Bacillus
MCCB 101

Commercial 103 cfu animal-1 day-1 28 days Diet A, L Etroplus suratensis
Oreochromis
mossambicus

(Sankar
et al., 2017)

PrimaLac® Commercial 1% 45 days Diet P, L, A Rutilus frisii kutum (Mirghaed
et al., 2018)

Bacillus
subtilis NIOFSD017

Oreochromis
niloticus

107 cfu g-1 60 days Diet P, L, A Oreochromis
niloticus

(Essa
et al., 2010)

Lactobacillus
plantarum NIOFSD018

Oreochromis
niloticus

107 cfu g-1 60 days Diet P, L, A Oreochromis
niloticus

(Essa
et al., 2010)

Saccharomyces
cerevisiae NIOFSD019

Oreochromis
niloticus

104 cfu g-1 60 days Diet A Oreochromis
niloticus

(Essa
et al., 2010)

B. subtilis Cyprinus carpio 5 g kg− 1 28 days Diet P, L, A , C Penaeus vannamei (Wang, 2007)

Bacillus
coagulans, palustris

Cyprinus carpio 106 cfu g−1 60 days Diet P, A, C Ctenopharyngodon
idella

(Wang, 2011)

Rhodopseudomonas Cyprinus carpio 106 cfu g−1 60 days Diet P, A, C Ctenopharyngodon
idella

(Wang, 2011)

(Continued)
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3 Overview of the importance of
digestive health and the role of
oxidative stress and antioxidant
defense in fish health

A group of enzymes present in the digestive tracts of animals are

known as digestive enzymes, a, play a crucial role in breaking down

macromolecules into their tiniest sizes for efficient absorption via

the body, energy metabolism, and overall health (Watling, 2015;

Mata-Sotres et al., 2016; Xiong et al., 2019; Assan et al., 2022; Gao

et al., 2022; Amenyogbe et al., 2022a; Amenyogbe et al., 2022b;

Amenyogbe et al., 2022c). Understanding the complexities of fish
Frontiers in Marine Science 04
digestive physiology is essential for optimizing aquaculture

practices, preserving wild populations, and ensuring sustainable

fisheries (Xiong et al., 2019). While data from fish indicates

qualitative similarities with digestive enzymes in other vertebrates,

the understanding of fish digestive processes lags behind that of

mammals. This disparity arises from different methodologies used

in analyzing data, particularly in the collection of digestive tract

secretions from other vertebrates (Assan et al., 2022). Examining

the presence and activity levels of digestive enzymes provides

valuable insights into food acceptance, the rate of fish larvae

development, digestive efficiency, and ultimately, survival rates

(Suzer et al., 2008). Research, such as that undertaken by

Solovyev et al. (2014), demonstrates that analyzing the activity of
TABLE 1 Continued

Probiotic Source Recommended
dosage

Duration Route
of
admin.

Stimulated
enzyme

Fish species Reference

Lactobacillus
acidophilus

Ctenopharyngodon
idella

106 cfu g−1 60 days Diet P, A, C Ctenopharyngodon
idella

(Wang, 2011)

Clostridium butyricum M. rosenbergii 2 × 109 cfu g-1 60 days Diet P, A Macrobrachium
rosenbergii

(Sumon
et al., 2018)

Bacillus megaterium
PTB 1.4

Clarias sp 1010 cfu mL-1 30 days Diet P, A Clarias sp (Afrilasari and
Meryandini,
2016)

B. coagulans SC8168 Pond sediment 5.0 × 105 cfu ml− 1 ND Diet P, L, A Penaeus vannamei (Zhou
et al., 2009)

Bacillus subtilis Fermented pickles 108 cfu g−1 8 weeks Diet P, A Litopenaeus
vannamei

(Zokaeifar
et al., 2012)

Bacillus sp. Pond 1 g kg−1 60 days Diet P, L, A Cyprinus carpio (Yanbo
et al., 2006)

Debaryomyces hansenii
CBS 8339

Rainbow trout 106 cfu g−1 37 days Diet L, A, T Dicentrarchus
labrax

(Tovar-Ramıŕez
et al., 2004)

Lactobacillus spp. Commercial ND ND Diet
and
water

L, A, T Sparus aurata, L. (Suzer
et al., 2008)

Bacillus subtilis Ch9 Grass carp 3 × 109 cfu kg−1 56 days Diet P, L, A Ctenopharyngodon
idella

(Wu
et al., 2012)

B. cereus C. gariepinus 1 × 1010 cfu kg-1 60 days Diet P, L, A Clarias gariepinus (Reda
et al., 2018)

B. amyloliquefaciens C. gariepinus 1 × 1010 cfu kg-1 60 days Diet P, L, A Clarias gariepinus (Reda
et al., 2018)

B. subtilis C. gariepinus 1 × 1010 cfu kg-1 60 days Diet P, L, A Clarias gariepinus (Reda
et al., 2018)

Bacillus
subtilis HAINUP40

Pond water 108 cfu g-1 8 weeks Diet P, A Oreochromis
niloticus

(Liu H.
et al., 2017)

Pseudoalteromonas sp.
strain C4

Haliotis midae 2.4 × 1010 cfu g-1 15 months Diet Alginase Haliotis midae (ten Doeschate
and
Coyne, 2008)

Rhodotorula
benthica D30

Mud 106 cfu g-1

and 107 cfu g-1
30 days Diet

A, C, alg inase
Apostichopus
japonicus

(Wang
et al., 2015)
A, amylase; C, Cellulose; P, Pepsin; T, Trypsin; P, Protease; L, Lipase; ND, Not defined; Bent-Up Arrow indicates “increase in assessment to the control”: Down Arrow indicate “decrease in
assessment to the control.
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digestive enzymes in fish offers valuable understanding of their role

in ecosystems and feeding habits under natural conditions. Mata-

Sotres et al. (2016) noted that impressive growth rates in larval fish

result from effective food processing facilitated by high ingestion

rates and the presence of highly active digestive enzymes. Fish need

proteases to break down proteins from their diet into amino acids

(Huang et al., 2021). Amino acids are essential for various

physiological functions, including growth, tissue repair, and the

synthesis of enzymes and hormones. Lipases help in the digestion of

lipids (fats) (Calado et al., 2007; Rivera-Pérez et al., 2010; Gao et al.,

2022). Fatty acids derived from lipid digestion are crucial for energy

production, cell membrane formation, and the synthesis of

hormones and signaling molecules. Carbohydrases are responsible

for breaking down complex carbohydrates into simple sugars. These

sugars serve as a direct energy source for fish and are essential for

maintaining metabolic processes. The efficiency of digestion

directly impacts the fish’s growth, development, and overall health.

In literature, the participation of cellulolytic, lipolytic,

proteolytic, and amylolytic, enzymes in breaking down

carbohydrates, proteins, lipids, and cellulose during fish digestion

is emphasized (Falc´on-Hidalgo et al., 2011; Ray et al., 2012; Nedaei

et al., 2019; Gao et al., 2022). These enzymes play a crucial role in

stimulating the development and growth of aquaculture fish species

(Kavitha et al., 2018). The rate of digestion in fish is established to

impact nutrient uptake, consequently influencing the overall

growth and development of the organism (Pittman et al., 2013).

In aquaculture, the growth and production costs of fish are heavily

influenced by the digestibility of their feed, which can be improved

through the augmentation of digestive enzyme activityThe presence

of intestinal bacteria aids in food digestion, while the introduction

of probiotic bacteria enhances nutrient absorption and promotes

more efficient food digestion (Afrilasari and Meryandini, 2016).

Probiotic bacteria have been shown to increase digestive enzyme

activities, leading to enhanced growth in various species, including

white shrimp Litopenaeus vannamei, Indian white shrimp

Fenneropenaeus indicus, abalone Haliotis asinina, and humpback

grouper Cromileptes altivelis (Takami et al., 2006; Zokaeifar et al.,

2012; Marlida et al., 2014; Faturrahman et al., 2015). Probiotics, as

beneficial microbes, are recognized for improving the overall health

and nutrition of host organisms (Assan et al., 2022). Research has

shown that probiotics enhance the activity of digestive enzymes in

fish by producing their own enzymes. These enzymes are released

into the intestinal tract, increasing the overall pool of enzymes. As a

result, they break down food nutrients, making them more

accessible to the host fish through the resulting metabolites they

secrete (Wang, 2007; Suzer et al., 2008; Zhou et al., 2009). Research

on fish digestive health has substantially contributed to

understanding nutrient digestion, absorption, and utilization

(Table 1) (Burns et al., 2016; Yan et al., 2016; Nie et al., 2017;

Smith et al., 2017). Studies have elucidated the enzymatic processes

involved in breaking down complex nutrients, such as proteins,

lipids, and carbohydrates. Moreover, advancements in molecular

biology have allowed researchers to explore the microbiota residing

in the fish gut, shedding light on its role in nutrient metabolism and

host immunity (Liu H. et al., 2017; Nie et al., 2017).
Frontiers in Marine Science 05
Elevated levels of reactive oxygen species (ROS) within cells,

associated with oxidative stress, can lead to detrimental effects on

lipids, proteins, and DNA (Schieber and Chande, 2014; Hoseinifar

et al., 2021). Oxidative stress occurs when there is an imbalance

between the production of reactive oxygen species (ROS) and the

ability of the fish’s antioxidant defense system to neutralize them.

The imbalance between ROS production and antioxidant defense,

termed oxidative stress, can result in DNA hydroxylation, protein

denaturation, lipid peroxidation, apoptosis, and ultimately cell

damage (Hoseinifar et al., 2021). Hydroxyl radicals and hydrogen

peroxides are key oxygen radicals contributing to ROS. To

counteract the negative impacts of naturally occurring ROS, living

organisms have developed an antioxidant defense system,

comprising enzymatic antioxidants (e.g., superoxide dismutase,

glutathione peroxidase, glutathione reductase, and catalase) and

non-enzyme antioxidants (e.g., glutathione, thioredoxin, vitamin C,

and vitamin E) (Hoseinifar et al., 2021). ROS, such as superoxide

radicals and hydrogen peroxide, can cause damage to lipids,

proteins, and DNA within the fish’s cells (Schieber and Chande,

2014; Hoseinifar et al., 2021). This antioxidant defense system

maintains the balance between ROS production and removal

under normal physiological conditions (Li et al., 2016; Dong

et al., 2017), playing a crucial role in preserving homeostasis and

preventing oxidative stress-related damage (Li et al., 2016; Dong

et al., 2017). Fish produce ROS as byproducts during normal

metabolic processes. Factors like pollution, temperature changes,

and poor water quality can increase ROS production (Cadenas,

1995; Schieber and Chande, 2014; Halliwell and Gutteridge, 2015).

Infections and diseases can trigger ROS production as part of the

fish’s immune response. ROS can damage cell membranes, proteins,

and DNA, leading to impaired cellular function (Halliwell and

Gutteridge, 2015; Li et al., 2016; Dong et al., 2017). Fish

experiencing oxidative stress are more susceptible to diseases

(Jena, 2012; Birnie-Gauvin et al., 2017; Prego-Faraldo et al., 2017;

Biller and Takahashi, 2018; Ji et al., 2018; Hematyar et al., 2019).

Oxidative stress can hinder growth rates in fish.

The physiological status of an organism is closely linked to its

antioxidant defense, with increased efficiency and levels of

antioxidant defense providing various benefits to the host

(Halliwell and Gutteridge, 2015; Li et al., 2016; Yang et al., 2018).

Consequently, there has been considerable research focused on

enhancing the activities of antioxidant enzymes in fish and shellfish.

While synthetic antioxidants such as butylated hydroxyanisole and

butylated hydroxytoluene have been traditionally employed to

boost antioxidant defense and inhibit lipid peroxidation, their use

is becoming restricted due to environmental and health concerns,

including liver damage and cancer (Halliwell and Gutteridge, 2015;

Li et al., 2016; Yang et al., 2018). In recent years, efforts have been

directed toward identifying novel and safe natural antioxidants as

alternatives to synthetic compounds (Hoseinifar et al., 2021).

Fish have evolved elaborate antioxidant defense mechanisms to

counteract oxidative stress and maintain cellular homeostasis

(Halliwell and Gutteridge, 2015; Li et al., 2016; Yang et al., 2018;

Hoseinifar et al., 2021). These defensemechanisms include enzymatic

and non-enzymatic antioxidants. Converts superoxide radicals into
frontiersin.org
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hydrogen peroxide. Converts hydrogen peroxide into water and

oxygen (Yang et al., 2018; Gao et al., 2022). Neutralizes hydrogen

peroxide and lipid peroxides. Non-enzymatic Antioxidants: Vitamins

C and E Act as scavengers of free radicals. Glutathione acts as a

crucial cellular antioxidant. Carotenoids have antioxidant properties

and contribute to fish coloration (Malhotra and Kaufman, 2007;

Birnie-Gauvin et al., 2017; Xie et al., 2019). In the context of

aquaculture, where oxidative stress is particularly relevant,

especially in intensive and stressful modern culture systems,

researchers are exploring the potential of enhancing the antioxidant

defense of cultured organisms using beneficial microbes. Previous

studies in aquaculture have demonstrated promising antioxidative

effects of beneficial additives such as probiotics, prebiotics, and

synbiotics across various fish species (Dawood et al., 2018; Van

Doan et al., 2020; Hoseinifar et al., 2021). This highlights the

importance of investigating the use of beneficial microorganisms to

ameliorate antioxidant defense in aquaculture practices.

Despite these advancements, several gaps persist in our

knowledge of fish digestive health and the role of oxidative stress

and antioxidant defense in fish health. First, there is a need for more

comprehensive studies on the diversity and function of the fish gut

microbiome across species and environmental conditions (Burns

et al., 2016; Yan et al., 2016; He et al., 2017; Nie et al., 2017; Smith

et al., 2017). This includes understanding how external factors, such

as diet, water quality, and stress, impact the composition and

activity of the gut microbiota. Second, research on the ontogeny

of the fish digestive system is limited, hindering our understanding

of how digestive processes change during different life stages. Third,

the influence of environmental pollutants on fish digestive health

remains an underexplored area, with potential implications for both

wild and farmed fish populations (Sullam et al., 2012; Schmidt et al.,

2015; Yan et al., 2016; Nie et al., 2017).

Addressing these research gaps requires a multidisciplinary

approach. Future studies should integrate molecular biology, ecology,

and aquaculture science to provide a holistic understanding of fish

digestive health. Investigating the impact of environmental stressors,

such as climate change and pollution, on fish digestive physiology is

crucial for predicting and mitigating potential adverse effects.

Additionally, continue advancements in omics technologies can

facilitate in-depth analyses of the fish gut microbiome, enabling

researchers to uncover novel interactions between the microbiota

and host physiology (Sullam et al., 2012). Collaboration between

researchers, industry stakeholders, and policymakers is essential for

translating research findings into practical applications. Developing

strategies to enhance digestive health in aquaculture settings can

improve fish growth rates, feed efficiency, and disease resistance.

Furthermore, understanding the role of the fish gut in nutrient

cycling within aquatic ecosystems is vital for managing and

conserving wild fish populations. By addressing these gaps and

adopting a holistic approach that considers the diverse factors

influencing digestive physiology, researchers can contribute to

developing sustainable aquaculture practices and conserving wild fish

populations. The integration of emerging technologies and

collaboration across disciplines will be instrumental in advancing our

knowledge of this complex and vital aspect of fish biology.
Frontiers in Marine Science 06
3.1 Overview of probiotics, prebiotics, and
synbiotics: advantages in the context of
fish farming

Probiotics are live microorganisms that confer health benefits to

the host when administered in adequate amounts (Fuller, 1989;

FAO/WHO, 2001; FAO, 2011; Ferreira, 2014; Newaj-Fyzul et al.,

2014; Jesus et al., 2016; FAO, 2016). In the case of fish, these

microorganisms are usually bacteria or yeast strains that promote a

balanced and beneficial microbial community in the fish gut

(Nayak, 2010; Iribarren et al., 2012; Ferreira, 2014; Newaj-Fyzul

et al., 2014). The gut microbiota plays a crucial role in nutrient

absorption, immune system regulation, and overall health

(Figures 1–3). Probiotics for fish farming are commonly chosen

from Lactic acid bacteria (LAB) such as Lactobacillus and Bacillus

species (Balcázar et al., 2006; Dotta et al., 2011; Ferreira, 2014;

Torres, 2014; Paixão et al., 2017; Yu et al., 2017; Zhai et al., 2017;

Didinen et al., 2018; Amenyogbe et al., 2021; Amenyogbe et al.,

2022a; Amenyogbe et al., 2022b; Amenyogbe et al., 2022c).

Probiotics are recognized for their capacity to produce beneficial

enzymes that aid in digestion and protect the gastrointestinal tract

(GIT) (Sumon et al., 2018). The proper use of probiotics can

enhance the balance of intestinal microorganisms, leading to

improved activity of digestive enzymes, enhanced food

absorption, and reduced pathogenic issues in the GIT (Figure 3)

(Balcazar et al., 2007; Dotta et al., 2011; Muñoz-Atienza et al., 2013;

Ferreira, 2014; Torres, 2014; Azevedo et al., 2016; Paixão et al., 2017;

Yu et al., 2017; Zhai et al., 2017; Didinen et al., 2018; Linh et al.,

2018; Chen et al., 2019; Amenyogbe et al., 2021; Ringø et al., 2022;

Amenyogbe et al., 2022a). Scientists suggest that a key way

probiotics benefit organisms in cultivation is by enhancing their

nutrition through the generation of extra digestive enzymes. This

leads to improved feed efficiency, accelerated growth, and the

mitigation of intestinal disorders and antinutritional factors

(Verschuere et al., 2000; Suzer et al., 2008). Following transit

through the stomach, probiotics multiply within the intestine and

utilize diverse carbohydrates to support their growth, while also

producing vital digestive enzymes including lipase amylase, and

protease (Suzer et al., 2008), by adding additional enzymes to those

naturally produced by the host, the overall levels of digestive

enzymes in the host’s gut are increased.

Amylases are enzymes that break down starch into smaller

carbohydrates like glucose, maltose, and maltotriose, making them

available for absorption by the host (Mardani et al., 2018). These

enzymes are found throughout the intestinal tract of fish, with their

activity varying depending on the fish species. Research indicates

that the modulation of amylase activity is influenced by the type of

food and supplements, as well as the administration of probiotics

(Murashita et al., 2018). Studies have shown that dietary

supplementation with probiotics, such as PrimaLac®, can

significantly increase (5.45% compared to the control) amylase

activity in Caspian white fish (Rutilus frisii kutum), leading to

improved feed utilization and growth performance (Mirghaed et al.,

2018). Probiotics, whether used individually or in conjunction with

other bacterial strains, have been shown to increase the levels of
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amylase activity in various types of fish. For example, tilapia

(Oreochromis niloticus) fed with a diet supplemented with B.

subtilis HAINUP40 exhibited significantly higher (185.71%)

amylase activity in the digestive tract (Liu H. et al., 2017). Similar

positive effects on amylase activity and growth were reported in

catfish and shrimp when supplemented with specific probiotics. The

positive impact of probiotics on amylase activity extends to various
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fish species, including Nile tilapia (16.46%, 44.02%, and 37.03%

respectively when fed with supplemented with Bacillus subtilis

NIOFSD017, Lactobacillus plantarum NIOFSD018, and S.

cerevisiae) (Essa et al., 2010), catfish (Clarias sp.) (63.64%

increased when supplemented with Bacillus megaterium PTB 1.4)

(Afrilasari and Meryandini, 2016), shrimp (about 44.74% increase

when fed with supplanted B. subtilis) (Wang, 2007). Additionally,
FIGURE 1

The mechanism by which probiotics, prebiotics and synbiotics act in the guts of host animals. Probiotics, Prebiotics, and Synbiotics plays a crucial
role in nutrient absorption, immune system regulation, decreased oxidative stress and overall health, indicating that these microorganisms may have
a significant protective effect via enhancing enzymatic and non-enzymatic antioxidant ability, non-specific immune response and reduced oxidative
stress effect (Heshmati et al., 2018; Lin et al., 2019; Hosain and Liangyi, 2020; Rohani et al., 2021; Mounir et al., 2022). Note: The arrow indicates the
various functions of probiotics, prebiotics and synbiotics in protecting aquatic species especially fish.
FIGURE 2

Method of exploit of probiotics, prebiotics and synbiotics. Probiotics function through various mechanisms to benefit fish, such as promoting growth
and appetite, optimizing feed conversion through the secretion of microbial enzymes for digestion, enhancing the nutritional value of feed by
augmenting both macro and micronutrient absorption, boosting stress resilience, and bolstering overall health by activating the fish’s immune
response and enrichment of overall vigor (Wuertz et al., 2021).
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the use of specific probiotics like Bacillus amyloliquefaciens, B.

cereus, and B. subtilis has been associated with substantial

increases (approximately 170.00%, 265.00%, and 62.50%) in

amylase activity in catfish. In prawn Macrobrachium rosenbergii,

the supplementation of Clostridium butyricum in the diet led to a

significant increase (55.56%) in digestive amylase activities (Sumon

et al., 2018).

Furthermore, a combination of photosynthetic bacteria and

Bacillus sp. was found to enhance (approximately 44.74%) amylase

activity in shrimp (Penaeus vannamei). Probiotic supplementation in a

study by Sankar et al. (2017), using Micrococcus MCCB 104 and

BacillusMCCB 101, was linked to increased (approximately 9.41% and

61.18% correspondingly) intestinal amylase in Mozambique tilapia

(Oreochromis mossambicus). Carnivorous fish, specifically snakehead

(Channa striata) fingerlings, showed higher amylase specific activities

when fed with Lactobacillus acidophilus-supplemented diets compared

to prebiotic-supplemented diets (Munir et al., 2016). Interestingly,

there were instances where amylase activities increased in fish infected

with Aphanomyces invadans when fed with Saccharomyces cerevisiae

(Devi et al., 2019). European seabass (Dicentrarchus labrax) also

exhibited increased amylase activities when fed with a diet

containing Bacillus subtilis, Lactococcus lactis, and Saccharomyces

cerevisiae (Tovar et al., 2002). However, the supplementation of

Debaryomyces hansenii CBS 8339 led to a reduction in amylase

activity in European seabass compared to the control diet (Tovar-

Ramıŕez et al., 2004). These findings collectively highlight the

significant role of various factors, including probiotics and specific

bacteria, in modulating amylase activity and influencing the digestive

performance of different fish species.

The significance of proteases in digestion lies in their ability to

break down protein in food by hydrolyzing peptide bonds, releasing
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essential amino acids for the body (Naidu, 2011). The addition of

probiotics has been demonstrated to boost the digestibility of proteins

in fish, leading to enhanced performance in those fed with probiotic-

included diets (Allameh et al., 2017). Studies have reported increased

protease activity in various fish species when fed diets supplemented

with specific probiotics. For instance, Wang (2007) found a

significant 78.38% increase in the protease activity of shrimp

(Penaeus vannamei) when fed a diet supplemented with Bacillus

sp. compared to the control. Similarly, Wang (2011) observed an

18.18% increase in protease activity in grass carp (Ctenopharyngodon

idella) when supplemented with Bacillus coagulans. Essa et al. (2010)

documented elevated digestive protease activity in Nile tilapia fed

probiotics Lactobacillus plantarum NIOFSD018 (76.92% increase)

and Bacillus subtilis NIOFSD017 (73.08% increase). Bacillus

megaterium PTB 1.4 was reported to boost catfish protease activity

by 245.00% (Afrilasari and Meryandini, 2016), and Mirghaed et al.

(2018) observed a similar effect in Caspian white fish with

PrimaLac® supplementation.

In Nile tilapia, Liu H. et al. (2017) noted a 133.33% rise in protease

activity within the digestive tract following an 8-week regimen of a diet

enriched with B. subtilis HAINUP40. Prawn (Macrobrachium

rosenbergii) juveniles treated with the probiotic Clostridium

butyricum demonstrated an 86.67% increase in digestive protease

activity compared to control groups (Sumon et al., 2018).

Similarly, Wang and Xu (2006) observed heightened digestive

protease activities in C. carpio juveniles upon supplementation

with a Bacillus sp. probiotic diet. Experiments conducted by

Zhou et al. (2009) revealed that the probiotic B. coagulans SC8168,

when introduced as a water additive, significantly elevated

protease activities in shrimp larvae. B. subtilis consistently elicited

increased digestive protease activity in shrimp, as evidenced by
FIGURE 3

Nutrition- and growth-related effects (modes of action) of probiotics in the gastrointestinal tract (GIT). Probiotics exert various effects within the
gastrointestinal tract (GIT) that influence nutrition and growth. These effects encompass direct actions, such as the release of digestive enzymes and
the facilitation of (micro) nutrient absorption, including cofactors, vitamins, and polyunsaturated fatty acids. Additionally, probiotics indirectly
enhance nutrient uptake and absorption while stimulating enzyme secretion. Furthermore, they contribute to neuroendocrine modulation,
promoting appetite and fostering growth (Wuertz et al., 2021).
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studies from Liu et al. (2009), Wang (2007), and Zokaeifar et al.

(2012). Reda et al. (2018) noted a significant enhancement in protease

activity in Clarias gariepinus when their diets were enriched with

native strains of B. amyloliquefaciens, B. cereus, and B. subtilis. In

contrast, Wang et al. (2015) documented a decrease of 0.78% in

protease activity in sea cucumber (Apostichopus japonicus) following

treatment with probiotic Rhodotorula benthica D30.

Lipases play a crucial role in catalyzing various biochemical

reactions, including the hydrolysis of triglycerides into glycerol and

free fatty acids, as well as the hydrolysis, transesterification, and

synthesis of esters (Thakur, 2012). These enzymes exhibit

enantioselective properties. Widely distributed in bacteria, plant,

and animal tissues, lipases are renowned for their involvement in fat

digestion in the small intestine, acting as a class of digestive enzymes

(Bruno, 2010). Numerous studies have explored the impact of

probiotics on the lipase activity of various fish species. For

instance, Tovar-Ramıŕez et al. (2004) investigated the modulation

of digestive enzymes in European sea bass larvae using the live yeast

Debaryomyces hansenii, observing increased survival, growth

parameters, and a substantial rise in lipase activity (approximately

833.33% higher than the control). In juvenile C. carpio, Yanbo et al.

(2006) observed a notable increase in lipase activity after the

application of Bacillus sp. Likewise, the incorporation of

Lactobacillus spp. into the diet of gilthead sea bream larvae

resulted in elevated lipase activity, approximately 1.69% higher

than the control group (Suzer et al., 2008). Additionally, in

shrimp larvae, the presence of B. coagulans SC8168 not only

provided various benefits but also led to a significant increase in

lipase activity, approximately 20.00% higher (Zhou et al., 2009).

In addition, Sankar and colleagues (2017) observed elevated

levels of intestinal lipase enzymes in O. mossambicus following

dietary supplementation with Micrococcus MCCB 104 and Bacillus

MCCB 101, showing approximately a 26.32% and 7.02% increase,

respectively. Similarly, Wang (2011) demonstrated a significant

enhancement in lipase activity in Labeo rohita when the diet was

enriched with Bacillus coagulans. Furthermore, Essa et al. (2010)

documented increased digestive lipase activity in Nile tilapia after

administration of the probiotics Bacillus subtilis NIOFSD017 and

Lactobacillus plantarum NIOFSD018. Additionally, Wu et al.

(2012) observed a substantial increase (approximately 65.22%) in

lipase activity in grass carp (Ctenopharyngodon idella) following

dietary administration of Bacillus subtilis compared to the control

treatment. In summary, probiotics exhibit positive effects on the

activity of digestive enzymes, including amylases, proteases, and

lipases, in cultured fish. Fish are poikilothermic animals, meaning

their body temperature fluctuates with the environment (Frick et al.,

2018). Optimal digestive function is critical for their metabolic

processes, especially in varied environmental conditions. These

effects contribute to enhanced nutrient absorption, feed efficiency,

and overall growth performance. However, outcomes may vary

depending on the specific probiotic strains and fish species

involved. A healthy gut microbiota contributes to optimal growth

performance in fish. Probiotics have been shown to mitigate the

adverse effects of stress on fish by promoting a stable gut

environment (Amenyogbe et al., 2022c). A balanced microbial
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community in the fish gut can contribute to the breakdown of

organic matter, helping to maintain good water quality in

aquaculture systems. In fact, using probiotics, in fish farming is a

promising strategy to enhance the health and productivity of farmed

fish (Amenyogbe, 2023). It involves manipulating the gut

microbiota to create a favorable environment that supports the

well-being of the fish and minimizes the risk of diseases. Probiotics

can produce substances like organic acids, bacteriocins, and

hydrogen peroxide, inhibiting harmful bacteria growth (Tremaroli

and Bäckhed, 2012; Falcinelli et al., 2018; Liu et al., 2021). Probiotics

can improve nutrient absorption by enhancing the intestinal

mucosa’s surface area (Figure 1) (Heshmati et al., 2018; Lin et al.,

2019; Hosain and Liangyi, 2020; Rohani et al., 2021; Mounir et al.,

2022). The choice of probiotic strains is critical and should be

species-specific. Strains should be resistant to environmental

stressors, bile salts, and gastric acid to survive the passage

through the digestive tract (Amenyogbe et al . , 2021).

Encapsulation of probiotics in feed helps protect them from

environmental conditions, ensuring their viability until they reach

the intestines (Simo´n et al., 2021). Studies have shown that fish

supplemented with probiotics exhibit improved growth rates, feed

conversion efficiency, and biomass production (Table 1) (Panigrahi

and Azad, 2007; Muñoz-Atienza et al., 2013; Chen et al., 2019;

Assan et al., 2022). Probiotics contribute to enhanced nutrient

utilization, leading to better growth outcomes. Probiotics bolster

the immune system by stimulating the production of immune-

related molecules (Zapata and Lara-Flores, 2012; Xu et al., 2013;

Amenyogbe et al., 2020; Amenyogbe, 2023). Probiotics can

contribute to the sustainability of aquaculture by reducing the

need for antibiotics and other chemical treatments (Amenyogbe

et al., 2021). Challenges include the need for strain-specific research,

optimizing delivery methods, and understanding the interactions

between probiotics and the fish microbiome (Amenyogbe, 2023).

The use of probiotics in fish digestive health is a promising avenue

in aquaculture. Through their diverse mechanisms of action,

probiotics contribute to improved digestion and growth, disease

prevention, and environmental sustainability. Continued research

will provide further insights into probiotics’ specific applications

and benefits in different fish species and aquaculture systems. As

research in this field continues (Supplementary 4), further insights

into specific strains, dosages, and application methods will likely

lead to more efficient and sustainable aquaculture practices.

Prebiotics, on the other hand, are non-digestible compounds that

stimulate the growth and activity of beneficial microorganisms, such as

probiotics, in the gastrointestinal tract. In fish farming, prebiotics are

often carbohydrates like oligosaccharides and fructooligosaccharides

(Assan et al., 2022). Over the last three decades, the conventional use of

antibiotics in aquaculture has faced criticism due to concerns about the

emergence of antibiotic-resistant bacteria, the presence of antibiotic

residues in aquatic food, disruption of microbial ecosystems in

aquacultural environments, and the potential suppression of the

immune systems in aquatic animals (Ringø et al., 2010). As an

alternative approach to antibiotics, prebiotics have garnered

significant attention in the field of aquaculture. Ingredients rich in

dietary fiber, such as plant-based materials (cellulose, hemicellulose),
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can serve as prebiotics for fish. Fiber promotes the growth of fiber-

degrading bacteria in the gut, enhancing the overall microbial diversity.

Oligosaccharides, including fructooligosaccharides (FOS) and inulin,

are commonly used prebiotics in fish diets (Ganguly et al., 2013; Ringø

et al., 2014; Di Gioia and Biavati, 2018). These compounds resist

digestion in the upper gastrointestinal tract and reach the lower

intestine, where they selectively stimulate the growth of beneficial

bacteria (Ganguly et al., 2013; Ringø et al., 2014). Mannan-

Oligosaccharides (MOS), derived from yeast cell walls, have been

recognized for their prebiotic properties in fish (Song et al., 2014;

Akhter et al., 2015; Di Gioia and Biavati, 2018). They can bind to

pathogenic bacteria, preventing their attachment to the gut epithelium

and facilitating their removal from the digestive system.Mannan

oligosaccharides are structurally complex carbohydrates derived from

yeast cell walls, primarily composed of mannose (Mata-Sotres et al.,

2016). The addition of prebiotics, particularly mannan, to sturgeon

feeds emerges as a viable alternative for enhancing feed efficiency and

promoting sturgeon health (Pryor et al., 2003; Akrami et al., 2009). The

effects of mannan prebiotics have been extensively studied in various

aquatic species, including tilapia fingerlings (Hisano et al., 2007),

channel catfish (Welker et al., 2007), juvenile Nile tilapia (Sado et al.,

2008), rohu (Andrews et al., 2009), Japanese flounder (Ye et al., 2011),

and grass carp (Shaker Khoshroudi, 2011). These compounds serve as

a food source for beneficial bacteria, promoting their proliferation and

enhancing their positive effects on the host fish. By fostering the growth

of beneficial bacteria, prebiotics contribute to a more stable and

resilient gut microbiota in fish Assan et al., 2022). This, in turn, can

improve the fish’s overall health and disease resistance (Mata-Sotres

et al., 2016; Assan et al., 2022).

The role of prebiotics in fish digestive health is a subject of growing

interest in aquaculture research. Prebiotics are non-digestible

compounds that selectively promote the growth and activity of

beneficial microorganisms in the gastrointestinal tract, ultimately

improving the overall health and performance of the host organism

(Gatesoupe, 2010; Xu et al., 2022). In the context of fish, the digestive

system is a crucial aspect of their well-being, as it directly influences

nutrient absorption, disease resistance, and growth. In this study, we

explore the importance of prebiotics in fish digestive health, their

sources, mechanisms of action, and potential applications in

aquaculture. Fish require a balanced intake of proteins, fats,

carbohydrates, vitamins, and minerals for growth and development

(Roberfroid, 2007). Prebiotics play a crucial role in enhancing nutrient

absorption by promoting the growth of beneficial bacteria that aid

digestion and breakdown of complex nutrients (Hanley et al., 1995;

Geraylou et al., 2013). Polysaccharides, synonymous with prebiotics,

refer to non-digestible feed ingredients that stimulate the growth of

beneficial microbiota in the gastrointestinal tract (Song et al., 2014).

Numerous studies in aquaculture have illustrated this phenomenon.

For instance, Astragalus polysaccharides were shown to enhance the

activity of digestive enzymes in O. niloticus (Yu et al., 2022). Similarly,

Sparus aurata exhibited increased digestive enzyme activity when fed

fructooligosaccharides (Guerreiro et al., 2016). In the case of Channa

striata, feeding with b-glucan, galactose-oligosaccharide, and

mannaoligosaccharide demonstrated a similar positive effect (Munir

et al., 2018). Additionally, Diplodus sargus displayed improved

digestive enzyme activity when fed a diet supplemented with
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xylooligosaccharides, small chain fructooligosaccharides, and

galactoseoligosaccharides, respectively (Guerreiro et al., 2016).

A well-balanced microbial community helps in preventing the

colonization of harmful pathogens (Landers et al., 2012; Tzivara

et al., 2013; Amenyogbe et al., 2021; Amenyogbe et al., 2022c).

Aquaculture environments can expose fish to various stressors, such

as water quality, handling, or transportation changes (Hoseinifar

et al., 2010; Daniels and Hoseinifar, 2014). Stress can negatively

impact the digestive system. Prebiotics have been shown to mitigate

the effects of stress on fish by stabilizing the gut microbiota and

promoting the production of bioactive compounds that positively

influence stress response (Gatesoupe, 2010; Di Gioia and Biavati,

2018; Xu et al., 2022). The selective stimulation of prebiotics helps

in maintaining a balanced microbial community, contributing to a

healthier gut environment (Gatesoupe, 2010; Xu et al., 2022).

Prebiotics promote competitive exclusion by providing a substrate

for beneficial bacteria to outcompete pathogenic microorganisms

for resources and attachment sites in the gut (Xu et al., 2022).

Studies have demonstrated that the inclusion of prebiotics in

fish diets can lead to improved growth rates, feed conversion

efficiency, and overall performance (Hoseinifar et al., 2011a,

Hoseinifar et al., 2011b; Geraylou et al., 2013; Xu et al., 2022;

Gatesoupe, 2010; Ta’ati et al., 2011; Ringø et al., 2010; Mohajer

Esterabadi et al., 2010);. Prebiotics have shown promise in

preventing and controlling fish diseases by enhancing the

immune response and inhibiting the growth of pathogenic

bacteria. By improving nutrient utilization and reducing the

environmental impact of aquaculture operations, prebiotics

contribute to the sustainability of fish farming practices (Geraylou

et al., 2013; Xu et al., 2022).The effectiveness of prebiotics can vary

among fish species, highlighting the need for species-specific

research to optimize prebiotic supplementation in different

aquaculture systems. Determining the optimal dosage and

formulation of prebiotics in fish diets is a complex task, as it

depends on factors such as fish species, age, and environmental

conditions (Gatesoupe, 2010; Di Gioia and Biavati, 2018; Xu et al.,

2022). The interactions between prebiotics and other dietary

components need further exploration to ensure a balanced and

effective nutritional profile for fish.

As aquaculture continues to evolve, optimizing the use of

prebiotics offers a promising avenue for enhancing the sustainability

and productivity of fish farming operations. Further research in this

field will further refine our understanding of the specific requirements

for different fish species and contribute to developing tailored

aquaculture prebiotic strategies.

Synbiotics refer to the combination of probiotics and prebiotics,

creating a synergistic effect to enhance the health-promoting

benefits in the host organism (Mohapatra et al., 2013). In fish

farming, the use of synbiotics aims to maximize the colonization

and activity of probiotics in the gut by providing a suitable

nutritional environment through prebiotics. The combination of

probiotics and prebiotics can have several advantages, such as

improved survival rates of probiotics during storage and

transportation, increased adherence of probiotics to the gut

lining, and sustained activity of beneficial microorganisms in the

fish gastrointestinal tract.
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4 Interconnection of digestive
enzymes, oxidative stress, and
significance of antioxidant defense in
maintaining fish health

All aerobic organisms, including those in aquatic environments,

require molecular oxygen (O2) for essential metabolic processes and

energy production (Hoseinifar et al., 2021). However, the oxygen

dependence poses a risk of oxidative stress, creating a paradox

known as the ‘aerobic-life paradox’ or ‘oxygen paradox’ (Ahmad,

1995; Davies, 1995; Hoseinifar et al., 2021). Oxygen can exist in

atomic form (O), a free radical, a free bi-radical (Davies, 1995).

Reactive oxygen species (ROS) are generated during partial oxygen

reduction, with superoxide anion (O2
-), hydroxyl radical (OH), and

hydrogen peroxide (H2O2) being the most physiologically active

(Schieber and Chande, 2014; Halliwell and Gutteridge, 2015;

Hoseinifar et al., 2021).

Superoxide dismutase (SOD) eliminates superoxide by

converting it into oxygen and hydrogen peroxide. Hydroxyl

radicals have a short half-life and are highly reactive, causing

significant harm. Hydrogen peroxide, produced during O2

reduction, can be partially eliminated by enzymes like catalase

(CAT) and glutathione peroxidase (GPx) (Halliwell and

Gutteridge, 2015; Li et al., 2016; Hoseinifar et al., 2021). ROS,

produced through normal metabolism, play essential roles in

physiological functions, but excessive concentrations lead to

cellular damage, including lipid peroxidation, protein

modifications, and DNA alterations (Schieber and Chande, 2014;

Dong et al., 2017).

To maintain balance, organisms utilize antioxidant mechanisms

from endogenous and exogenous sources (Wang et al., 2013; Franco

and Martınez-Pinilla, 2017; Hoseinifar et al., 2021). Fish and

shellfish possess adapted enzymatic systems, including SOD,

CAT, and GPx, along with lower-molecular-weight antioxidants

such as vitamins like vitamin E, K and C, carotenoids, amino acids,

and peptides (Birnie-Gauvin et al., 2017; Prego-Faraldo et al., 2017;

Biller and Takahashi, 2018; Ji et al., 2018; Parolini et al., 2019;

Hoseinifar et al., 2021). The antioxidant system helps prevent or

repair oxidative stress effects (Li et al., 2016; Cao et al., 2019; Devi

et al., 2019; Parolini et al., 2019). Enzymes like SOD and CAT play

crucial roles in eliminating ROS, while non-enzymatic antioxidants

like vitamin C and vitamin E act as powerful scavengers and

reducers, contributing to the overall antioxidant defense system in

fish and shellfish (Narra et al., 2015; Cheng et al., 2018; Hossain

et al., 2018. The intricate balance between ROS formation and

elimination is crucial for maintaining cellular functions and

preventing oxidative stress-related damage.

Proper digestion ensures optimal nutrient absorption, providing

essential building blocks for antioxidant synthesis. Efficient lipid and

carbohydrate digestion contribute to energy production, which is

essential for antioxidant defense mechanisms. Environmental

stressors affecting digestion can contribute to oxidative stress.

Antioxidant defense helps mitigate the adverse effects of stress

(Halliwell and Gutteridge, 2015; Li et al., 2016; Yang et al., 2018;

Hoseinifar et al., 2021). Antioxidants play a role in immune function,
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aiding the defense against pathogens and reducing the likelihood of

oxidative damage during infections. The interplay between digestive

enzymes, oxidative stress, and antioxidant defense is intricate and vital

for fish health (Yang et al., 2018). A balanced diet, optimal digestion,

and a robust antioxidant defense system contribute to fish’s overall

well-being and resilience in both natural and aquaculture settings.
5 Evidence of prebiotics influencing
digestive enzyme activity in fish

The influence of prebiotics on digestive enzyme activity in fish

has been a subject of increasing interest in aquaculture research. In

the context of fish nutrition, understanding how prebiotics impact

digestive enzyme activity is crucial for optimizing feed formulations

and promoting efficient nutrient utilization. The gastrointestinal

tract of fish contains various enzymes such as proteases, lipases, and

carbohydrases, which are responsible for the digestion of proteins,

lipids, and carbohydrates, respectively (Assan et al., 2022).

Prebiotics, acting as substrates for beneficial gut bacteria, have

been shown to influence the gut environment and subsequently

impact the activity of these digestive enzymes (Ta’ati et al., 2011;

Hoseinifar et al., 2011a, Hoseinifar et al., 2011b; Geraylou et al.,

2013; Munir et al., 2016; Xu et al., 2022).

Prebiotics, often in the form of non-digestible carbohydrates like

fructooligosaccharides (FOS) and inulin, serve as substrates for

beneficial gut bacteria (Bartlett, 1937). Prebiotics contribute to the

maintenance of a balanced microbial community in the gut. A well-

balanced microbiota is essential for the production of certain

enzymes that aid in the digestion and absorption of nutrients

(Amenyogbe et al., 2022a, Amenyogbe et al., 2022b, Amenyogbe

et al., 2022c). The presence of beneficial bacteria can positively

influence the expression and activity of digestive enzymes through

complex interactions within the gut microbiome (Amenyogbe et al.,

2022a, Amenyogbe et al., 2022b, Amenyogbe et al., 2022c). Several

studies have provided evidence supporting the influence of prebiotics

on digestive enzyme activity in fish: Research conducted on various

fish species, including tilapia and rainbow trout, has shown that

dietary supplementation with prebiotics can enhance lipase activity in

the intestinal tract (Hoseinifar et al., 2011a; Mehrabi et al., 2012;

Geraylou et al., 2013; Munir et al., 2016; Xu et al., 2022; Rodriguez-

Estrada et al., 2009; Ta’ati et al., 2011). The increased lipase activity is

attributed to the modulation of gut microbiota and the production of

microbial metabolites that positively affect enzyme secretion. Studies

on carnivorous fish, such as salmon, have demonstrated that

prebiotic supplementation can influence protease activity in the

stomach and intestine (Jeney and Jeney, 2002; Mahious et al., 2006;

Aly et al., 2008; Rodriguez-Estrada et al., 2009; Mohajer Esterabadi

et al., 2010; Ai et al., 2011; Geng et al., 2011; Ta’ati et al., 2011; Ye

et al., 2011; Hoseinifar et al., 2011a, Hoseinifar et al., 2011b; Mehrabi

et al., 2012; Abid et al., 2013; Cerezuela et al., 2013; Munir et al.,

2016). The stimulation of protease activity is often associated with

changes in the gut microbiota composition and the release of

microbial enzymes (Munir et al., 2016). Prebiotics, particularly

those with a carbohydrate-based structure, have been linked to
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enhanced carbohydrase activity in fish. This effect is often observed in

herbivorous and omnivorous species (Abdel-Tawwab et al., 2008;

Munir et al., 2016). Improved carbohydrase activity is thought to

result from the fermentation of prebiotics, leading to the production

of SCFAs that stimulate the secretion of digestive enzymes (Dhanasiri

et al., 2023).

Understanding the impact of prebiotics on digestive enzyme

activity in fish has practical implications for aquaculture. Enhanced

digestive enzyme activity in farmed fish, facilitated by prebiotics, can

improve nutrient utilization, leading to better growth and feed

conversion ratios while promoting a balanced gut microbiota and

disease resistance. This contributes to sustainable aquaculture by

reducing nutrient excretion into the water. Prebiotics influence

enzyme activity through microbial fermentation and gut microbiota

modulation, offering potential for optimized diets to enhance growth,

disease resistance, and environmental sustainability in aquaculture.

Further research is required to refine recommendations for different

fish species.
6 Probiotics and synbiotics effects on
digestive enzymes in fish

Probiotics are commonly associated with promoting gut health

by modulating the composition and function of the gut microbiota

(Yanbo et al., 2006; Sumon et al., 2018). Probiotics can influence

digestive enzymes through various mechanisms (Verschuere et al.,

2000; Suzer et al., 2008; Assan et al., 2022). Probiotic strains such as

Lactobacillus and Bifidobacterium can enhance lactase activity.

Lactase is the enzyme responsible for breaking down lactose, the

sugar found in milk (Mardani et al., 2018). Increased lactase activity

can be beneficial for individuals with lactose intolerance, allowing

for better digestion of dairy products. Some probiotics produce

proteases, enzymes that break down proteins (Naidu, 2011). These

proteases may complement the host’s digestive enzymes, aiding in

the breakdown of dietary proteins into smaller peptides and amino

acids (Afrilasari and Meryandini, 2016; Allameh et al., 2017;

Mirghaed et al., 2018). Probiotics may influence amylase activity,

which is responsible for breaking down carbohydrates into simpler

sugars (Murashita et al., 2015; Mardani et al., 2018; Murashita et al.,

2018). By modulating carbohydrate metabolism, probiotics can

impact the availability of nutrients for both the host and the gut

microbiota. Probiotics, such as certain strains of Lactobacillus and

Bifidobacterium, may possess bile salt hydrolase activity (Liu H.

et al., 2017). This enzyme plays a role in bile salt metabolism and

can impact the digestion and absorption of dietary fats.

While prebiotics are not enzymes themselves, prebiotics

indirectly influence digestive enzymes through their effects on the

gut microbiota SCFAs, can influence the activity of various digestive

enzymes, including amylases and proteases (Akrami et al., 2015).

The fermentation of prebiotics by gut bacteria can alter the pH of

the gut environment (Ganguly et al., 2013; Hoseinifar et al., 2014;

Song et al., 2014; Dawood and Koshio, 2016). Changes in pH can

influence the activity of digestive enzymes, creating an environment
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et al., 2014; Feckaninova et al., 2017; Ringø et al., 2018).

The interaction between probiotics and prebiotics can

profoundly impact digestive enzymes; Prebiotics can serve as a

source of energy for probiotics, promoting their growth and survival

in the gut (Dawood and Koshio, 2016). This can enhance the overall

impact of probiotics on digestive enzyme activities. Synbiotics work

together to stimulate the growth of beneficial bacteria selectively

(Dawood and Koshio, 2016). This selective stimulation can

influence the overall balance of the gut microbiota, potentially

affecting the production and activity of various digestive enzymes.

Probiotics, prebiotics, and synbiotics can exert a multifaceted

influence on digestive enzymes (Ganguly et al., 2013; Hoseinifar

et al., 2014; Song et al., 2014; Dehaghani et al., 2015; Dawood and

Koshio, 2016). These interactions contribute to the overall

maintenance of gut health and highlight the intricate relationship

between the microbiota and host digestive processes. The field of

research in this area continues to evolve, providing deeper insights

into the specific mechanisms by which these components modulate

digestive enzyme activities.

Different fish species have unique digestive systems and

nutritional requirements. Tailoring synbiotic formulations to

specific species ensures optimal results. Synbiotics contribute to

maintaining a healthy microbial balance in the gut and surrounding

water, thus positively influencing overall water quality (Di Gioia

and Biavati, 2018). Identifying the most effective probiotic strains

for different fish species remains a challenge. Continued research is

needed to understand the specific requirements of diverse aquatic

organisms. Various environmental factors, such as temperature and

water quality, influence aquaculture systems. Future developments

in synbiotic applications should consider these factors for consistent

and reliable outcomes. Synbiotics represent a promising avenue for

promoting digestive health in fish. By combining the strengths of

probiotics and prebiotics, aquaculturists can optimize the gut

microbiota, leading to improved nutrient utilization, growth, and

overall resilience against diseases. Further research and

development in this field will uncover new insights and refine the

application of synbiotics in the dynamic context of fish farming.
7 Probiotics, prebiotics, and synbiotics
impact on oxidative stress in fish

Studies have shown that probiotics can positively influence the

antioxidant defense system in fish (Van Doan et al., 2020; Hoseinifar

et al., 2021). These microorganisms can enhance the activity of

antioxidant enzymes like superoxide dismutase (SOD), catalase

(CAT), and glutathione peroxidase (GPx) (Supplementary Table 1;

Figure 1) (Lin et al., 2019; Hosain and Liangyi, 2020; Hoseinifar et al.,

2021; Rohani et al., 2021; Mounir et al., 2022; Abdel-Latif et al., 2023;

Wang C. et al., 2019; Dawood et al., 2018; Heshmati et al., 2018). By

doing so, probiotics contribute to the elimination of reactive oxygen

species (ROS) and reduce oxidative stress in fish tissues (Dawood

et al., 2018; Ringø et al., 2018; Hoseinifar et al., 2021). Additionally,

probiotics may help maintain the balance of gut microbiota,
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promoting a healthy gut environment. A well-balanced gut

microbiota is crucial for the absorption of nutrients and can

indirectly impact the antioxidant status of the fish. Prebiotics

indirectly affect oxidative stress by supporting the growth of

probiotics (Dawood et al., 2018; Abdel-Latif et al., 2023). By

providing a favorable environment for beneficial bacteria in the

gut, prebiotics contribute to the maintenance of a healthy gut

microbiota. This, in turn, helps in the prevention of oxidative stress

by ensuring optimal nutrient absorption and gut function.

The combination of probiotics and prebiotics in synbiotics

often results in enhanced effects on oxidative stress compared to

individual administration (Supplementary Table 2) (Hoseinifar

et al., 2021; Mohammadi et al., 2021; Puvanasundram et al., 2021;

Wang C. et al., 2019; Dawood et al., 2018; Ringø et al., 2018).

Synbiotics can promote the survival and activity of probiotics in the

gut, creating a more resilient and diverse microbial community (Lin

and Yen, 1999). This enhanced gut health can lead to improved

antioxidant defense mechanisms and a reduced risk of oxidative

stress in fish (Dawood et al., 2018; Ringø et al., 2018; Hoseinifar

et al., 2021; Abdel-Latif et al., 2023).

Different strains of probiotics may have varying effects on oxidative

stress (Dawood et al., 2018; Ringø et al., 2018). Understanding the

specific strains and their interactions is crucial for designing effective

probiotic formulations. The efficacy of probiotics, prebiotics, and

synbiotics in mitigating oxidative stress can be influenced by the

dosage and duration of administration (Ahire et al., 2013). Optimal

levels need to be determined through careful experimentation.

Responses to probiotics and prebiotics can vary among fish species

(Ringø et al., 2016; Dawood et al., 2016a; Li et al., 2019; VanDoan et al.,

2020). Research should consider the specific requirements and

characteristics of the target species. Water quality, temperature, and

other environmental factors can influence the effectiveness of these

supplements. A holistic approach that considers both biological and

environmental factors is essential. Probiotics, prebiotics, and synbiotics

play pivotal roles in influencing oxidative stress in fish through their

effects on gut health and the antioxidant defense system

(Supplementary Table 2). Ongoing research in this field is vital for

optimizing formulations and application strategies to enhance the

health and well-being of cultured fish species.
8 The relationship between probiotics,
prebiotics, synbiotics, and antioxidant
defenses in fish

The relationship between probiotics, prebiotics, synbiotics, and

antioxidant defenses in fish is a complex and fascinating area of

research. In this review, we broke down each component and

discussed their roles in enhancing antioxidant defenses in fish.

Several studies suggest that probiotics positively influence

antioxidant defenses in fish through various mechanisms

(Supplementary Tables 1–3) (Wang C. et al., 2019; Dawood et al.,

2018; Gobi et al., 2018; Yi et al., 2018). Probiotics have been shown

to possess free radical scavenging abilities, helping to neutralize

reactive oxygen species (ROS) in fish (Hussain et al., 2003;
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Brzozowski et al., 2006; Gomez-Guzman et al., 2015; Trinder

et al., 2015; Salem et al., 2018). This reduces oxidative stress, a

critical factor in cellular damage. The immune system and

antioxidant defenses are closely linked. Probiotics can modulate

the immune response in fish, leading to a more efficient defense

against oxidative stress.

The connection between prebiotics and antioxidant defenses in

fish can be understood through the following points; by promoting

the growth of beneficial gut bacteria, prebiotics indirectly contribute

to antioxidant defenses (Gibson, 2004; Guerreiro et al., 2016). The

enhanced microbial activity can lead to the production of bioactive

compounds that have antioxidant properties (Hoseinifar et al.,

2017a, b). Prebiotics often exhibit anti-inflammatory effects,

which can reduce oxidative stress (Gibson, 2004; Zhang et al.,

2014; Guerreiro et al., 2016). Inflammation is closely linked to the

generation of free radicals, and by mitigating inflammation,

prebiotics contribute to improved antioxidant status.

Synbiotics refer to a combination of probiotics and prebiotics,

where prebiotics serve as the fuel for probiotic microorganisms

(Huynh et al., 2017; Abdel-Latif et al., 2023; Hoseinifar et al., 2015a,

b). The synergistic effects of probiotics and prebiotics provide

additional advantages for antioxidant defenses in fish; Prebiotics

act as a substrate for probiotics, promoting their growth and

survival in the gut (Rurangwa et al., 2009; Zhang et al., 2013;

Llewellyn et al., 2014). This ensures a sustained and effective

presence of probiotics, leading to prolonged antioxidant benefits.

The combination of probiotics and prebiotics often results in a

more comprehensive approach to enhancing antioxidant defenses

(Kumar et al., 2018; Devi et al., 2019; Ashouri et al., 2020; Abdel-

Latif et al., 2023; Hoseinifar et al., 2017a, b; Zhang et al., 2014). This

can include both direct antioxidant activity and indirect effects

through modulation of the gut microbiota and immune system

(Kumar et al., 2018; Devi et al., 2019; Ashouri et al., 2020).

In fact, probiotics, prebiotics, and synbiotics play pivotal roles

in enhancing antioxidant defenses in fish through various

mechanisms. These include direct scavenging of free radicals,

stimulating antioxidant enzyme production, modulation of

immune responses, and promoting beneficial gut microbiota.

Integrating these components in aquaculture practices holds

promise for improving fish’s overall health and stress resistance,

contributing to sustainable and efficient aquaculture systems.

However, it is important to note that the specific effects can vary

depending on the fish species, environmental conditions, and the

particular strains of probiotics used. Ongoing research in this field

will likely provide more insights and refine the application of these

strategies in aquaculture.
9 Factors such as fish species, diet,
environmental conditions, and dosage
affect the efficacy of probiotics,
prebiotics, and synbiotics

The efficacy of probiotics, prebiotics, and synbiotics in

aquaculture is influenced by a variety of factors, including fish
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species, diet, environmental conditions, and dosage (Cerezuela

et al., 2013; Zoumpopoulou et al., 2018; Cavalcante et al., 2020).

The activity of digestive enzymes like amylase, protease, and lipase

in fish is influenced by factors such as fish species, age, dietary

enzymes, and food habits (Falc´on-Hidalgo et al., 2011; Assan et al.,

2022). Host-produced digestive enzymes are regulated in response

to nutrient intake (Gisbert et al., 2018). For example, feeding

rainbow trout (Oncorhynchus mykiss) diets deficient in fish oil led

to decreased lipase activity (Ducasse-Cabanot et al., 2007). High-

protein diets activated trypsin and chymotrypsin activity in rainbow

trout (Rungruangsak-Torrissen et al., 2009), while red seabream

(Pagrus major) on soybean meal diets exhibited decreased

hepatopancreatic enzymes and protease activity compared to

fishmeal-based diets (Murashita et al., 2018). This difference in

digestive enzyme activities may be attributed to antinutritional

factors in soybean, not necessarily reduced nutrient intake

(Yasothai, 2016; Assan et al., 2022).

A comparative study of amylase and proteolytic activities in six

fish species revealed that omnivorous species, like gilthead

seabream, had higher amylase activity, whereas carnivorous

species exhibited greater proteolytic enzyme activity (Hidalgo

et al., 1999). In larval Yellow catfish (Pelteobagrus fulvidraco),

pepsin and trypsin activity increased initially and then decreased

with age (Wang et al., 2006). Older abalone (Haliotis laevigata)

showed a decrease in trypsin and amylase activity compared to

younger ones (Bansemer et al., 2016), indicating age-dependent

variations in digestive enzyme activity (Infante and Cahu, 2001).

Stocking density also indirectly affects digestive enzyme activity;

higher density results in decreased lipase, amylase, and trypsin

activities in fish and shrimp (Liu G. et al., 2017; Dong et al., 2018;

Liu et al., 2018), likely due to reduced appetite and stress. Intestinal

brush border enzyme development, seasonal changes, diet

variations, probiotic supplementation, and rearing environment

impact gastrointestinal microbial communities, with unfavorable

conditions leading to stress, decreased appetite, and subsequently

lower digestive enzyme activity. Rearing temperature influences

digestive enzymes, with decreased activity observed at lower

temperatures (Bansemer et al., 2016). It is crucial to consider

these factors in dietary formulation for fish, as decreased digestive

capacity can lead to reduced growth (Iqbal et al., 2016; Zeng et al.,

2016). Despite the positive effects of probiotics in modulating

digestive enzyme activities, careful consideration of the

mentioned factors is necessary for optimizing probiotics’ digestive

enzyme modulation capacity.

In the realm of digestive enzymes, beyond the primary

categories like amylase, protease, and lipase, there are noteworthy

subclasses such as cellulase (related to amylase) and alginase, both

influenced by probiotics. These enzymes hold significance,

particularly for omnivorous and herbivorous fish, which

predominantly consume plants containing cellulose and algin.

Some fish species lack the synthesis of cellulase and alginase or

produce them in insufficient quantities , necessitating

supplementation (Clements, 1997; Assan et al., 2022).

While literature on the modulation of alginase by probiotics is

limited, available studies confirm increased alginase activities in

South African abalone (Haliotis midae) (approximately 58.33%)
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(ten Doeschate and Coyne, 2008) and juvenile sea cucumber

(Apostichopus japonicus) (97.47%) (Wang et al., 2015) associated

with probiotic diet supplementation. Other research indicates the

production of alginase by probiotic bacteria (Huddy and Coyne,

2014; Escamilla-Montes et al., 2015).

It is noteworthy that some fish generally lack cellulose due to its

plant origin, and the presence of cellulase enzymes in fish intestines

is likely a result of ingested microbial flora. Inclusion of probiotic

bacteria in fish diet becomes essential for cellulase activity.

Although cellulose is strictly derived from plants, herbivorous fish

exhibit a higher population of cellulase-producing bacterial strains

due to the presence of microbial flora in their digestive tracts (Kar

and Ghosh, 2008). Yet, only a few studies have touched upon the

modulation of cellulase in fish concerning probiotic activities. For

instance, Bairagi et al. (2004) reported exogenous and extracellular

digestive cellulose production by certain Bacillus spp. strains in

rohu (Labeo rohita) fingerl ings . S imi lar ly , probiot ic

supplementation was found to elevate the activities of digestive

cellulase enzymes in Mori (Cirrhinus mrigala) and shrimp (Penaeus

vannamei) (Ullah et al., 2018). Table 1 provides a summary of the

source, dose, and duration of probiotics used to modulate digestive

enzymes in cultured fish.

Different fish species have varying physiological and

immunological characteristics. Therefore, the response to

probiotics, prebiotics, and synbiotics can be species-specific

(Ringø and Song, 2016; Huynh et al., 2017). The microbial

communities in the gut, which interact with these supplements,

may vary among species. Understanding the specific requirements

of the target species is crucial for the successful application of these

supplements (Dawood and Koshio, 2016; Huynh et al., 2017;

Cavalcante et al., 2020). The fish diet plays a significant role in

the efficacy of probiotics, prebiotics, and synbiotics. The

composition and nutritional content of the feed can impact the

survival and proliferation of beneficial microorganisms (Akhter

et al., 2015). Some probiotics may require specific nutrients for

growth, and prebiotics can serve as a substrate for beneficial

bacteria. The diet’s balance between probiotics and prebiotics is

essential for optimal performance.

Environmental factors, such as water quality, temperature, and

salinity, influence the gut microbiota of fish (Hura et al., 2018;

Hlordzi et al., 2020; Amenyogbe et al., 2021). Probiotics and

prebiotics may be sensitive to environmental conditions, affecting

their viability and functionality (Kuebutornye et al., 2019). High

temperatures or abrupt changes in water quality can stress fish,

compromising their immune system and making them more

susceptible to diseases (Hoseinifar et al., 2018; Ringø et al., 2018;

Kuebutornye et al., 2019; Hlordzi et al., 2020; Van Doan et al.,

2020). Therefore, maintaining stable and suitable environmental

conditions is crucial for the effectiveness of these supplements. The

dosage and method of administration significantly impact the

efficacy of probiotics, prebiotics, and synbiotics (Cerezuela et al.,

2013; Kumar et al., 2018; Zoumpopoulou et al., 2018; Cavalcante

et al., 2020). The optimal dosage can vary based on factors like fish

size, age, and health status. Overdosing may lead to competition

among microorganisms for resources, while underdosing may not

provide the desired benefits. The method of administration,
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whether through the feed or water, also affects the contact time

between the supplements and the gut microbiota.

Interaction with other feed additives, such as antibiotics or

immunostimulants, can influence the efficacy of probiotics,

prebiotics, and synbiotics (Banerjee et al., 2013; Simo´n et al.,

2021). Some additives may enhance or inhibit the activity of

beneficial microorganisms. Understanding these interactions is

crucial for formulating a balanced and effective feed regimen

(Hura et al., 2018; Hlordzi et al., 2020). The health status of fish

is a critical factor affecting the success of probiotics and prebiotics.

In stressed or diseased fish, the gut microbiota may be altered,

making it challenging for probiotics to establish themselves

(Hoseinifar et al., 2018; Ringø et al., 2018; Kuebutornye et al.,

2019; Hlordzi et al., 2020; Van Doan et al., 2020). Addressing the

underlying health issues before introducing these supplements is

essential in such cases.

The choice of probiotic strains is paramount. Different strains

exhibit distinct properties, including resistance to environmental

conditions, adhesion to the gut epithelium, and production of

bioactive compounds (Cerezuela et al., 2013; Zoumpopoulou

et al., 2018; Cavalcante et al., 2020). Selecting strains with proven

benefits for the target species under specific conditions is crucial for

achieving the desired effects (Akhter et al., 2015; Dawood and

Koshio, 2016; Huynh et al., 2017; Cavalcante et al., 2020). The

duration of administering probiotics, prebiotics, or synbiotics is an

important consideration. Some benefits may take time to manifest,

and prolonged administration might be necessary for sustained

effects (Amenyogbe, 2023). Conversely, continuous use without

periodic evaluation may lead to a decline in efficacy.

Therefore, a holistic approach that considers the interplay of

fish species, diet, environmental conditions, dosage, interactions

with other feed additives, health status, strain selection, and

duration of administration is essential for optimizing the efficacy

of probiotics, prebiotics, and synbiotics in aquaculture. Researchers

and aquaculturists need to tailor their strategies based on a

thorough understanding of these factors to promote the health

and performance of fish populations.
10 Current challenges and future
directions in implementing probiotics,
prebiotics, and synbiotics in
fish farming

Different fish species have unique gut microbiomes and

nutritional requirements. Identifying probiotic strains that are

effective across a range of species is challenging. Tailoring

probiotic formulations to specific fish species is crucial for

optimal performance (Amenyogbe, 2023). Probiotics need to

survive and remain viable during the manufacturing process,

storage, and administration to the fish. Harsh environmental

conditions can reduce their effectiveness. Improving the

encapsulation techniques and storage conditions is essential for

enhancing probiotic viability (Hoseinifar et al., 2018; Ringø et al.,

2018; Kuebutornye et al., 2019; Hlordzi et al., 2020; Van Doan et al.,
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2020). Determining the optimal dosage and duration of probiotic

supplementation is complex. Too little may be ineffective, while

excessive amounts can be wasteful and may lead to unintended

consequences (Akhter et al., 2015; Dawood and Koshio, 2016;

Huynh et al., 2017; Cavalcante et al., 2020). Conducting long-

term studies to understand the sustained effects of probiotics on fish

health and growth is necessary (Amenyogbe, 2023).

The interaction of probiotics with different feed components

and additives needs to be better understood. Some compounds in

feed may inhibit or enhance the efficacy of probiotics. Investigating

the compatibility of probiotics with various feed formulations is

critical for successful integration (Kuebutornye et al., 2019;

Amenyogbe et al., 2021). Environmental conditions in

aquaculture systems, such as temperature, pH, and water quality,

can impact the performance of probiotics (Kuebutornye et al., 2019;

Amenyogbe et al., 2021). Adapting probiotic formulations to

diverse environmental conditions is a challenge. Research on

developing robust probiotic strains that can withstand a range of

environmental variables is needed. The need for standardized

regulations for probiotic use in aquaculture poses a challenge

(Amenyogbe et al., 2020). Obtaining regulatory approval for

probiotics is crucial for their widespread adoption. Establishing

international standards and guidelines for probiotics in aquaculture

is essential for ensuring product safety and efficacy.

Understanding the host-microbiome interactions to develop

species-specific probiotic interventions is necessary (Kuebutornye

et al., 2019; Amenyogbe et al., 2021). Research on innovative

encapsulation methods to enhance the survival and targeted

delivery of probiotics to the fish gut is needed. Exploring

nanotechnology and other advanced delivery systems for efficient

probiotic administration are areas that can be looked at.

Conducting dose-response studies to determine the optimal

concentration of probiotics for different fish species and life stages

are necessary. Investigating the potential for developing time-

release formulations for sustained probiotic delivery is very much

needed. Systematic analysis of the interaction between probiotics

and various feed components to optimize feed formulations.

Identifying feed additives that synergistically enhance the efficacy

of probiotics is an area that researchers can look at. Assessing the

ecological impact of probiotics on the overall aquatic environment,

including non-target species and microbial communities, is

important. Investigating the potential for developing eco-friendly

probiotic formulations is a way to go.

Long-term studies to evaluate the extended effects of probiotic

supplementation on fish health, disease resistance, and overall

performance are very much needed attention. Exploring the

potential for probiotics to mitigate the impact of stressors in

aquaculture systems is also needs to be fully understood and

needs much research. Collaborative efforts among researchers,

industry stakeholders, and regulatory bodies to establish

standardized guidelines for probiotic use in fish farming are the

uttermost important. Addressing the current challenges and

exploring these suggested research directions can contribute to

the successful implementation of probiotics, prebiotics, and

synbiotics in fish farming, ultimately improving the sustainability

and efficiency of aquaculture practices.
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11 Our viewpoints on methodological
evaluation and standardization in
probiotic, prebiotic, and synbiotic
studies in fish farming

Research on probiotic, prebiotic, and synbiotic interactions in

fish farming is a complex and evolving field with essential

impl icat ions for aquacul ture susta inabi l i ty . Exis t ing

methodologies, however, show variations that hinder cross-study

comparisons and data extrapolation. The selection and

characterization of probiotics, prebiotics, and synbiotics in

existing studies is often inconsistent. It is important to note that

strain sources, identification methods, and strain-specific traits can

significantly impact results. The reproducibility of strain isolation,

identification (e.g., molecular techniques), and characterization

(e.g., viability, adhesion capacity) must be ensured using standard

methods. Identifying dose-response relationships can be

challenging because dosing strategies vary widely among studies.

Considering fish species, weight, and environmental conditions,

standardized dosing protocols are crucial. Transparent reporting of

administration routes (e.g., feed, water) and frequency will facilitate

the replication of experiments. Existing studies have a variety of

experimental designs, durations, and environmental conditions that

make comparisons difficult. The framework for an investigation

must be standardized, with appropriate controls and statistical

analyses. The long-term effects of probiotics, prebiotics, and

synbiotics would be better understood through longitudinal

studies with consistent environmental parameters.

Variability in methodologies for assessing digestive enzymes

complicates result interpretation. Standardized assays for specific

enzymes relevant to fish digestion should be adopted, considering

substrate concentration and reaction time factors. Enzyme activity

should be expressed consistently, allowing for meaningful

comparisons. Inconsistencies in oxidative stress and antioxidant

defense measurements undermine the result’s reliability.

Standardized assays (e.g., lipid peroxidation, antioxidant enzyme

activities) with validated protocols must be employed. Additionally,

reporting basal and induced stress conditions will enhance

understanding of the system’s resilience.

Implement internationally recognized protocols for isolating,

identifying, and characterizing probiotic, prebiotic, and synbiotic

strains to ensure uniformity across studies. Develop standardized

dosing guidelines based on fish species, weight, and environmental

conditions. Researchers should clearly document administration

routes and frequency to facilitate replication. Establish a

standardized experimental framework, including appropriate

controls and statistical analyses. Encourage longitudinal studies

with consistent environmental parameters to assess long-

term effects.

Researchers should adopt standardized assays for digestive

enzyme analysis, accounting for factors like substrate

concentration and reaction time. Enzyme activity reporting

should be consistent for meaningful cross-study comparisons.
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Developing and endorsing standardized assays with validated

protocols for oxidative stress and antioxidant defense assessments

is essential. Researchers are encouraged to report basal and induced

stress conditions to capture the system’s resilience. Standardizing

methodologies in fish farming in probiotic, prebiotic, and synbiotic

studies is imperative for advancing the field and facilitating cross-

study comparisons. Implementing uniform strain characterization,

dosing guidelines, experimental protocols, and measurement

techniques will enhance the findings’ reliability and applicability,

contributing to aquaculture’s sustainable development. Researchers,

industry stakeholders, and regulatory bodies must collaborate to

establish and endorse these standardized approaches for the benefit

of the aquaculture sector.
12 Investigation gaps and
approaching perspectives

Despite significant progress, there still needs to be more in our

understanding of the mechanisms through which probiotics,

prebiotics, and synbiotics exert their effects on digestive enzymes,

oxidative stress, and antioxidant defense in fish. Specific gaps

include a need for standardized protocols for evaluating the

efficacy of these supplements, a need for standardized information

on optimal dosages and administration methods, and long-term

studies to assess sustained effects. While there is substantial

literature and research on the impact of microbial feed additives

on factors such as growth performance, immune response, and

disease resistance in fish, there is a noticeable lack of studies

specifically addressing the modulation of antioxidant defense

through the use of functional feed additives. Exploring the

significance of these environmentally friendly feed additives on

antioxidant defense represents a clear avenue for future research.

Additionally, there are proposed mechanisms of action related to

the modification of antioxidant defense activities after treatment

with functional feed additives, and it is essential to conduct

thorough investigations to validate and confirm these suggested

modes of action in fish. The interaction between host genetics, diet,

and the gut microbiome in response to these supplements requires

further exploration. More research is needed to identify suitable

biomarkers that accurately reflect the health status of fish in

response to probiotics, prebiotics, and synbiotics. Research should

address the species-specific responses to these supplements, as

different fish species may exhibit variations in their gut

microbiota and physiological responses. Future research should

explore the environmental impact of probiotics, prebiotics, and

synbiotics in aquaculture, considering sustainability and potential

ecological consequences. While existing research provides valuable

insights into the positive effects of probiotics, prebiotics, and

synbiotics on digestive enzymes, oxidative stress, and antioxidant

defense in fish farming, further investigation is necessary to address

species-specific variations, and long-term impacts for sustainable

aquaculture practices. Researchers should focus on filling these gaps

to optimize the effective use of these supplements in fish farming.
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13 Conclusion

In conclusion, the application of probiotics, prebiotics, and

synbiotics in the aquaculture industry holds great promise for

improving digestive health and reducing oxidative stress in fish

populations. These interventions offer multifaceted benefits,

highlighting their potential as effective tools for sustainable

aquaculture practices. Probiotics, particularly beneficial bacteria

such as Lactobacillus and Bacillus species, have shown significant

improvements in gut microbiota composition and function. These

microorganisms play crucial roles in aiding nutrient absorption,

inhibiting pathogenic bacteria, and modulating immune responses.

By establishing a balanced microbial community within the

gastrointestinal tract, probiotics promote optimal digestion and

nutrient utilization, contributing to the overall resilience of fish.

Complementing the effects of probiotics, prebiotics are non-

digestible compounds that selectively stimulate the growth and

activity of beneficial microorganisms. Prebiotics such as fructo-

oligosaccharides (FOS) and inulin support the establishment of a

robust gut microbiome, facilitating nutrient assimilation and

bolstering the immune system. When combined with probiotics,

these prebiotics create synbiotics, offering a holistic approach to

promoting digestive health in fish. This cooperative strategy

reinforces positive outcomes in growth performance, disease

resistance, and stress tolerance. Furthermore, probiotics, prebiotics,

and synbiotics play a crucial role in managing oxidative stress in fish.

Oxidative stress, resulting from an imbalance between the

productions of reactive oxygen species (ROS) and antioxidant

defense mechanisms, can have detrimental effects on fish health.

These bioactive compounds enhance antioxidant enzyme activities,

scavenge free radicals, and reduce lipid peroxidation, serving as

effective mitigating agents against oxidative stress.

As the aquaculture industry continues to evolve, integrating

probiotics, prebiotics, and synbiotics into fish diets represents a

proactive approach toward sustainable and responsible farming

practices. However, it is essential to acknowledge that their

efficacy can be species-specific and influenced by various

environmental factors. Therefore, ongoing research and tailored

approaches are crucial to optimizing their application for different

fish species and production systems. The utilization of probiotics,

prebiotics, and synbiotics offers a promising avenue for enhancing

digestive health and managing oxidative stress in fish. These

interventions contribute to the overall well-being of fish

populations and align with the broader goals of sustainable

aquaculture by reducing reliance on antibiotics and promoting

ecological balance within aquatic ecosystems.
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