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FCFormer: fish density
estimation and counting in
recirculating aquaculture system
Kaijie Zhu1,2,3,4, Xinting Yang2,3,4*, Caiwei Yang2,3,4,
Tingting Fu2,3,4, Pingchuan Ma1,2,3,4 and Weichen Hu2,3,4

1School of Mechanical Engineering, Guangxi University, Nanning, China, 2National Engineering
Laboratory for Agri-product Quality Traceability, Beijing Academy of Agriculture and Forestry
Sciences, Beijing, China, 3Research Center of Information Technology, Beijing Academy of Agriculture
and Forestry Sciences, Beijing, China, 4National Engineering Research Center for Information
Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
In intelligent feeding recirculating aquaculture system, accurately estimating fish

population and density is pivotal for management practices and survival rate

assessments. However, challenges arise due to mutual occlusion among fish,

rapid movement, and complex breeding environments. Traditional object

detection methods based on convolutional neural networks (CNN) often fall

short in fully addressing the detection demands for fish schools, especially for

distant and small targets. In this regard, we introduce a detection framework

dubbed FCFormer (Fish Count Transformer). Specifically, the Twins-SVT

backbone network is employed first to extract global features of fish schools.

To further enhance feature extraction, especially in the fusion of features at

different levels, a Bi-FPN aggregation network model with a CAM Count module

is incorporated (BiCC). The CAM module aids in focusing more on critical region

features, thus rendering feature fusion more cohesive and effective.

Furthermore, to precisely predict density maps and elevate the accuracy of fish

counting, we devised an adaptive feature fusion regression head: CRMHead. This

approach not only optimizes the feature fusion process but also ensures superior

counting precision. Experimental results shown that the proposed FCFormer

network achieves an accuracy of 97.06%, with a mean absolute error (MAE) of

6.37 and a root mean square error (MSE) of 8.69. Compared to the Twins

transformer, there's a 2.02% improvement, outperforming other transformer-

based architectures like CCTrans and DM_Count. The presented FCFormer

algorithm can be effectively applied to fish density detection in intelligent

feeding recirculating aquaculture system, offering valuable input for the

development of intelligent breeding management systems.
KEYWORDS

recirculating aquaculture systems, density estimation, fish counting, transformer,
deep learning
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1 Introduction

In recirculating aquaculture system (Xiao et al., 2018), fish

density estimation and counting is an important task, accurate

estimation of fingerlings quantity is one of the most challenging

aspects of aquaculture (Li et al., 2020; Zhou et al., 2022). Currently,

there is a significant amount of research focused on the detection of

sparse underwater fish schools, achieving high detection accuracy,

with the primary challenge being the detection of fish occlusion (Li

et al., 2021a). Quantifying the number of fish within a school with

precision serves multiple purposes. Monitoring of fish state and

behavior during cultivation may help to improve profitability for

producers and also reduce the threat of severe loss because of

disease and stress incidents (Liao et al., 2022). This reduces

environmental pollution stemming from excessive bait usage, as

outlined by (Feng et al., 2022), and aids in the development of

scientifically robust aquaculture strategies. Additionally, accurate

assessment of fish populations is particularly crucial in various

ecological applications, management efforts, and conservation

activities (Řıh́a et al., 2023).

In recent times, machine vision has made significant

advancements in the field of aquatic animal counting, particularly

excelling in efficient and precise counting (Zion and Agriculture,

2012). However, challenges persist in overcoming issues such as fish

overlap, lighting conditions, and viewing angles (Zeng et al., 2023).

To address these challenges, some methods combining image

processing with acoustic echoes to achieve automatic estimation

of tuna fish quantities (Puig-Pons et al., 2019). Furthermore, other

approaches employ strategies such as image processing (Toh et al.,

2009), contour analysis (Labuguen et al., 2012), and shape analysis

for live fish counting (Fabic et al., 2013) and classification

(Awalludin et al., 2020), demonstrating promising results

(Albuquerque et al., 2019) and potential (Morais et al., 2005; Abe

et al., 2021). Although these existing methods perform well under

low-density conditions, as fish densities increase, the issue of

occlusion between fish schools becomes pronounced, leading to a

gradual decline in performance and making it challenging to meet

practical application requirements.

For fish population estimation, convolutional neural networks

(CNNs) have traditionally dominated the methodology (Lecun

et al., 2015; Kamilaris et al., 2018; Li et al., 2021b). Zhang et al.

(2020b) integrated multi-column CNNs and dilated CNNs to form

a deep mixed neural network, it can achieve real-time, accurate,

objective, and non-destructive density estimation of underwater fish

populations, with an accuracy of 95.06% and a Pearson correlation

coefficient of 0.99. Lainez and Gonzales (2019) implemented

automatic fish species counting using image processing, achieving

99.63% average accuracy in different image segments through

CNNs. By adjusting the detection threshold, precise detection and

counting of various quantities of fish were realized. Babu et al.

(2023) explored the application of machine learning in fish fry

counting, using Single Shot Detector (SSD) and Faster Region-

based Convolutional Neural Network (Faster R-CNN) models to

enhance the counting accuracy. The Mean Absolute Percentage

Error (MAPE) of 2 is less than 10%, with the SSD model
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demonstrating a MAPE of less than 5%.Zhao et al. (2022)

proposed a lightweight model, LFCNet, for fish counting.

Through the use of density map regression and Ghost modules, it

achieved accurate counting of high-density fish, with a 73.8%

reduction in parameters and a 64.9% reduction in floating-point

operations. Zhang et al. (2020a) adopted image density grading and

local regression to precisely estimate biomass, realize accurate

feeding, and improve aquaculture outcomes. This approach

effectively handled fish images with complex environments, and

shows good accuracy, a Mean Squared Error (MSE) of 0.2985, a

Root Mean Squared Error (RMSE) of 0.6105, and a coefficient of

determination of 0.9607. Yu et al. (2022) introduced a deep learning

network model based on multi-modules and attention mechanism

(MAN) for counting cultured fish. Experimental results indicated

that the accuracy is 97.12% and the error is 3.67%. Compared to

MCNN and CNN, the accuracy of MAN increased by

approximately 1.95% and 2.76%, respectively, while the error rate

decreased by 30.23% and 41.09%. Zhao et al. (2018) Aiming at live

fish identification in aquaculture, a practical and efficient semi-

supervised learning model, based on modified deep convolutional

generative adversarial networks (DCGANs), in tests with two

datasets the feasibility and reliability of the presented model for

live fish identification were proved with respective accuracies of

80.52%, 81.66%, and 83.07% for the ground-truth dataset and

65.13%, 78.72%, and 82.95% for the Croatian fish dataset.

Respectively, Convolutional neural networks typically employ

convolution operations to capture local features; however, they

often fall short in encapsulating global feature information across

an entire image. To address this challenge, attention mechanisms

have demonstrated immense potential in processing global features.

The advent of the attention mechanism has proven adept at

handling global features (Vaswani et al., 2017). Recent research has

been focused on designing diverse attention mechanisms to address

variations in scale and density (Mo et al., 2022; Liang et al., 2022b).

Algorithms based on attention mechanisms, such as the Twins

Transformer (Chu et al., 2021), have demonstrated superior

performance across various tasks. This study intends to enhance

the Twins Transformer network for the estimation and counting

detection of fish shoal density. Compared to Convolutional Neural

Networks, this method is more proficient in accurately identifying

the location and contours of fish shoals.

Based on this, the paper introduces an improved network model

called FCFormer, which is built upon the Twins Transformer. This

model makes full use of the bright, shadow-free sample images

generated by scattered light rays and incorporates multiple

optimizations to the Transformer network. Traditional density

map regression approaches often suffer from diminished accuracy

when dealing with highly clustered fish swarms and distant small

objects, primarily due to insufficient feature extraction and weak

model generalization capabilities (Yu et al., 2022). To address the

above issues, the FCFormer employs a meticulously designed BiCC

aggregation network, augmented with a CAM module, to

efficaciously amalgamate low- and high-level features. This

integration not only amplifies the feature repertoire, but also,

improves the quality and counting accuracy of density maps by
frontiersin.org
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promoting fine-grained feature learning. Additionally, FCFormer

integrates CRMHead, an efficient regression counting model, for

predicting density maps. This approach carefully balances counting

precision with model efficiency, ensuring high accuracy alongside

suitability for real-time or resource-limited application contexts.

Meanwhile, FCFormer is capable of generalizing to different real-

world scenarios of various fish schools. The main contributions of

this paper are as follows:
Fron
(1) A fish dataset was curated, and the best recognition results

were achieved on this challenging dataset. Experimental

results reveal that the proposed FCFormer network

achieves a counting accuracy of 97.06%.

(2) A high-performance fish group counting model

named FCFormer was constructed using the Twins

Transformer. It can extract semantic features with global

context information.

(3) An effective feature aggregation module and a simple

regression head were designed. These two design

components enhance feature extraction and yield accurate

regression results.
2 Materials and methods

2.1 Experimental materials

The experiments were conducted at the Intelligent Feeding

Recirculating Aquaculture System Laboratory of the Information

Technology Research Center, Beijing Academy of Agriculture and

Forestry Sciences. Figure 1 shows the data collection platform, which

consists of four aquaculture tanks each 1.2 meters high, 4 meters in

diameter, and 1.0 meter in water depth, equipped with oxygenators,

ozonizers, microfilters, pump tanks, bio-tanks, water quality sensors,

and other equipment. The test subjects were sea bass, each weighing

(400 ± 100) grams. In the experiment, the breeding density of the sea

bass was controlled at (16 ± 1) kg/m3, while maintaining the water

temperature within the range of (19 ~ 21) °C.

In this paper, the task of fish density estimation and counting

detection faces multiple challenges, specifically manifested in the

following aspects:
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(1) Fish Occlusion: Fish within the school may obstruct each

other, causing only parts of some fish to be visible in the

image, as shown in Figure 2A. Additionally, manual data

labeling presents certain difficulties, often leading to

incorrect and missed labels.

(2) Rapid Movement of Fish: Rapidly moving fish leave blurry

traces in the image, making it difficult to accurately detect

and track them.

(3) Small and Blurry Issues in Long-Distance Detection: When

fish schools are far from the camera, they appear very small

and blurry in the image, and the size differences caused by

varying distances further increase the difficulty of detection,

as illustrated by the red box in Figure 2B.
2.2 Image and data processing

This study employed Hikvision cameras with a resolution of 3

million pixels and a frame rate of 30fps. The cameras were

positioned overhead at a 45° angle to the water surface to address

issues such as water reflection, fish overlapping and their shadows.

During the experiments, three spotlights were used to illuminate the

center of the fish tank from various angles.

Additionally, to make image features more distinct, the display

settings of the Hikvision cameras were adjusted. The brightness,

contrast, and saturation were set to +100, +70, and 50%, respectively,

enhancing the color and sharpness of image edges. Digital

noise reduction in expert mode was used for image enhancement,

with both temporal noise reduction and spatial noise reduction

set to 60%. Wide dynamic range was also activated to better

capture the image effects of bright and dark objects under poor

lighting conditions.
2.3 Image annotation and
dataset generation

The data were collected from four fish tanks, with tank No. 4

sampled twice. The number of fish in each pond varied, leading to

the data being divided into five groups based on these counts. The

groups were represented by 173, 105, 100, 410, and 54 images offish
A B

FIGURE 1

Data collection platform. (A) Recirculating water data collection system. (B) Experimental site.
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counting, respectively. Each image was manually annotated using

the LabelMe tool, with a frame extracted every five seconds from the

video, totaling 842 images of fish schools. Three master's students

took approximately three weeks to annotate the dataset, marking an

estimated total of 205,806 fish. Detailed information about the

dataset is presented in Table 1.

This research faced the complex challenge of determining the

position and the count of fish within schools. To address this issue, a

method of marking the center of each fish was employed (Figure 3A).

For partially obscured fish, the central point of their most exposed

part was marked as accurately as possible (Figures 3B–E), although a

small portion of fish were too heavily obscured to be annotated

(Figure 3F). Each annotation label recorded the position of the

respective fish, and the number of labels in the images indicated

the quantity of fish in the school.
2.4 Real ocean data set

To investigate the generalization capabilities of the FCFormer

model across diverse datasets and real-world scenarios, we

deliberately selected additional datasets characterized by varied

environmental conditions and fish species for evaluation.

Furthermore, the capacity for generalization across distinct scenarios

is critically imperative for the model's extensive deployment in the

aquaculture industry, given that real-world conditions frequently

surpass the complexity and variability encountered in laboratory or

specific dataset contexts. The experimental video data utilized in this

study were sourced from "Deep Blue No. 1," an offshore aquaculture

cage located in the Yellow Sea of China, courtesy of Rizhao Wanze

Feng Fisheries Co., Ltd. The aquaculture involved adult Atlantic
Frontiers in Marine Science 04
salmon, with all collected videos comprising underwater footage of

this species, as shown in Figure 4.
3 Fish school density estimation and
counting network

3.1 Network architecture

The entire process is systematically organized to effectively

estimate the quantity of fish in the image, encompassing key steps

including object detection, feature extraction, attention

mechanisms, and density map regression. Initially, the input

image is segmented into fixed-size image blocks. These blocks are

subsequently flattened into a 1D sequence of vectors. Following this,

the Twins-SVT backbone is employed to extract global features

from the sequence. The extracted 1D sequences from each stage are

then reshaped into 2D feature maps. To further refine the features,

these 2D maps undergo feature extraction through a Weighted

Bidirectional Feature Pyramid Network, coupled with a Class

Activation Map module (BiCC). The refined features are subject

to an element-wise summation. In the final stages, a CRMHead

module is engaged to regress the density map. It is notable that

FCFormer supports two supervision modes: in full-supervision

mode, the regression result directly yields the density map,

whereas in weak-supervision mode, the sum of all predicted pixel

values in the density map is utilized as the fish count for regression.

The model architecture, illustrating this comprehensive process, is

depicted in Figure 5.

3.1.1 2D image to 1D sequence
Prior to entering the Transformer backbone, the 2D image is

reshaped into a 1D sequence. Following a similar image processing

method as described in CCTrans (Tian et al., 2021), the input image

is denoted as: I ∈ RH�W�3 (with H, W, and 3 representing height,

width, and channel dimensions). Subsequently, it is divided into K

�K image blocks, each sized at H
K � W

K � 3. These 2D image blocks

are then seamlessly flattened into a 1D block sequence x ∈ RN�D

(where N = H�W
K2 � 3, D = K � K). Next, a learnable projection,

denoted as f : xi → ei ∈ RD(i = 1,…N), is applied to the sequence x

to perform block embedding, resulting in the sequence e ∈ RN�D.

As a result, the spatial and channel characteristics of the i-th image
TABLE 1 Description of the fish school counting dataset.

No. Collection site Images count Number of fish

1 Lab Tank No. 1 105 224

2 Lab Tank No. 2 100 265

3 Lab Tank No. 3 54 26

4 Lab Tank No. 4
173 134

410 330
A B

FIGURE 2

Challenges in fish density estimation and counting detection tasks. (A) Severe occlusion. (B) Small and blurry targets at long distances.
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block, denoted as xi, are transformed into the features of the i-th

embedded vector, denoted as ei.
3.1.2 Twins-SVT backbone
Twins-SVT combines local self-attention and global attention

mechanisms, achieving image feature processing through the

introduction of Spatially Separable Self-Attention (SSSA). SSSA

comprises Local Spatial Attention (LSA) and Global Subsampling

Attention (GSA), as illustrated in Figure 6. This combination

enables the model to capture both local and global information

simultaneously. By incorporating global attention after local self-

attention, Twins-SVT addresses the issue of diminishing receptive

fields while delivering exceptional performance in prediction tasks.

Its notable advantages lie in its efficiency and ease of

implementation, holding significant potential for application

across various visual tasks.

Formally, spatially separable self-attention (SSSA) can be

expressed as Equations 1–4:

_zlij = LSA(LayerNorm(zl−1ij )) + zl−1ij (1)

zlij = FFN(LayerNorm( _zlij)) + _zlij (2)
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_zl+1 = GSA(LayerNorm(zl)) + zl (3)

zl+1 = FFN(LayerNorm( _zl+1)) + _zl+1 (4)

i  ∈ 1,  2,  … :,  mf g, j  ∈ 1,  2… :,  nf g
3.1.3 The Bi-FPN pyramid aggregation network
with the CAM count module (Bicc)

Traditional feature pyramid networks typically adopt a

unidirectional structure, either top-down or bottom-up, which

can lead to the loss of crucial details or contextual information in

information propagation and feature fusion. This limitation

hampers their ability to effectively extract the contour

information of objects like fish schools. In the backbone

network, the frequent employment of down-sampling for deep

feature extraction leads to a diminishment, or even disappearance,

of the feature information of small objects as the feature hierarchy

increases. To address these issues, this paper introduces a Bi-FPN

aggregation network with the CAM module. In the backbone

network, the top-level feature extraction layer is removed, a

common choice in many studies (Li et al., 2018), which reduces

network complexity while preventing irrelevant information from
FIGURE 4

Underwater adult Atlantic salmon pictures.
A B C

D E F

FIGURE 3

Examples of image annotations. (A) No overlapping. (B) Two fish overlapping to form a line. (C) Two fish crossing in a V shape. (D) Two fish
intersecting in a V shape. (E) Majority of fish body exposed and annotated. (F) Only a small part of fish body exposed and not annotated.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1370786
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhu et al. 10.3389/fmars.2024.1370786
entering the subsequent channel feature fusion stage. Bi-FPN (Tan

et al., 2020) incorporates a bidirectional, bottom-up, and top-

down feature network structure. It introduces lateral connections

between feature pyramids at each level, enabling feature

information to flow freely within the network. This bidirectional

connection design aids in better fusing features from different

levels and maintaining a balance between low-level and high-

level features.

To address the issue of different input features having varying

degrees of influence on the output features at their respective

resolutions, additional weights are introduced for each input

feature. This allows the network to learn and quantify the

importance of each feature. Building upon this concept, this

paper employs a concise and efficient weighted feature fusion

mechanism. There are three methods for weighted feature fusion:

Unbounded fusion, SoftMax-based fusion, and Fast normalized
Frontiers in Marine Science 06
fusion. In this case, Fast normalized fusion, a weighted feature

fusion method, is chosen due to its fast-training speed, high

efficiency and relative stability. It can be represented as:

O =oi
wi

ϵ +ojwj
Ii (5)

Equation 5 defines the output O as a weighted sum of the input

vecto0r Ii, where the weights wi are assured to be non-negative,

typically achieved through the application of a Rectified Linear Unit

(ReLU) activation function. Additionally, to circumvent potential

numerical instability caused by a zero denominator, a minuscule

constant ϵ (valued at 0.0001) is introduced. The normalized weights
wi

ϵ+ojwj
ensure that their sum is unity, thereby permitting

interpretation as a probability distribution.

We use Equations 6, 7 to describe the fusion of two features as

illustrated in Figure 4:
A B

FIGURE 6

Channel attention structure diagram. (A) Twins-SVT interleaves locally-grouped attention (LSA) and global sub-sampled attention (GSA). (B) Schematic view
of the locally-grouped attention (LSA) and global sub-sampled attention (GSA).
FIGURE 5

FCFormer network architecture.
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p4 _ up = Conv(
w1 · b + w2 · resize(p5 _ down)

w1 + w2 + ϵ
) (6)

p4 _ out = Conv(
w0
1 · b + w0

2 · p4 _ up + w0
3 · resize(p3 _ out)

w0
1 + w0

2 + w0
3 + ϵ

) (7)

In this context, we have two features: 'p4_up,' representing the

intermediate feature from the top-down channel, and 'p4_out,'

representing the output feature from the bottom-up channel. The

'resize' operation is employed, which can encompass either down

sampling or up sampling, to harmonize the resolutions of these

features. The parameter 'w' and ' w 0 ' are learned parameter utilized

to discern the relative importance of distinct features during the

fusion process. To enhance efficiency further, feature fusion is

executed through depth wise separable convolutions, with batch

normalization and activation functions introduced following each

convolution operation.

While the aforementioned architecture significantly enhances

the network's multi-scale representation capability, it does not fully

consider potential conflicting information between features at

different scales. The lack of contextual information can limit

further performance improvement, especially concerning small

objects, which are susceptible to interference from conflicting

information. Therefore, this paper introduces an approach to

inject the CAM module from top to bottom into the Bi-FPN to

introduce contextual information. This CAM module employs

dilated convolutions with different dilation rates to capture

contextual information from various receptive fields. The specific

structure is illustrated in Figure 7.

3.1.4 CRMHead
Taking inspiration from feature selection and the divide-and-

conquer approach (Chen et al., 2021; Dai et al., 2021; Li et al., 2023),

this paper introduces a Feature Adaptive Fusion Regression Head
Frontiers in Marine Science 07
(CRMHead). The core idea of this method is to adaptively select the

appropriate feature layers for targets of different scales. In essence,

CRMHead aims to intelligently fuse the three feature layers in the

FPN, allowing high-level features to focus on detecting large objects

and low-level features to focus on detecting small objects. Two

linear layers are then designed for regression, using 1x1

convolutions for local channel awareness, followed by BN (Batch

Normalization) and ReLU (Rectified Linear Unit) layers. Similarly,

global channel awareness is achieved by adding global pooling

operations before local channel awareness. The formula for

feature adaptive fusion is defined as Equations 8, 9:

F = W(f1w1 + f2(1 − w1)) + (1 −W)(f2w2 + f3(1 − w2)) (8)

wi = Sigmod (L(fi) + G(fi+1)) (9)

Here, f1 , f2, f3 represent the three output feature maps obtained

after fusion in the BiCC (Bi-FPN with CAM Count module)

network. F represents the fused feature, L(fi) represents the local

perception channel of fi, and G(fi+1) signifies the global

perception channel.
3.2 loss function

Different loss functions are employed for strong supervision in

density regression and weak supervision in count regression. Strong

supervision entails reading the annotated positions of each fish in the

density map. Weak supervision, on the other hand, involves solely

reading the total number of fish in the fish school from the density

map without the need to know the specific positions of each fish.

For the loss function in strong supervision, the DM_Count loss

function (Wang et al., 2020a) is utilized, which comprises three

components: counting loss, Optimal Transport (OT) loss, and Total

Variation (TV) loss. The overall loss for a predicted density map D
FIGURE 7

CAM module structure.
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and its ground truth density map is expressed as Equation 10:

‘(z, bz ) = ‘C(z, bz ) + l1‘OT (z, bz ) + l2 ∣ ∣ z ∣ ∣1 ‘TV (z, bz ) (10)

Here, zand ẑ represent the fish counts in Dand D
0
, l1and l2are

the loss coefficients, ∣ ∣ z ∣ ∣1denotes the vector norm of ‘TV , In the

experimental process, l1is set to 0.1, l2is set to 0.01.

For the loss function in weak supervision, a smooth ‘1loss is used

as a replacement for ‘1loss. Due to significant variations in fish school

counts across different images and the sensitivity of ‘1to outliers, the

weak supervision loss function is defined as Equation 11:

‘C = smooth‘C (D,D
0
) (11)
3.3 Evaluation metrics

The experiment uses Mean Absolute Error (MAE), Mean Squared

Error (MSE), Mean Absolute Percentage Error (NAE), and accuracy to

measure the performance of the proposed network. MAE andMSE are

common metrics used to evaluate the performance of prediction

networks, typically in regression problems. MAE is one of the most

basic evaluation metrics, representing the average absolute error

between predicted values and actual values, reflecting the accuracy of

the estimation. MSE is the average of the squared differences between

predicted and actual values, where larger errors in training affect MSE,

making it a measure of the network’s stability. NAE (Wang et al.,

2020b), considers not only the error between the predicted and actual

values but also the error in relation to the actual values, offering a more

comprehensive evaluation of network performance. Accuracy directly

reflects the network’s performance under simplified conditions. These

are represented by Equations 12–15:

MAE =
1
No

N

i=1
∣ Pi − Gi ∣ (12)

MSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
∣ Pi − Gi ∣

2

s
(13)

NAE =
1
No

N

i=1

∣Pi − Gi ∣
Gi

(14)

Accuracy = (1 −
100
N o

N

i=1

∣ Pi − Gi ∣
Gi

) (15)

Here, N is the number of images tested, Piis the predicted

number of fish in the i-th image, and Giis the actual number of fish

in the i-th image.
4 Experimental and discussion

4.1 Training parameter configuration

To substantiate the efficacy of the proposed algorithm, all

computational experiments were executed with consistent
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hyperparameters. These encompassed a mini-batch size of 12

to leverage the stochastic gradient descent, utilization of the

Adam optimization algorithm with weight decay regularization

to facilitate sparse convergence, a fine-tuned learning rate of 1e-5

for precise gradient updates, and an extensive training duration

across 1000 epochs to ensure robust model generalization.

The precise configurations of the computational resources,

including the high-performance CPU and GPU specifications,

expansive memory capacity, and the software environment

tailored for deep learning tasks, are comprehensively delineated

in Table 2.
4.2 Results analysis

In order to comprehensively evaluate the effectiveness of the

FCFormer model proposed in this paper, we analyze the

performance of the model in the training and verification process

in detail, with particular attention to the model’s ability to handle

different density fish scenes. Figures 7, 8 and Table 3 show the key

indicators of model performance, including the changes of MAE,

MSE, NAE and loss values, as well as the performance of the model

in different density scenarios.

Figure 8 illustrates the variations in MAE, MSE, NAE, and loss

curves during the validation and training processes. In the initial stages

of the model, the metrics and loss values on the validation set were

relatively high but started to decrease sharply after several training

epochs. By the time 90 training iterations were completed, the

MAE, MSE, NAE values, and loss had stabilized. Up to 1000

iterations, with increasing epochs, the errors exhibited

slow oscillations and approached stability. The final MAE, MSE,

and NAE values were 6.37, 8.69, and 2.94, respectively. However,

due to the inherent complexity of the dataset, further error

reduction became challenging. As the errors gradually decreased and

stabilized, the model converged, yielding training results in line

with expectations.

The performance of FCFormer under different density scenarios

is outlined in Table 3. It is evident that FCFormer performs

exceptionally well in sparse and moderate-density scenarios,

exhibiting lower MAE and MSE along with higher accuracy.

However, detecting fish schools in slightly denser scenarios poses a

greater challenge. This challenge arises as such scenarios feature a
TABLE 2 Lab environment.

Configuration Version

CPU Intel(R) Core (TM) i9 – 12900KF

GPU NVIDIA GeForce RTX 3090Ti

Running memory 32GB

System Windows11

Image processing language Python3.9

Frame PyTorch1.10.0

Accelerated environment CUDA11.3
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significant number of smaller-sized and occluded fish targets,

potentially obstructing effective feature extraction. Despite these

challenges, FCFormer continues to showcase commendable

detection performance even as the number of fish schools

increases, attributed to BiCC’s effective extraction of more

detailed information.

The trained model is used to generate high-quality fish

school density maps, with the final density maps being 1/8 of the

original images. Figure 9 displays a set of relatively poorer results

and five sets of relatively better results. Apart from the counting

results, the five sets of predicted density maps closely match the

ground truth density maps, providing an overall representation of

the fish school distribution. However, there are still a few instances

of poorer results in the experimental outcomes. Upon analysis, it

was found that severe occlusion of some fish schools and

mislabeling issues in the test samples, such as omissions or

incorrect annotations, contributed to these challenges. Addressing

these labeling issues can further enhance the model’s robustness

and accuracy.
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4.3 Comparison with other networks

The quality comparison of the density maps is shown in

Figure 10. Clearly, FCFormer produces higher-quality density

maps with a stronger capability to extract features of tiny fish

targets in the distance. This is attributed to the CAM module that

integrates multi-scale dilated convolution features, enabling the

acquisition of rich contextual information for feature enhancement.

The trained model is used to generate high-quality fish school

density maps, with the density map size matching that of the

corresponding input images. Density map predictions were made

for five groups of fish schools at different densities and compared to

the ground truth density maps. Additionally, the density predictions

from the FCFormer model were compared with those from

CCTrans and DM_Count. The quality comparison results of the

density maps are shown in Figure 11. Figures 11A and B display

original fish images from five different density levels along with

their corresponding ground truth. Figure 11C–E show the

respective predicted density maps generated by FCFormer,
A

B

C

D

FIGURE 8

Curve changes of MAE, MSE, NAE and loss. (A) MSE. (B) MAE. (C) NAE. (D) Loss.
TABLE 3 Experimental results at different densities.

Range Number of test MAE MSE NAE Accuracy

<200 75 2.22 2.96 1.56 98.44%

[200,300] 66 4.29 5.75 2.03 97.97%

>300 137 8.81 10.78 3.05 96.95%
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CCTrans, and DM_Count, Respectively, the ground truth values

and model predictions are displayed in the upper right corner of the

density maps. The results indicate that under various density

scenarios, the predicted density maps by all models exhibit

good accuracy and accurately reflect the distribution of

fish school density. This highlights the feasibility of density

map regression-based methods in fish counting. Furthermore,

the density maps generated by FCFormer closely resemble the

ground truth, attributed to BiCC’s effective extraction of more

detailed information.

To provide a more intuitive representation of FCFormer’s

counting performance, an error analysis was conducted between

the model predictions and ground truth values for FCFormer,

DM_Count, and CCTrans on 278 test images. As shown in the

box plot in Figure 12A, the two black short lines outside the red box

represent the maximum and minimum error values, the top and

bottom of the box represent the upper and lower quartiles,

and the middle line is the median line. The “×” represents the

average value marker. It can be observed that FCFormer has

the lowest upper and lower bounds for errors, and both

the quartiles and the average value are the smallest. Figure 12B
A B C

FIGURE 9

Fish count results and density plots. (A) Original image. (B) Ground truth. (C) Prediction.
FIGURE 10

Comparison of the quality of density maps generated by
different models.
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shows that 77% of the errors remain within the range of -10 to 10,

indicating that FCFormer has low data fluctuations and excellent

stability. Therefore, FCFormer outperforms other methods in terms

of stability and accuracy.

To validate the performance of various fish school counting

models, this study selected multiple models for comparative

analysis of methods and accuracy. The prediction results of

each model are shown in Table 4. The proposed fish school

counting method based on FCFormer outperforms other

comparative methods. Compared to two other transformer-based

models, CCTrans and TransCrowd, FCFormer achieved an

improvement in counting accuracy of 2.09% and 2.19%,

respectively. This indicates a clear advantage of the proposed

research method.
Frontiers in Marine Science 11
4.4 Ablation study results analysis

In this paper, ablation experiments were conducted on the

CRMHead module①, Bi-FPN②, and CAM module③, as shown in

Figures 13A, B, and Table 5. Twins-SVT was chosen as the baseline

model, which achieved an accuracy of 95.04%. When the CRMHead

module, Bi-FPN, and CAM module were sequentially added, the

model’s accuracy reached 97.06%. The results indicate that each

added module played a role in improving accuracy.
4.5 Supplementary experiment

In the testing of the FCFormer model within the “Deep Blue No.1”

aquaculture net cage, the experimental results are shown in Table 6,
FIGURE 11

Fish counting results and density maps of different densities for each model. (A) Original image. (B) Ground truth. (C) FCFormer. (D) CCTrans. (E) DM_Count.
A B

FIGURE 12

Error analysis between network prediction results and Ground truth. (A) Box plot comparison results of each networks test (B) FCFormer error ratio
graph between real value and estimated value.
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demonstrating the model’s high precision and minimal error. These

results substantiate FCFormer’s robust generalization capabilities and its

potential applicability in authentic aquaculture settings. As illustrated in

Figure 14, the generated density maps provide a clear visualization of the

model’s capacity to accurately identify and count Atlantic salmon amidst
Frontiers in Marine Science 12
complex backgrounds and under varying lighting conditions.

Collectively, these findings affirm that the FCFormer model not only

excels on benchmark datasets but also its high accuracy and low error

rates in real-world application scenarios further validate the model’s

generalization capacity and the feasibility of its practical implementation.
TABLE 4 Comparative experiment.

Method Index

MAE MSE NAE Accuracy

P2Pnet (Song et al., 2021) 8.51 12.12 3.45 96.55%

Boosting (Lin et al., 2022) 12.11 19.42 5.08 94.92%

CSRNet (Li et al., 2018) 9.41 14.01 3.86 96.14%

DM-Count (Wang et al., 2020a) 9.79 12.80 4.89 95.11%

CAN (Liu et al., 2019) 10.62 15.66 4.44 95.56%

AMRNet (Liu et al., 2020) 12.65 17.08 4.70 95.30%

Transcrowd (Liang et al., 2022a) 10.99 16.37 4.87 95.13%

CCTrans (Tian et al., 2021) 10.68 15.03 4.77 95.23%

FCFormer (ours) 6.37 8.69 2.94 97.06%
Bold values represent the optimal results observed among the various methods.
A B

FIGURE 13

Comparison chart of ablation experiments. (A) Ablation experiment NAE, MSE, MAE comparison chart. (B) Ablation experiment accuracy
comparison chart.
TABLE 5 FCFormer ablation experiment.

Method MAE MSE NAE Accuracy

Twins-SVT 10.62 14.98 4.96 95.04%

Twins-SVT+① 8.79 12.38 4.09 95.91%

Twins-SVT+①② 7.57 10.42 3.78 96.22%

Twins-SVT+①②③ 6.37 8.69 2.94 97.06%
Bold values represent the optimal results observed among the various methods.
TABLE 6 The experimental results of FCFormer on real ocean data sets.

Method Index

MAE MSE NAE Accuracy

FCFormer 4.91 6.49 2.97 97.03%
Bold values represent the optimal results observed among the various methods.
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4.6 Future works

While FCFormer has achieved good results in fish school

counting, there are several areas for improvement in this study:
Fron
(1) Due to experimental constraints, the dataset had a relatively

uniform and single background, collected from only four

fish tanks. To enhance the algorithm’s robustness, it is

necessary to conduct more experiments in a wider range of

fish tanks and more complex background environments.

(2) Despite FCFormer’s performance being superior to other

comparative methods, there is still room for improvement.

Future efforts should focus on addressing occlusion issues.

(3) Given the practical applications of counting tasks, it could

be beneficial to validate FCFormer’s effectiveness in a

broader ecosystem to further demonstrate the model’s

generality and adaptability.

(4) Although FCFormer performs well on specific data sets, in

practical applications, especially in real-time monitoring or

management of ecosystems, the deployment of models is

crucial. In the future, we will explore model compression

and acceleration techniques so that FCFormer can run

efficiently on resource-constrained devices and meet the

requirements of real-time processing.
5 Conclusion

In response to the challenges posed by fish school detection and

the recognition of distant small targets, this paper proposed a fish

school detection algorithm, FCFormer, based on density map

regression. The design incorporated a BiCC aggregation network

with a CAM Count module, which not only enhanced the fusion of

low-level and high-level features but also significantly improved the

quality of the density maps by extracting better features.

Subsequently, efficient regression counting model CRMHead was

employed for density map prediction, resulting in an accuracy rate
tiers in Marine Science 13
of 97.06% for FCFormer. This represented a 2.02% improvement

over the Twins transformer baseline and outperformed other

comparative models. Moreover, this model demonstrated

excellent applicability and could be applied in intelligent feeding

recirculating aquaculture systems, providing a reliable algorithmic

reference for precise fish school counting.
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