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Fine-scale hunting strategies
in Australian fur seals
Perla Salzeri 1,2, Sebastián P. Luque3 and John P. Y. Arnould1*

1School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment,
Deakin University, Melbourne, VIC, Australia, 2Faculty of Science, Gent University, Gent, Belgium,
3National Fisheries Intelligence Service, Fisheries and Oceans Canada, Winnipeg, MB, Canada
Introduction: Knowledge of the hunting strategies of top predators can provide

insights into the cost-benefit trade-offs of their foraging activities. Air-breathing

marine predators are constrained in their foraging activities due to their

metabolic expenditure at depth being supported by limited body oxygen

stores. Understanding how these species adapt their behaviours to maximise

foraging success is of importance in view of the anticipated alterations to marine

ecosystems in response to global change. The Australian fur seal (Arctocephalus

pusillus doriferus), the largest fur seal species, has a distribution restricted to

south-eastern Australia, which is one of the fastest warming oceanic regions and

where the abundance, distribution and diversity of prey species is expected to

change in coming decades.

Methods: In the present study, combined IMU (acceleration, magnetometer,

gyroscope), depth and GPS data logger information was used to reconstruct 3-

dimensional tracks during diving, assess energy expenditure and quantify prey

capture events in adult female Australian fur seals during benthic foraging.

Results: The results revealed that individuals ascended at steeper pitches (to

reduce transit time), remained for shorter durations and travelled shorter

distances at the surface, and then descended at steeper pitches on subsequent

dives after predatory events on the seafloor. Higher travel speeds and more

directional changes during searching for prey along the seafloor, while requiring

greater energy expenditure, were associated with more prey captures.

Interestingly, individuals did not display conventional Area Restricted Search,

with the heading between dives not influenced by prey encounters.

Discussion: Together, these results suggest Australian fur seals undertake rapid

searching along the seafloor to surprise cryptic prey and, if prey is encountered,

undertake rapid surfacing (to reload body oxygen stores) and return to nearby

seafloor habitat with a similar but undisturbed prey field.
KEYWORDS

foraging ecology, Arctocephalus pusillus doriferus, hunting strategies, GPS tracking,
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1 Introduction

Individual survival and fitness are linked to the success of foraging

activities (Morse and Fritz, 1987), with long-term impacts on foraging

success affecting population growth and survival of the species (Pyke,

1984). Foraging activities are the result of interactions between

functional performance, ecological features, and energetic needs

(Toscano et al., 2016). Optimization of foraging behaviours by

individuals is based on evaluating the costs (time and energy

expended) and benefits (energy and nutrients gained) of engaging in

a particular strategy (Mobbs et al., 2018). Over the long-term, the

energy gained must be higher than the energy expended in searching,

capturing and handling prey (MacArthur and Pianka, 1966) in order

to balance the energy expenditure of living (Stephens et al., 2007).

The foraging behaviours of air-breathing marine predators are

constrained by their oxygen stores limiting the time they can spend

submerged in search of prey (Andrews and Enstipp, 2016). Two

primary foraging strategies (pelagic and benthic) have been described

in these species, with differences in the duration of the bottom phase of

the dive (Arnould and Costa, 2006) and distribution of prey items

(Doniol-Valcroze et al., 2011). Pelagic foragers use the entirety of the

dive in search of prey (Arnould and Costa, 2006), exploiting high-

density patches of small schooling species (fish, crustacea and

cephalopods) which can be distributed throughout the water

column (Chimienti et al., 2017). In contrast, benthic foragers search

for larger, cryptic prey on the seafloor (Meyers et al., 2021). The high

energetic costs of diving to the sea floor (Costa, 1991) are balanced by

the profitability of spatial and temporal predictability of benthic prey

abundance and distribution (Arnould and Costa, 2006).

Pelagic environments are characterised by spatially variable

patches of food resources in high marine productivity areas

(Harcourt et al., 2002). Correspondingly, once profitable habitats

have been encountered, pelagic predators have been observed to

undertake Area Restricted Search (ARS) (Paiva et al., 2010) to

maximise the rate of prey encounter (Pinaud, 2008). This behaviour

involves a series of slow and sinuous movements scanning the area

for prey (Weimerskirch, 2007), increasing residence time in

productive resource areas (Fauchald and Tveraa, 2003). It has

been shown to be prevalent in areas of high prey abundance and

low competition (Salton et al., 2022). In addition, during ARS,

effective prey detection is greater than direct detection distance

(Tinbergen et al., 1967) and, therefore, such a strategy is assumed to

decrease energy expenditure while searching for prey (Regular et al.,

2013). However, some studies have shown that ARS does not

necessarily reflect foraging success and that straight line searching

can be more profitable in some instances (Weimerskirch et al., 2007;

Hoskins et al., 2015b). In contrast, benthic environments are

characterized by more spatially consistent but lower prey

abundance (Snelgrove, 2001). Relatively little is known about

which strategies air-breathing marine predators use for

optimizing search patterns in benthic habitats (Takahashi et al.,

2003; Maxwell et al., 2012; Blakeway et al., 2021).

The Australian fur seal (Arctocephalus pusillus doriferus,

hereafter referred to as AUFS) is the largest fur seal species, with

mean adult female and male body mass of 76 kg and 270 kg,

respectively (Kirkwood and Arnould, 2008). The breeding
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distribution of AUFS is mostly restricted to Bass Strait, a shallow

(60-80 m) continental shelf area of low marine primary productivity

between the Australian mainland and Tasmania (Kirkman and

Arnould, 2018) influenced by numerous oceanographic currents

(Fandry, 1981). While its population is still recovering from the

over-exploitation of the commercial sealing era (18th-19th

centuries), the AUFS represents the largest resident marine

predator biomass in the region (Kirkwood and Arnould, 2012).

The foraging range of AUFS is restricted to the continental shelf

where diving is almost exclusively benthic (Arnould and Hindell,

2001; Arnould and Kirkwood, 2007; Hoskins et al., 2017). The

species is considered a generalist predator, foraging on > 60 taxa,

including elasmobranchs, bony fish, and cephalopods (Deagle et al.,

2009; Kernaléguen et al., 2016). Its broad-scale foraging behaviour

and habitat-use, as well as the environmental factors influencing

these characteristics, have been extensively investigated (e.g

(Hoskins et al., 2015a, b; Speakman et al., 2020)). However, little

is known of the hunting strategies the species employs or the factors

influencing their energetic consequences (Foo et al., 2016).

The Bass Strait region is one of the world’s fastest-warming

oceanic areas (Hobday and Pecl, 2014), with projected climate

change impacts expected to lead to significant shifts in the

diversity, abundance and distribution of species (Hobday and

Lough, 2011). Such alterations are likely to affect the prey field of

the region’s marine predators (Fulton, 2011). Knowledge of the

hunting strategies they employ, and the factors influencing their

success and efficiency, is crucial for understanding the behavioural,

energetic and, ultimately, population trajectory responses of these

species to the anticipated ecosystem modifications (Niella et al.,

2022). The aims of the present study, therefore, were to determine

the: 1) fine-scale dive behaviour movements; 2) prey capture and

energy expenditure consequences of these movements; and 3)

factors influencing hunting search strategies of AUFS.
2 Materials and methods

2.1 Study site and data collection

The study was conducted on Kanowna Island (39° 9.1’ S, 146°

18.5’ E) in northern Bass Strait, south-eastern Australia, during the

winters of 2015-19. The island hosts the third largest breeding colony

of AUFS, with an annual production of ca. 2500 pups (Geeson et al.,

2022). Adult females suckling pups were selected at random and

captured using a modified hoop net (Fuhrman Diversified, Seabrook,

Texas, U.S.A.). Individuals were then anaesthetised with isoflurane

delivered via a portable gas vaporiser (StringerTM, Advanced

Anaesthesia Specialists, Gladesville, NSW, Australia) for the

duration of handling procedures.

A combined video/depth/IMU (Inertial Measurement Unit) data

logger (CD v6, Customized Animal Tracking Solutions, Moffat Beach,

Australia) was glued to the fur along the dorsal midline just posterior

to the scapula using quick-setting epoxy (RS Components, Corby, UK;

Figure 1). The video data logger was programmed to record for 1 h at

10:00 and 14:00 (AEST) each day. The IMU recorded depth (m),

video/depth/IMU data logger and ambient temperature (°C) and three
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axes of acceleration (m·s-2), magnetic field intensity (mT), and angular

velocity (°·s-1) at 20 Hz. A GPS/dive behaviour data logger (Mk10F,

Wildlife Computers, Redmond, E.A., U.S.A.) and a VHF transmitter

(Sirtrack Ltd, Havelock North, NZ) were also attached in series

posterior to the first device. The GPS/dive behaviour logger was

programmed to record location and depth at 15 min and 5 s

intervals, respectively. The VHF transmitter was used to relocate the

individual at the colony to facilitate recapture. Together, the devices

represented <2% body mass and <1% cross-sectional surface area and,

therefore, are likely to have had a negligible impact on hydrodynamic

drag (McMahon et al., 2008; Field et al., 2011).

Following the attachment of data loggers, standard length and

body mass data were determined using a tape measure (± 0.5 cm)

and a digital suspension scale (± 0.1 kg), respectively. Uniquely

numbered plastic tags (Super Tags, Dalton, Woolgoolga, Australia)

were then inserted in the trailing edge of each fore-flipper for

identification before the animal was left to recover from anaesthesia

and resume normal behaviours. Individuals were recaptured at the

colony after at least one complete foraging trip at sea following the

above procedures and the data loggers removed. Data were

downloaded onto portable computers in the field.
2.2 Dive behaviour, prey captures and
index of energy expenditure

All dive behaviour data were determined from the depth

measurements of the combined GPS/dive behaviour data logger.

Due to the potential for pressure-transducer drift, depth data was

first zero-offset corrected (ZOC) using the diveMove package

(Luque, 2007) in R statistical environment version 4.0.3 (R Core

Team, 2023). Assuming a minimum depth of 5 m for foraging dives,

summary statistics were then extracted for each dive to determine

dive depth (m) and durations (s) of the descent, bottom, ascent and

post-dive phases. All dives which occurred below a 40 m threshold

(Volpov et al., 2015) at ± 10% of the maximum depth of the

preceding dive were considered benthic (Tremblay and Cherel,
Frontiers in Marine Science 03
2000). Since benthic dives were the focus of the present study, all

non-benthic dives were excluded from further analyses. In addition,

to exclude post-dive periods not associated with foraging (e.g.

resting at the surface and/or commuting), all dives with a post-

dive duration > 10 min (Speakman et al., 2020) were excluded from

further analyses.

IMU signals were transformed from the tag reference frame to

the seal reference frame following procedures described elsewhere

(e.g (Johnson and Tyack, 2003; Johnson, 2011)). Peaks in the sway (Y;

lateral) axis accelerometer data were used to estimate potential prey

captures (PPC) using the Ethographer package (Sakamoto et al.,

2009) in IgorPro (Version 6.34, Wavemetrics, USA) following the

methods of Foo et al. (2016). Briefly, a 3 Hz high-pass filter was used

to remove small movement noise (Viviant et al., 2010). The standard

deviation (SD) of the filtered data over a 1.5 s moving window was

then calculated for the whole record. Peaks over a pre-determined

threshold were considered to reflect PPC (Foo et al., 2016).

To identify the optimal threshold for each individual, the

frequency distribution of PPC determined with Y-acceleration SD

ranging from 0.5 to 3.0 were visually inspected for discontinuity

following the methods of Foo et al. (2016), the optimal threshold

was the one before the discontinuity. To avoid double-counting

multiple peaks from a single PPC event, a minimum interval of 3.5 s

was applied between successive peaks (Volpov et al., 2015). Finally,

as the minimum depth for all benthic dives recorded was 40 m, only

peaks in Y-acceleration SD occurring at greater depths were

considered to remove movement associated with prey handling

during ascent or at the surface. The dimensions of the combined

video/depth/IMU data logger precluded its attachment to the head.

In addition, for the reconstruction of 3-dimensional tracks, the IMU

sensor needs to be near the centre of gravity and, therefore data

logger was placed on the dorsal midline just posterior to the scapula.

While the majority of previous otariid seal studies using

accelerometers to document PPC have involved data loggers

placed on the head (Volpov et al., 2015; Foo et al., 2016),

accelerometers mounted on the dorsal surface have been shown

to detect PPC in northern fur seals (Callorhinus ursinus) and

Antarctic fur seals (A. gazella) (Jeanniard‐Du‐Dot et al., 2017). In

the present study, the PPC detection was validated by comparing

accelerometer-derived data with the available video data.

To investigate the relationships between hunting strategies and

foraging effort, Vectorial Dynamic Body Acceleration (VeDBA) was

used as an index of energy expenditure. Previous studies have

demonstrated VeDBA to be strongly correlated to energy

expenditure in various taxa, including fur seals (Jeanniard‐Du‐

Dot et al., 2017). VeDBA was calculated from the tri-axial

accelerometer data, using the following equation:

VeDBA  =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Ax − Sx)

2 + (Ay − Sy)
2 + (Az − Sz)

2
q

where S is the static acceleration and A is the acceleration. A 2 s

running mean of S (reflecting the positioning of the animal in space

in relation to gravity) was subtracted from A to calculate dynamic

acceleration related to movement (Jeanniard‐Du‐Dot et al., 2017).

The mean VeDBA (g) was determined for the four different dive

phases (descent, bottom, ascent and post-dive).
FIGURE 1

Adult female Australian fur seal (Arctocephalus pusillus doriferus)
with (from right to left) a combined video/depth/IMU
(accelerometer, magnetometer, gyroscope) datalogger, GPS/dive
behaviour data logger, and VHF transmitter glued to the dorsal
midline fur.
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2.3 Reconstruction of 3-dimensional
dive profiles

Preliminary analyses indicated that the magnetometer,

gyroscope and accelerometer sensors in the video/depth/IMU

data logger were strongly influenced by temperature and that the

internal temperature of the device increased at a rate of 5°C·h-1

and 10°C·h-1 in water and air, respectively, when the video data

logger was recording. To account for these biases in each sensor,

two video/depth/IMU data loggers (representing the device

models used in deployment data collection) were subjected to a

range of in-air and in-water temperatures experienced by AUFS

at sea both with, and without, the video data logger recording. A

low-pass filter was applied to each axis and the filtered data was

fitted to a simple linear regression with temperature. The

resulting equation was then used to determine the unbiased

sensor information in the deployment data according to the

experienced temperature.

The position on the horizontal plane at sea surface was provided

by GPS data, from which the position estimates of the start and end of

the dives were extrapolated. Depth profiles were used to extrapolate

the position on the vertical dimension. The position of individuals on

the horizontal plane was estimated via dead-reckoning (Davis et al.,

2001); i.e. by integrating the IMU signals on the seal reference frame,

albeit disregarding the vertical position solution. Acceleration signals

were low-pass filtered and scaled tomatch realistic pinniped velocities

(Sato et al., 2003) and corresponding to the GPS surface track. Euler

angles from the x, y, and z axes were calculated to assess roll, heading

(yaw) and pitch, respectively.

Speed of descent, bottom, and ascent phases were calculated

using the following formulae:

D  =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Xpos2 − Xpos1)

2 + (Ypos2 − Ypos1)
2 + (Zpos2 − Zpos1)

2
q

TD  =oD

Sp  = TD
T=

where (Xpos2 – Xpos1), (Ypos2 – Ypos1), (Zpos2 – Zpos1) are the

differences in position between two consecutive points, D is the

distance (m) travelled over consecutive points, TD is the total

distance travelled (m), T is the time during the dive phase (s),

and Sp is the speed (m·s-1). In addition, information on the

longitude and latitude of the start of the descent phase and the

end of the ascent phase was provided by the GPS data loggers.

Through the raster (Hijmans et al., 2015) package, the distance

travelled along the bottom phase, and between two dives at the

surface, were calculated using the position of individuals on the

horizontal plane during the dives and the coordinates of the descent

and ascent phase, respectively.

To investigate the influence of sea-floor hunting activity on dive

behaviour and energy expenditure, the number of substantial

directional changes made by individuals was determined. Heading

(yaw) values during the bottom phase of the dive were smoothed

with a 3 s running mean, to remove small movements, and sampled
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every 3 s to document apparent changes in direction. The difference

between consecutive values was determined to calculate the angular

deflection of the movement and transformed into radians. The

frequency distribution of directional changes was investigated in

each individual to assess for discontinuities from which significant

movements could be detected. Directional changes greater than this

threshold were considered as intentional movements (Miller et al.,

2019) related to hunting behaviour.

Mean heading during the descent phase and ascent phase were

calculated. To exclude the potential influence of surface or bottom

phase behaviour (e.g. prey handling) on heading during descent/

ascent, only data > 5 m below the surface and > 5 m above the

bottom phase were included. The difference in the mean heading

during the descent phase between successive dives was then

investigated to assess changes in travelling direction between

subsequent dives.
2.4 Data analysis

All statistical analyses were conducted in the R statistical

environment (Version 4.0.3 (R Core Team, 2023)). Linear mixed-

effect models (LME) and Generalized mixed-effect models (GLME),

within the nlme (Pinheiro et al., 2007) and lme4 (Bates et al., 2011)

packages. To assess the factors influencing fine-scale movements,

maximum depth, mean speed, mean pitch and duration of the

different dive phases were used as predictor variables. Similarly,

these variables were investigated as influences on energy

expenditure and prey capture rates (Supplementary Table 1). In

all models, the individual was considered a random factor to

account for repetitive sampling. Correlation matrices were

constructed to assess for collinearity between continuous factors.

When correlation coefficients were r > 0.7, one of the two

parameters was excluded from further analyses (Schober et al.,

2018). Model comparison was conducted with AIC selection using

the ‘dredge’ function in the MuMIn package (Barton and Barton,

2015). Where numerous candidate models with DAICc < 4 existed,

model averaging was conducted and the 95% confidence intervals

for the predictive variables inspected. Unless otherwise specified,

data are presented as Mean ± SE and results considered significant

at P < 0.05.
3 Results

3.1 Foraging trip metrics and fine-
scale behaviours

Due to camera malfunction, animal-borne video data were

available for only 3 individuals, for a duration of 4.5 h (2.7 ± 1.1

h) per individual during which benthic dives were made. Although

available video data enabled the validation of prey captures from

back-mounted accelerometers, it was insufficient to investigate

relationships with seafloor habitat. Complete data sets of

matching GPS, dive behaviour and IMU information were
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obtained from a total of 5 individuals with mean body mass of 70.5

± 6.6 kg and standard length of 152 ± 3.8 cm (Table 1). Mean

foraging trip duration was 4.6 ± 0.5 d, during which individuals

travelled 234.9 ± 32.4 km within central Bass Strait. Throughout

these foraging trips, individuals made 404.8 ± 57.3 benthic dives

showing modes of maximum depths ranging from 75.0 - 82.9 m,

with dive durations modes ranging from 2.89 - 4.56 min (Table 1).

The reconstructed 3 dimensional dive profiles typically revealed

individuals descending to the sea floor at a steep angle (high pitch),

swimming rapidly along the sea floor in a mostly constant direction,

then ascending to the surface at a shallower angle (lower pitch;

Figure 2). However, there was substantial variation in dive

parameters between dive phases, between dives and between

individuals (Table 2). During descent, the mode of mean

downward pitch (from the horizontal) of individuals ranged from

34 – 75.1° while the mode of mean descent speed ranged from 0.37

– 0.50 m·s-1, resulting in the mode of mean VeDBA ranging from

0.51 – 0.92 g (Table 2).

During ascent, the mode of mean upward pitch (from the

horizontal) of individuals ranged from 62.9 – 72.4° while the

mode of mean ascent speed ranged from 0.35 – 0.53 m·s-1,

resulting in the mode of mean VeDBA ranging from 0.59 – 1.13 g

(Table 2). During the bottom phase of dives, where duration had a

mode ranging from of 1.46 - 2.08 min, the distribution of directional

changes suggested turns of > 45° indicated intentional movement

changes. The number of such directional changes during bottom

phases ranged from 0 - 45 with the mode for individuals ranging

from 5 - 9. The mode of mean speed during the bottom phase

ranged from 0.41 - 0.46 m·s-1, resulting in the mode of mean

VeDBA ranging from 1.18 – 1.75 g (Table 2).

To investigate factors influencing potential foraging time within

a dive (i.e. time along the sea floor), LMEs were constructed with the

fine-scale diving behaviour variables. As time in the bottom phase

of a dive has been shown to be influenced by dive depth (due to

body oxygen store limitations (Thompson and Fedak, 1993), the

bottom phase duration was converted to a proportion of total dive

duration and arcsine-transformed before modelling. Since there

were numerous candidate models with a DAICc < 4, model

averaging was conducted and revealed all predictor variables to

have a consistent influence (95% CI not crossing 0; Table 3).

Descent pitch and maximum depth were included in all candidate

models with positive influences, indicating they are the most
Frontiers in Marine Science 05
important parameters in explaining bottom time (%) (Figures 3B,

D). Mean speed during descent also positively influenced bottom

phase (%) duration whereas mean speed during the bottom phase

had a negative influence (Figures 3C, A).

Factors influencing VeDBA during different dive phases were

investigated with LMEs (Table 3). Individuals had a reduced

VeDBA during the descent phase of dives with increasing

(steeper) pitch and deeper maximum depths. Similarly, VeDBA

was reduced during the ascent phase with increasing (steeper) pitch.

During the bottom phase of dives, VeDBA was found to be

positively influenced by the number of directional changes

initiated and with greater depths (Table 3).
3.2 Factors influencing prey captures and
inter-dive foraging strategies

A total of 150 benthic prey encounter events were recorded in the

video data collection (50 ± 9 per individual). All were detected as PPC

in the analysis of the back-mounted accelerometer data, while no false-

positive events were recorded, validating the technique for quantifying

potential prey captures. A total of 3524 PPC were recorded in 1559

dives (77% of the total benthic dives), with the number of PPC ranging

from 0 - 10 per dive. Mean prey capture rate varied between individuals

from 1.4 ± 0.1 PPC·dive-1 to 2.3 ± 0.1 PPC·dive-1 (Table 1).

Parameters influencing prey capture rate were investigated

using GLME with the number of directional changes, mean

bottom speed, proportion of bottom phase duration, and

maximum depth as predictor variables. The full model was the

most parsimonious (Table 3), showing that all measured variables

positively influence prey capture rate (Figure 4).

The hunting success experienced by individuals during the

bottom phase of dives was found to influence numerous aspects

of subsequent fine-scale behaviours (Table 3). LME model selection

revealed that individuals ascended to the surface at a steeper pitch

and faster swim speed with increasing prey captures during the

bottom phase (Figures 5A, B). In addition, post-dive duration and

the distance travelled before the next dive were both negatively

influenced by the number of prey captures during the bottom phase

of the previous dive (Figures 5C, D). Furthermore, the descent pitch

and speed during a dive were positively influenced by the number of

prey captures in the preceding dive (Figures 5E, F).
TABLE 1 Summary information on adult female Australian fur seals (Arctocephalus pusillus doriferus) from Kanowna Island instrumented with
combined GPS/dive behaviour/IMU data loggers.

Seal Mass
(kg)

SLEN
(cm)

Trip
duration

(d)

Total distance
travelled
(km)

Dive
duration
(min)

Dive
depth
(m)

Benthic
dives
(n)(%)

Successful
dives
(%)

Prey Capture
Rate

(PPC·dive-1)

1 89 166 3.63 164.6 4.56 82.9 405 (90) 84 2.26 ± 0.08

2 67.5 143 5.58 210.6 4.05 75.0 325 (87) 80 2.01 ± 0.09

3 71 150 5.71 247.5 4.09 79.9 236 (47) 72 1.82 ± 0.12

4 76.5 153 3.77 198.3 3.89 72.8 528 (96) 73 1.48 ± 0.06

5 48.5 148 4.24 353.3 2.89 76.7 530 (81) 76 1.41 ± 0.05
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Directional heading during the descent and ascent phases of

dives were generally consistent. In addition, while individuals on

some dives made numerous directional changes during the bottom

phase, travel throughout dives was in a relatively constant direction.

To investigate whether individuals altered travel direction between

dives, potentially as part of a prey searching strategy, the difference

between the mean heading of descent during sequential dives was

analysed. The change in heading varied considerably throughout

trips and between individuals (mode: 35.0°, range: 0.02 - 179°).

There was no significant influence of prey capture rate on change of

direction (LME: t = -1.421; P > 0.1), indicating individuals did not

alter their spatial search pattern in response to the success

experienced in the preceding dive.
Frontiers in Marine Science 06
4 Discussion

Animals must adjust their behaviour in response to their prey

field in order to optimise foraging success (Dylda and Wang, 2022).

For benthic foraging air-breathing vertebrates, there is a need to

maximise their time along the sea floor. The results of the present

study suggest adult female AUFS optimise search time along the sea

floor during benthic dives by travelling at high speeds to increase

prey encounters. In addition, they alter pitch and swim speed

during ascent and then subsequent descent phases in response to

the success on the sea floor. Furthermore, the findings suggest

AUFS do not adopt conventional Area Restricted Search (ARS)

behaviour (i.e. increased track tortuosity) in response to
FIGURE 2

Representative 3-dimensional reconstructions of three foraging dives by adult female Australian fur seal (Arctocephalus pusillus doriferus) individuals
from Kanowna Island in northern Bass Strait, south-eastern Australia. Swim speed along the track is indicated by the colour ramp. Right panels
represent a zoomed in part of the track (indicated by red box in left panel). Red triangles denote recorded prey capturess events.
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encountering successful foraging areas. Rather, in response to

successful dives, individuals reduce the time away from the sea

floor, reduce the horizontal distance travelled at the surface, and

maintain heading, potentially to maximise searching in similarly

profitable but undisturbed habitats of cryptic benthic prey.

However, the present study was limited to 5 individuals and,

therefore, the interpretation of the results should be viewed

within this constraint.

4.1 Within-dive behaviour to optimise
benthic foraging success

Since the foraging zone for benthic foragers is on the sea floor,

transit periods to/from the sea floor are non-profitable areas and

should be minimised in favour of longer bottom durations (Wilson

and Wilson, 1988). A smaller proportion of the dive duration spent

at the bottom might be expected in deep dives due to the greater

travel distance consuming more energy/oxygen. However,

consistent with previous findings in penguins (Zimmer et al.,

2010) and other pinniped species (Schreer et al., 2001), the

proportion of the dive duration spent on the sea floor (foraging

zone) was positively influenced by dive depth in the present study.

In addition, mean speed and pitch during descent was positively

correlated with the proportion of the dive’s bottom phase,

indicating individuals prioritised rapid transit to the sea floor in

order to maximise time in the foraging zone. Similar findings have

been observed in rockhopper penguins (Eudyptes chrysocome),

where greater descent rates and lower descent times were

observed during benthic dives than pelagic ones, leading to

greater bottom phase durations (Tremblay and Cherel, 2000).

The proportion of the dive duration spent on the sea floor by

female AUFS was negatively influenced by swim speed in this dive

phase. This is consistent with increased swim speeds being

associated with higher metabolic costs (Feldkamp, 1987) and,

thus, a greater use of available body oxygen stores (Hvas et al.,

2017). However, the results of the present study suggest an apparent

benefit of greater swimming speeds along the sea floor is increased

prey encounter rates. Indeed, as AUFS prey mostly on cryptic

benthic prey (e.g. numerous species of octopus (Octopus), gurnards

(Triglidae) and leatherjackets (Monacanthidae)) (Kernaléguen

et al., 2016), it may be advantageous to travel at high speeds to

detect and capture unsuspecting prey before they disperse/hide

(Zhang and Richardson, 2007). This is in contrast to harbour seals

(Phoca vitulina) which were observed to swim at slower speeds

when hunting cryptic prey in comparison to when hunting

conspicuous species (Bowen et al., 2002).

Interestingly, in the present study, prey capture rate on benthic

dives was found to increase with increasing sea floor depth.

Foraging by female AUFS from Kanowna Island is almost

exclusively restricted to central Bass Strait (Arnould and

Kirkwood, 2007; Kirkwood and Arnould, 2012) where maximum

depths range 60-80 m (Baird and Ridgway, 2012). Previous studies

have shown an increase in benthic species diversity with depth in

Bass Strait (Coleman et al., 1997). Consequently, foraging at these

greater depths may provide AUFS greater prey diversity and, thus,

better foraging opportunities.
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The present study also found prey capture rate was positively

related to the number of directional changes along the sea floor.

While this could reflect an increase in prey encounters due to

changes in search direction (Bell, 2012), the directional changes

may reflect intentional movements towards detected prey (Bianco

et al., 2011). Indeed, previous studies of AUFS instrumented with

animal-borne video cameras have revealed individuals often make

sharp turns upon detecting prey with a high degree of capture

success (73%) (Meyers et al., 2021). However, without additional

video data, it is not possible to disentangle the observed relationship

between prey capture rate and directional changes during sea floor

searches by AUFS. Nonetheless, such angular directional changes

are likely to incur energetic costs and are likely undertaken only

when foraging outcomes are more favourable than proceeding in a

straight line (Wilson et al., 2013). This is supported by the observed

greater mean VeDBA during the bottom phase of dives when more

directional changes were made.

Individuals in the present study were found to have lower

VeDBA when descending or ascending with greater (steeper)

pitches. These findings may reflect the influence of buoyancy on

mechanical power and the cost of transportation (Williams et al.,
Frontiers in Marine Science 08
2000; Wilson et al., 2010). When buoyancy forces are taken into

consideration, locomotion costs are lower when maintaining a

vertical dive pitch (Thompson et al., 1993). For example,

northern elephant seals (Mirounga angustirostris) had a higher

cost of transport when a non-vertical pitch was adopted while

diving compared to a vertical one (Miller et al., 2012). Hence, the

most optimal technique to reach the seafloor foraging zone faster

and with less energy or the sea surface for oxygen replenishment is

to have higher (steeper) pitches.
4.2 Inter-dive foraging behaviour strategies

Optimal diving models propose individuals should maximise

the bottom phase of dives to enhance prey encounter opportunities

(Boyd et al., 1997). Indeed, the results of the present study suggest

benthic diving AUFS maximise search time on the sea floor by

minimising oxygen consumption (i.e. energy expenditure) during

the descent and ascent phases. However, knowing where to dive for

encountering productive habitats leads to optimal foraging

(Humphries et al., 2010). Air-breathing pelagic marine predators
TABLE 3 Best models of Linear mixed-effect (LME) and Generalized mixed-effect (GLME) models predicting factors influencing inter-dive and intra-
dive behaviour, and VeDBA in adult female Australian fur seals (Arctocephalus pusillus doriferus) from Kanowna Island.

Response variable Parameters R2 95% CI t-value P

Bottom phase duration Descent pitch 0.317 0.30,0.40 11.78 <0.001

Maximum depth 0.17,0.33 6.07 <0.001

Mean descent speed 6.75,29.73 3.11 0.002

Mean bottom speed -12.50,-1.68 -2.57 0.010

Descent VeDBA Descent pitch 0.187 -0.01,0.00 -7.01 <0.001

Maximum depth -0.01,-0.01 -9.70 <0.001

Bottom VeDBA Number of directional movement changes 0.245 0.01,0.02 10.91 <0.001

Maximum depth 0.00,0.01 2.50 0.012

Ascent VeDBA Mean pitch 0.201 -0.02,-0.01 -9.67 <0.001

Ascent pitch Prey capture rate 0.221 2.18,2.73 17.37 <0.001

Mean ascent speed 14.75,26.12 7.05 <0.001

Ascent speed Prey capture rate 0.526 0.02,0.02 17.05 <0.001

Post dive duration Previous prey capture 0.123 -5.74,-3.56 -8.36 <0.001

Post Dive Distance travelled Previous prey capture 0.141 -11.73,-8.11 -10.74 <0.001

Descent pitch Previous prey capture rate 0.505 1.69,2.25 13.83 <0.001

Mean descent speed -3.39,13.39 1.17 > 0.1

Descent speed Previous prey capture 0.579 0.00,0.01 7.43 <0.001

Response variable Parameters R2 95% CI z-value P

Prey capture rate Number of directional movement changes 0.437 0.01,0.02 5.25 <0.001

Mean bottom speed 2.87,3.31 27.15 <0.001

Maximum depth 0.02,0.03 6.88 <0.001

Bottom phase duration 1.25,2.10 7.77 <0.001
Bold values indicate significant parameters.
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foraging in the water column have been shown to employ ARS at

the surface to optimise foraging success (Fauchald, 2009;

Weimerskirch et al., 2009). Since pelagic prey species form

transitory and unpredictable aggregations (Weber et al., 2021), a

strategy of increasing sinuosity, decreasing speed, and focusing

search in small areas has been shown to lead to increases in

energy intake in pelagic predators (Corbeau et al., 2019).
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In contrast, relatively little is known of the search patterns

of benthic foragers (Blakeway et al., 2021). Unlike pelagic

foragers, benthic divers do not appear to have clearly defined

bouts of diving related to patch quality (Shoji et al., 2015). In

addition, previous studies suggest benthic foragers spend a

large portion of their time at sea diving (Costa et al., 2004)

while in a constant travel direction (i.e. commuting along the
A B

C D

FIGURE 3

Relationship of Bottom phase duration (%) with: (A) Mean bottom speed (m·s-1); (B) Maximum depth (m); (C) Mean descent speed (m·s-1);
(D) Descent pitch (°) in adult female Australian fur seals (Arctocephalus pusillus doriferus).
A B

C D

FIGURE 4

Relationship between Prey capture rate (Potential prey capture (PPC) ·dive-1) and: (A) Mean bottom phase speed (m·s-1); (B) Number of directional
changes (turns·dive−1); (C) Bottom phase duration (%); and (D) Maximum depth (m) in adult female Australian fur seals (Arctocephalus
pusillus doriferus).
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sea floor) (Ramasco et al., 2015). While this could be a

mechanism for avoiding predation at the surface (Brown

et al., 2010), it may also be a strategy for optimising search

time (Mattern et al., 2007).

Australian fur seals primarily feed on benthic prey, as their large

body size makes chasing small, highly agile pelagic species

inefficient when in low abundance (Arnould and Hindell, 2001;

Arnould and Costa, 2006; Hoskins and Arnould, 2014).

Correspondingly, individuals should maximise search time along

the seafloor. In the present study, following prey captures during the

bottom phase of a dive, individuals increased both the pitch and the
Frontiers in Marine Science 10
speed of ascent (Figure 5). This strategy could potentially be

undertaken to minimise the transit time to the surface for oxygen

replenishment once a profitable foraging habitat has been found.

The increase in ascent pitch would also result in less horizontal

distance being travelled from the productive habitat. In addition,

the horizontal distance individuals travelled at the surface decreased

with increasing prey capture rate on previous dives. Furthermore, a

decrease in post-dive duration after successful dives was also

recorded, suggesting individuals may remain at the surface only

to replenish body oxygen stores before returning to profitable

seafloor habitats as rapidly as possible (Cook et al., 2008). Lastly,
A B

C D

E F

FIGURE 5

The influence of Prey capture rate (PPC·dive-1) within a dive on: (A) Ascent pitch (°); (B) Mean ascent speed (m·s-1); (C) Post-dive duration (s);
(D) Post-dive surface travel distance (m); (E) Next dive descent pitch (°); and (F) Next dive mean descent speed (m·s-1) in adult female Australian fur
seals (Arctocephalus pusillus doriferus).
FIGURE 6

Graphical representation of diving behaviour in adult female Australian fur seals (Arctocephalus pusillus doriferus) associated with unsuccessful and
successful foraging dives.
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prey capture rate of the previous dive elicited an increase descent

pitch, again potentially minimising the horizontal distance travelled

from the previously exploited productive habitat, and descent swim

speed, minimising transit time to the seafloor. Together, these

findings suggest that central place foraging adult female AUFS

individuals provisioning pups on land adopt fine-scale movement

strategies at sea to maximise hunting opportunities in profitable

seafloor habitats (Foo et al., 2016). Furthermore, the results of the

present study suggest that benthic foraging adult female AUFS do

not display conventional ARS behaviour. This is consistent with a

previous study of the species which highlighted that areas of

apparent ARS did not coincide with diving activity (Hoskins

et al., 2015b). Indeed, the directional change for subsequent dives

was not related to prey capture rate, suggesting that individuals do

not focus searching activity in already exploited successful areas

and, instead, move to new areas. This is in contrast to what has been

observed in numerous pelagic marine predators where individuals

adopt high sinuosity in search patterns once productive foraging

areas are encountered (Freitas et al., 2018). One potential reason for

the strategy observed in AUFS could be the prey type encountered

by benthic foragers. Prey density is known to be the key factor for

the adjustment of predator foraging behaviour (Mori et al., 2007).

For example, the number of feeding lunges during dives by blue

whales (Balaenoptera musculus) was proportional to krill density

(Hazen et al., 2015). In the presence of predators, cryptic prey

reduce movements and activity (Stein and Magnuson, 1976; Dill

and Fraser, 1984) and/or move to and hide in protective habitats

(Werner et al., 1983; Power et al., 1985). Once a predator has been

detected, cryptic prey may hide for a very long time (Edmunds,

1974). In addition, prey have been found to reduce and randomize

their movements to improve survivorship (Mitchell and Lima,

2002). As a counter-move, predators have been shown to delay

their follow-up attacks (Mitchell, 2009) and expand their hunting

activity over several areas (Brown et al., 1999; Lima, 2002). For

example, sharp-shinned hawks (Accipiter striatus) have been found

to use their foraging area unpredictably on a spatial and temporal

degree, avoiding prey hotspots where prey vigilance is higher (Roth

and Lima, 2007). Hence, for AUFS hunting cryptic benthic prey

such as octopus, gurnards and leatherjackets (Kernaléguen et al.,

2016), the best option may be to search in similar, nearby habitats

rather than going over the same area again. Indeed, while successful

dives did not elicit a change in heading, the horizontal distance

travelled was reduced, potentially increasing the probability of

covering similar productive but undisturbed habitats. In contrast,

after unsuccessful dives, individuals had shallower pitch in ascent,

travelled further at the surface and descended on the next dive at a

shallower pitch, increasing the distance from an unproductive

foraging zone to potentially increase the probability of

encountering prey in a different habitat (Figure 6). A similar

strategy of consistent heading in successful foraging routes has

been suggested for benthic-foraging yellow-eyed penguins (Mattern

et al., 2007). Studies of fine-scale hunting movement in other

benthic-foraging marine predators are needed to determine

whether this is a wide-spread strategy. In summary, the present

study revealed adult female AUFS individuals adjust their fine-scale

movements in relation to their prey field. The proportion of dive
Frontiers in Marine Science 11
time spent in the bottom phase (foraging zone) was increased by

travelling to and from the surface at steeper pitches and faster swim

speeds following successful dives. An increase in the number of

directional changes along the seafloor resulted in greater energetic

costs during the bottom phase but this was compensated by an

increase in prey capture rate. In addition, individuals did not adopt

conventionally-described ARS, as successful dives were not

associated with increased path tortuosity. Rather, individuals

appear to adopt a strategy of hunting in similar but undisturbed

seafloor habitats by maintaining a relatively constant heading and

reducing the horizontal distance travelled after successful dives.

These findings reveal important new insights into how air-

breathing marine benthic predators exploit their foraging habits

and provide a basis for future understanding of how animals could

respond to environmental changes.
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