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Thraustochytrids, as a distinct group of heterotrophic protists, have garnered

considerable attention owing to their remarkable adaptability in extreme marine

environments, pronounced capacity for metabolic regulation and prolific

production of high-value metabolites. The taxonomic classification of these

microorganisms presents a substantial challenge due to the variability in

morphological characteristics under different culture conditions. And this

undermines the efficacy of traditional classification systems on physiological

and biochemical traits. The establishment of a polyphasic taxonomic system

integrating genomic characteristics in the future will provide new avenues for

more accurate classification and identification. Thraustochytrids can effectively

accumulate bioactive substances such as docosahexaenoic acid (DHA),

eicosapentaenoic acid (EPA), squalene and carotenoids. Through fermentation

optimization and genetic modification, scientists have significantly enhanced the

production of these metabolites. Moreover, the application of thraustochytrids in

aquaculture, poultry and livestock feed has significantly improved animal growth

and physiological indicators meanwhile increasing their DHA content. Natural

bioactive substances in thraustochytrids, such as terpenoid compounds with

antioxidant properties, have been proposed for application in the cosmetics

industry. In the field of pharmacology, thraustochytrids have shown certain anti-

inflammatory and anti-cancer activities and provide potential for the

development of new oral vaccines. Additionally, they can degrade various

industrial and agricultural wastes for growth and fatty acid production,

demonstrating their potential in environmental bioremediation. Therefore,

thraustochytrids not only exhibit tremendous application potential in the field

of biotechnology, but also hold significant value in environmental protection

and commercialization.
KEYWORDS

thraustochytrid, protist, taxonomy, w-3 polyunsaturated fatty acid, squalene,
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1 Introduction

Thraustochytrids, belonging to the phylum Labyrinthulomycetes,

were ubiquitous marine heterotrophic protists and exert of

significance roles in coastal and oceanic ecosystems (Liu et al.,

2017; Xie et al., 2022). They were widely considered as significant

decomposers of organic matters in humus-rich environment or

phytoplankton bloom areas by secreting various extracellular

enzymes, e.g. cellulase, amylases and proteases (Liu et al., 2014b).

Thraustochytrids participated in the carbon cycle and particle sink

from the surface to the deep sea by facilitating the formation of

marine aggregates (Damare and Raghukumar, 2012). These were

contributed largely to the physiological and morphological features of

thraustochytrids such as the attachment of biflagellated zoospores

and ectoplasmic net to the substrates, hydrophobic effect of the cell

wall as well as the production of extracellular polysaccharides

(Damare et al., 2020). The diverse habitats of thraustochytrids have

led to the production of complex metabolites, positioning them

alongside marine bacteria, fungi and microalgae as crucial sources

for the development of natural bioactive substances. Due to

containing abundant w-3 polyunsaturated fatty acids (PUFAs),

squalene and carotenoids, thraustochytrids are excellent nutrient

providers for marine animals through marine food web. And they

exhibit great biotechnological application potentials in food, feed and

healthy industries.

W-3 PUFAs of thraustochytrids were mainly composed of

docosahexaenoic acid (DHA) which was significant for

modulating the cardiovascular system and promoting cell growth

and development of nervous system for human infants (Guesnet

and Alessandri, 2011; Graham et al., 2021). Recently, most of the

concerns about thraustochytrids were put on the biosynthesis

process optimization of PUFAs using fermentation strategies

combined with genetic modification and omics techniques as well

as wastes screening for fermentation substrates (Heggeset et al.,

2019; Yu et al., 2020; Wang et al., 2021a, b; Watanabe et al., 2022; Li

et al., 2023). Although former studies had testified the feasibility of

utilizing varied agricultural and industrial wastes for DHA

production by thraustochytrids, and exhibited great industrial

application potential in sustainable DHA production (Chi et al.,

2007; Lee Chang et al., 2013; Ryu et al., 2013; Song et al., 2017;

Villarroel Hipp and Silva Rodriguez, 2018). High-value utilization

of novel wastes such as tofu whey wastewater (Wang et al., 2020),

soybean curd wastewater (Lee et al., 2020), volatile fatty acids (Patel

et al., 2020), waste acid oil (Laddha et al., 2021), sugarcane bagasse

(Watanabe et al., 2022), dairy and brewery wastes (Russo et al.,

2021), digestate from methanization (de la Broise et al., 2022) and

food waste from Chinese restaurants (Li et al., 2023) were also

proved to be excellent feedstock alternatives for DHA production of

thraustochytrids. Future endeavors utilizing simple structural,

widely sourced one-carbon (methanol, formic acid) and two-

carbon (acetic acid) substrates for thraustochytrid fermentation

may yield even more exciting outcomes.

In addition, the downstream process of thraustochytrids based

biorefinery including lipid extraction and the refining procedure

had been developed increasingly. Several extraction methods of
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lipids containing high levels of DHA were established including

enzymatic ethanolysis (He et al., 2019), high shear-assisted solvent

extraction (Kwak et al., 2019), supercritical CO2 extraction (de Melo

et al., 2020) and ultrasound-assisted extraction (Li et al., 2021).

Remarkably, plenty of recent researches demonstrated that feeding

supplementation of biomass or extracts of thraustochytrids was

beneficial for aquatic animals such as Nile tilapia (dos Santos et al.,

2019), golden pompano (Xie et al., 2019), Pacific white shrimp (Xu

et al., 2022) and Penaeus monodon larvae (Visudtiphole et al.,

2021), as well as Japanese quail (Gladkowski et al., 2014), layer hen

(Moran et al., 2020) and steers (Carvalho et al., 2018) in improving

their growth performance, survival, immunity, anti-inflammatory

effect, and regulating the blood cells and gut microbiota (Souza

et al., 2020). Presumably, thraustochytrids will become an

important source of DHA in animal originated foods in our daily

diet, and thus improve human health (Figure 1).
2 Taxonomy challenges of
thraustochytrids: advancements and
issues in classification methods

Considering the great contribution of thraustochytrids to

marine ecosystem and humans, it is necessary to figure out the

taxonomy characters of Thraustochytriaceae sp. in order to take

better advantage of this kind of protists. In the past decades,

increasing novel thraustochytrid strains were progressively

obtained along with the development of isolation and culture

techniques for marine microorganism. However, due to the

morphological characters of thraustochytrids vary with their

habitats, the traditional classification system based on

morphological data are facing many challenges. Besides, the

molecular biological method which was widely applied in

microorganism identification, also led to confused taxonomy of

thraustochytrids because of these disordered reference sequences in

database. Moreover, the biochemical markers such as fatty acid

profiles had been used as classification features of thraustochytrids.

In the following paragraphs, we summarized the development and

current issues in the morphological, biochemical and molecular

phylogeny methods for thraustochytrid classification (Table 1).

Additionally, we discussed polyphasic taxonomy in order to

establish an accurate and scientific taxonomic method.
2.1 Morphological features: challenges and
evolution in thraustochytrid identification
and classification

At present, the characteristics of life cycle, morphology,

ultrastructure, biochemical markers and phylogenetic analysis

were typical characteristics for the taxonomy of thraustochytrids.

Except for the phylogeny, all the other features are traditional

taxonomic features and usually fail to correspond to the

phylogenetic relationship of thraustochytrids (Marchan et al.,

2017; Dellero et al., 2018a). The life cycle and morphological
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development of thraustochytrids are complex. And several attempts

have been made to redefine the taxonomic status and phylogenetic

relationship of them (Yokoyama and Honda, 2007; Yokoyama et al.,

2007; Doi and Honda, 2017; Dellero et al., 2018b). The taxonomic

features at the genus and species level were usually dependent on

the specific morphological features such as zoospore production

(Doi and Honda, 2017), and biochemical characteristics such as the

production of specific fatty acids and pigment compounds (Honda

et al., 1998). However, differences existing in the life cycle and

metabolic profiling with the variation of culture conditions

deepened the burden on homogenizing and systematically

defining taxa only using phenotypic traits (Raghukumar, 1988).

And this thus led to an excessive criteria for identifying and

describing specific taxa of thraustochytrids (Raghukumar, 1988).

When Aurantiochytrium limacinum was grown in artificial

medium, the cell body accumulating large amounts of

triglycerides at the end of the growth stage produced no

zoospores (Dellero et al., 2018a). While large amounts of

zoospores produced in oligotrophic medium such as artificial

seawater (Dellero et al., 2018a). Besides, the zoospores could

swim for at least six days in the absence of organic carbon

consuming intracellular triglycerides for energy (Dellero et al.,

2018a). While the addition of glucose rapidly triggered the

maturation of the zoospores (Dellero et al., 2018a). Therefore, it

is necessary to specify the medium for life cycle observation in the

identification of thraustochytrid strains (Raghukumar, 1988).

Presently, the most controversial taxonomic species of

thraustochytrids exist in the genus Thraustochytrium, a typical

genus of the family Thraustochytriaceae. Species Thraustochytrium.

sp. are characterized by the formation of zoospores, including the cell

wall shape of sporangium and the presence or absence of proliferates.

However, several taxonomic problems remain in this genus,
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features (Gao et al., 2013; Doi and Honda, 2017). For example, the

first and second species of this genus, T. proliferum and T. globosum,

were described by observing the morphological characteristics of

natural specimens without culture (Doi and Honda, 2017). The

cellular morphology of T. globosum was first observed on the

surface of green algae and was clearly distinguished from the

typical species T. proliferum by morphological characteristics,

namely the proliferates, zoospores and ectoplasms features

(Kobayashi and Ookubo, 1953). However, this strain has never

been registered in cultured specimens previously, so the taxonomic

characteristics cannot be recognized under artificial conditions

(Sparrow, 1936). It was believed that the genus Thraustochytrium

was composed of heterogeneous species (Sparrow, 1969). Later, Doi

and Honda (2017) successfully isolated a thraustochytrid strain

NBRC 112723, which had typical classification characteristics of T.

globosum in natural condition (Doi and Honda, 2017). But under

culture condition it showed similar taxonomic features with other

thraustochytrid species (Doi and Honda, 2017). Finally, combined

with its molecular phylogeny and the taxonomic criteria of typical

species T. proliferum, the genus Thraustochytrium was rearranged for

T. globosum. Thus, a new genus Monorhizochytrium was established

to clearly distinguish T. globosum (Doi and Honda, 2017).
2.2 Biochemical indicators: incorporating
biochemical characteristics for
enhanced identification

Biochemical characteristics such as lipids and carotenoids, were

proposed to be included into the taxonomy of thraustochytrids (Huang

et al., 2003; Yokoyama andHonda, 2007; Yokoyama et al., 2007). In the
FIGURE 1

Efforts surrounding thraustochytrid that need more attention include taxonomy, metabolic engineering and application research.
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early stage, thraustochytrids newly isolated from coastal areas of Japan

and Fiji had been divided into five main groups (DHA/DPAw6、
DHA/DPAw6/EPA, DHA/EPA, DHA/DPAw6/EPA/ARA, DHA/

DPAw6/EPA/ARA/DTA) based on PUFA profiles, which were

allocated into a single cluster based on the 18S rRNA gene (Huang

et al., 2003). However, this method failed to determine the PUFA
Frontiers in Marine Science 04
profiles of a specific genus, and they were used as biochemical markers

for thraustochytrids instead (Huang et al., 2003). Later, two secondary

biochemical markers, i.e. the PUFA and carotenoid profiles were

combined with the 18S rRNA marker, and were successfully used

for the identification of new thraustochytrid genera (Yokoyama

and Honda, 2007; Yokoyama et al., 2007). This provided a more

robust phylogenetic mechanism for a single phylogenetic branch of

Thraustochytriaceae sp. with the exception of genus Thraustochytrium.

The genus Thraustochytrium might contain subgenera. Because it did

not form a single phylogenetic group based on 18S rRNA and did not

exhibit a common PUFA or carotenoid spectrum between species

(Huang et al., 2003). Therefore, it is expected that new genera will be

proposed in the future.
2.3 Molecular phylogeny: advancements
and challenges in
thraustochytrid identification

Recently, morphological taxonomic features of thraustochytrids

have been largely replaced by molecular phylogenetic analysis (Pan

et al., 2017). However, the names of many taxa have not been

effectively reported because no designated type is specified in the

molecule database. Besides, multiple sequences for a single strain will

inevitably affect species identification and may lead to an

overestimation of genetic diversity. At present, molecular

classification based on the 18S rRNA gene has been widely used in

different biological systems. Recent studies had shown that no genetic

polymorphism existed in the mitochondrial cytochrome C oxidase

subunit I (COI) sequence of A. sp., which was conducive to

phylogenetic analysis (Nishitani and Yoshida, 2018). Besides,

primers designed for this gene can successfully amplify the COI

sequences of 16 thraustochytrid strains belonging to five genera, i.e.,

Thraustochytrium, Aurantiochytrium, Schizochytrium, Botrychytrium

and Parietichytrium, with clear single strips (Nishitani and Yoshida,

2018). Moreover, this mitochondrial gene was successfully sequenced

without gene cloning, indicating that the mitochondrial region can be

used for the identification and genetic diversity analysis of the related

genera (Nishitani and Yoshida, 2018). This great facilitated the

development of molecular phylogeny of thraustochytrids with

multigene locus. Thus, it was beneficial for the clear clarification of

natural evolutionary relationship between thraustochytrid species of

different genera, enabling their accurate identification.
2.4 Polyphasic taxonomy: integrating
phenotype and molecular traits for
genus reclassification

The taxonomic characteristics of Labyrinthulomycetes at the

genera level are mainly based on the cell morphology at different

growth stages. And the influence of culture conditions on

morphological characteristics enhances the instability of

morphological classification. However, based on 18S rRNA and

protein-coding sequence data, species in family Thraustochytriaceae

tend to form polyphyletic groups (Wang et al., 2019). The
TABLE 1 Taxonomic summary for each taxonomic criterion
of thraustochytrids.

Classification
method

Taxonomic
criterion

Detailed
index

Reference

Morphological
features
(the life cycle and
morphological
development)

General
morphology

Size, color and
shape of the
colonies, as well
as size and
shape of
the cells

Bongiorni et al.,
2005;
Yokoyama and
Honda, 2007;
Yokoyama
et al., 2007; Doi
and Honda,
2017; Marchan
et al., 2018

Life cycle Vegetative
reproduction,
amoeboid
reproduction or
sexual
reproduction

Proliferation Presence or
absence, and
the number

Sporangium Size, wall
thickness,
release mode of
spores and
persistence of
cell wall

Amoeboid cells Presence or
absence, and
their activity

Ectoplasmic
nets (EN)

Developed or
undeveloped,
branched or
unbranched,
long or not,
and the number

Biochemical
indicators

PUFAs profiles Composition of
DHA, DPA,
EPA and ARA

Huang et al.,
2003;
Yokoyama and
Honda, 2007;
Yokoyama
et al., 2007

Carotenoid
profiles

Canthaxanthin,
b-carotene,
astaxanthin,
phenicoxanthin
and
echinenon, etc

Molecular
Phylogeny

18S rRNA gene Primers for
building tree
sequences, i.e.
18S001/18S13,
SR01/SR12L1,
LabyA/LabyY

Honda et al.,
1999; Stokes
et al., 2002;
Ueda
et al., 2015

Mitochondrial
cytochrome C
oxidase subunit I
(COI) sequence

Primers for
building tree
sequences: COI-
Aur43F/
COI-Aur748R

Nishitani and
Yoshida, 2018
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phylogenetic system constructed using 18S rRNA gene sequences

showed that the genera Schizochytrium andUlkeniawere divided into

three and four branches, respectively. Combined with the distribution

characteristics of cell morphology, PUFAs and carotenoids, they were

individually reclassified into two new genera and three new genera

respectively (Yokoyama and Honda, 2007; Yokoyama et al., 2007). In
Frontiers in Marine Science 05
the constructed molecular phylogenetic system, the genus

Thraustochytrium is divided into at least seven different branches

(Yokoyama and Honda, 2007; Yokoyama et al., 2007). However, this

genus has not been reclassified so far (Marchan et al., 2017). In

addition, the molecular phylogenetic relationship between two newly

isolated thraustochytrid strains were similar, but there were
TABLE 2 Studies on significantly enhancing the production of high-value metabolites in thraustochytrids through fermentation optimization and
genetic modification.

Strains High-
value
metabolites

Enhancement strategies Poduction
improvement

Reference

Aurantiochytrium
sp. SK4

Fatty acids (FA)
and astaxanthin

Expression of the emoglobin gene from Vitreoscilla stercoraria (VHb) 44% higher total FAs and 9-
fold higher
astaxanthin contents

Suen
et al., 2014

Schizochytrium sp.
HX-308

FA profiles
and squalene

Introduction of exogenous w-3 desaturase gene Improved w-3/w-6 ratio,
converted 3% docosapentaenoic
acid (DPA) to DHA, and
reduced squalene in lipid
by 37.19

Ren
et al., 2015

Aurantiochytrium
sp. SD116

PUFA Overexpression of the G6PDH enhanced the proportion of
PUFA in lipids by 10.6%

Cui
et al., 2016

Schizochytrium sp.
HX-308

PUFA Supplementing lipase inhibitor Orlistat into the medium PUFA yield increased from 39.1
to 48.5 g/L

Ma et al., 2021

Aurantiochytrium
sp. SD116

DHA Heavy-ion irradiation technique was first used, then a two-step adaptive
laboratory evolution (ALE), low temperature based ALE and ACCase
inhibitor quizalofop-p-ethyl based ALE were employed

DHA content increased by 51% Wang
et al., 2021a

Aurantiochytrium
sp. SD116

DHA Combined metabolic engineering strategy including both disrupting one
copy of the fatty acid synthase gene to partial deactivate the competing
pathway of DHA biosynthesis, and the overexpression of acetyl-CoA
carboxylase and diacylglycerol acyltransferase to strengthen the substrate
supply and triacylglycerol synthesis

Increased DHA purity (61% in
total FAs) with a content of 331
mg/g dry cell weight

Wang
et al., 2021b

Aurantiochytrium
sp. PKU#SW8

PUFAs Nitrogen starvation A 1.7-fold increase of PUFAs Chen
et al., 2022

Aurantiochytrium
sp. SW1

DHA Strategic plasma mutagenesis coupled with chemical screening to obtain
mutant strains with high tolerance toward oxidative stress and high
glucose-6 phosphate dehydrogenase (G6PDH) activities

80% higher DHA production Nazir
et al., 2022

Thraustochytrium
sp. ATCC 26185

Squalene Supplementing 5 g/liter NaCl into the medium The amount of squalene
improved 1.9 folds

Zhang
et al., 2021

Aurantiochytrium
sp. 18W-13a

Squalene
and carotenoid

Constitutive expression of the 3-hydroxy-3-methylglutaryl-CoA
reductase (HMGR)

The content of squalene and
carotenoid were 5.54 (8.3 ±
0.09 mg/L) and 5.11 times (2.76
± 0.27 mg/g) higher
respectively in 400 mL culture.

Yang
et al., 2022b

Aurantiochytrium
sp. TWZ-97

Squalene Supplementing 0.7 g/L alpha-tocopherol into the medium Squalene concentration
improved 85% (240.2 mg/L),

Ali et al., 2023

Schizochytrium sp.
HX-308

Terpenoid Overexpression of acetyl-CoA c-acetyltransferase made more acetyl-coA
available for the synthesis of terpenes acetyl-CoA

The production of squalene, b-
carotene and astaxanthin was
increased 5.4, 1.8 and 2.4 times

Huang
et al., 2021

Aurantiochytrium
sp. O5-1-1

Astaxanthin Supplementing two-percent ethanol into the medium Astaxanthin productivity
increased 45-fold (2.231 mg/L)

Sakamoto
et al., 2023

Aurantiochytrium
sp. SZU445.

Carotenoids Overexpression of KAS III-like enzyme YxwZ3 The yield of total carotenoids
increased 4.88 folds

Song
et al., 2022

Aurantiochytrium
limacinum ATCC
MYA-1381

Astaxanthin Overexpression of a b-carotene hydroxylase (CrtZ) candidate gene A significant increase in
astaxanthin production per
culture (2.8-fold) and per cell
(4.5-fold)

Yoshimi
et al., 2023
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differences in growth cycle, morphology and biochemical

characteristics (Dellero et al., 2018a). And they were finally divided

into two different genera, i.e., Aurantiochytrium (CCAP 4062/1) and

Hondaea gen. nov (CCAP 4062/3) (Dellero et al., 2018a). Therefore,

phenotypic or molecular traits solely have obvious deficiencies in the

classification of T. sp. And the polyphase taxonomic method

combining phenotypic and molecular traits has great feasibility for

the reclassification of this genus.
2.5 Parasitic thraustochytrids in
Labyrinthulomycetes taxonomy:
pathogenicity and host interactions

Thraustochytrids coupled with labyrinthulids had been

preliminarily reported to be associated with pathological condition

in the Lesser Octopus Eledone cirrhosa, with symptoms of

progressive ulceration of the skin and followed by oedema of body

tissues and death (Polglase, 1980). In addition, Quahog Parasite

Unknown (QPX), a protistan, had caused high mortalities of wild

hard clamsMercenaria mercenaria in various regions of Canada and

America (Susan et al., 2002). And they were identified to be a

member of phylum Labyrinthulomycota based on the morphological

and ultramicrostructure features as well as 18S rRNA gene sequences

(Maas et al., 1999; Ragan et al., 2000). However, all the QPX protists

isolated from infected hard clams from Duxbury, Massachusetts,

were proved to be the same species employing phylogenetic analysis

(Stokes et al., 2002). Furthermore, possibility existed that the

molecular genetic and physiological variation exists among QPX

isolates responsible for outbreaks of QPX disease in different areas

(Qian et al., 2007). And the variation could most probably be found

at the site that directly involved in and potently under selective

pressure for the virulence (Qian et al., 2007). Moreover,

thraustochytrid had been isolated from the surface mucus of the

hermatypic coral Fungia granulosa, which established a symbiotic

relationship with corals through secreting metabolites such as fatty

acids and degradable enzymes (Harel et al., 2008). Future research on

the isolation, physiological and biochemical characteristics of

parasitic thraustochytrid strains will undoubtedly enrich our

understanding of these Labyrinthulomycetes protists.
3 Composition analysis of
thraustochytrids: unveiling
bioactive components and
ecological significance

3.1 Biotechnological exploitation of
thraustochytrids: advancements in
metabolic product research and
enzymatic potential

Marine microorganisms, which have long thrived in extreme

environments of low temperature and high pressure, continually
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adjust their metabolic activities to adapt to external conditions.

Marine microorganisms represent a treasure trove for the discovery

of natural bioactive metabolic products. And researchers have

obtained many potential medicinal active substances from these

organisms. Thraustochytrids are most notably recognized for their

rich content of natural bioactive components such as PUFAs,

squalene and carotenoids, demonstrating immense application

potential in industries such as food, pharmaceuticals, feed and

cosmetics. Additionally, the presence of substantial amounts of

long-chain saturated fatty acids and monounsaturated fatty

acids in thraustochytrids makes them a promising candidate for

biodiesel production. Furthermore, the lipid and terpenoid

components in thraustochytrids can be simultaneously extracted

through fractionation, enhancing the efficiency of biomass resource

utilization. Research on the metabolic products of thraustochytrids

is focused on increasing the yield of these high-value products

through biotechnological methods. It also aims at identifying

substrates that are efficiently utilized by thraustochytrids, which

are widely available and cost-effective, in order to enhance their

commercial application potential by reducing production costs.

Additionally, employing Raman spectroscopy to characterize the

PUFAs and carotenoids in thraustochytrids offers the ability to

monitor the composition within individual cells and variations

among cells (Sasaki et al., 2023). This method, with its short

analysis time and non-destructive nature, holds great potential for

application in the production of thraustochytrid metabolic products

and molecular domestication breeding (Sasaki et al., 2023).

Due to the high yield and wide application, the intracellular

fatty acids and terpenoids in thraustochytrids currently constitute

a research hotspot in the biotechnology field. However, the

extracellular polysaccharides and enzymes of thraustochytrids,

detected in lower quantities, have attracted the attention of only a

few researchers. Given their natural habitat and heterotrophic

lifestyle, thraustochytrids are capable of degrading extracellular

macromolecules like proteins and polysaccharides, thus possessing

a variety of extracellular enzyme synthesis and secretion capabilities.

The potential and activity of thraustochytrid extracellular enzymes

might be underestimated, and related research lacks in-depth study.

Limited studies indicate that nitrogen nutrient limitation can induce

protease activity in S. aggregatum ATCC 28209, suggesting that

nutrient limitation strategies could be an effective means to stimulate

high-level synthesis of extracellular enzymes (Man et al., 2022).
3.2 Discovery and potential of
low-abundance compounds in
thraustochytrids: advances in
marine biopharmaceuticals

In recent years, components in thraustochytrids present in

extremely low quantities have garnered increasing attention from

scientists. A new acidic morpholine derivative containing glyceride

was isolated and identified from A. sp., accounting for about

0.1~0.4% of the freeze-dried cells (Kaya et al., 2021). Its polar

part is 2-hydroxy-3-oxomorpholino propionic acid, which may
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play a significant role in the lifecycle of thraustochytrids and other

organisms (Kaya et al., 2021). Morpholine, a nitrogen and oxygen-

containing six-membered heterocyclic compound, is extremely

rare in biological compositions (Kaya et al., 2021). Besides, it is

an important raw material in many industrial and organic

syntheses, often used in the field of pharmaceutical chemistry

(Kaya et al., 2021). From 2 kilograms of biomass of A. mangrovei

BT3, 20 milligrams of (24R)-4a-methyl-5a-stigmasta-7,22-dien-

3b-ol (AME1) with 94% purity was obtained with a lipid-lowering

effect (Hoang et al., 2022). Besides, a new sterol and 16 known

compounds were isolated and identified from the methanol extract

of T. pachydermum TSL10 (Thuy et al., 2023). Among them, sterols

1-6 showed significant antibacterial activity against Gram-positive

bacteria (Enterococcus faecium TCC29212, Staphylococcus aureus

ATCC25923 and Bacillus cereus ATCC14579) and yeast (Candida

albicans ATCC10231), serving as potential antibacterial drugs

against Gram-positive bacteria (Thuy et al., 2023). With the

saturation of researches on medicinal plant resources, it

is promising to explore natural active pharmaceuticals from

marine protists like thraustochytrids which has truly begun.

However, the extremely low yield of active products is one of the

significant challenges especially for some secondary metabolites,

with products at microgram or milligram levels. Microbial

fermentation is one of the key methods for rapidly obtaining

related resources. But there are various limitations in the actual

fermentation process. Despite this, microbial fermentation has

become one of the important solutions for sourcing marine

pharmaceutical development.
3.3 Ecological insights: unraveling the
compositional complexity
of thraustochytrids

Additionally, analyzing the compositional components of

thraustochytrids can provide new perspectives on revealing their

ecological roles. Laboratory-cultured marine thraustochytrids

including A. sp., Botryochytrium radiatum and S. sp., can produce

methyl halides that catalyzing the depletion of stratospheric ozone,

potentially serving as sources of methyl halides in marine

environments (Sato et al., 2018). Additionally, analyses of the C,

N, H and S elemental composition and cell mass quantification of

seven thraustochytrid strains isolated from different marine habitats

revealed that the proportions of C and H elements were significantly

higher in the stationary phase than in the exponential phase (Sen

et al., 2021). While the proportions of N and S were the opposite,

implying the role of thraustochytrids in the cycling of these

elements (Sen et al., 2021). Furthermore, this study also

discovered that the carbon density of thraustochytrids cells has

been underestimated, suggesting that thraustochytrids contribute

more significantly to the oceanic carbon pool than previously

thought, surpassing bacteria in this regard (Sen et al., 2021).

Consequently, future analyses of the chemical composition of

thraustochytrids will provide more insights into their ecological

functions and potential biotechnological applications.
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4 Metabolic engineering strategies in
thraustochytrids: boosting production
of lipids, squalene and carotenoids

4.1 Optimizing fatty acid synthesis in
thraustochytrids with molecular
engineering strategies

Thraustochytrids, which are significant marine oleaginous

microorganisms, could accumulate saturated, monounsaturated

and PUFAs, constituting over 50% of their dry cell weight. The

saturated fatty acids primarily include palmitic acid (C16:0), myristic

acid (C14:0) and stearic acid (C18:0). While the monounsaturated

ones mainly consist of C16:1 and C18:1. Both saturated and

monounsaturated fatty acids are crucial for the synthesis of

biodiesel. Polyunsaturated fatty acids, composed of w-3 fatty acids

such as DHA, EPA and arachidonic acid, hold significant economic

value and are a key focus in the biotechnological research

of thraustochytrids.

Early researchers improved intracellular lipid production by

optimizing the fermentation conditions for thraustochytrids. They

found that stress conditions such as low temperature (Ma et al.,

2017), low or high dissolved oxygen (Sun et al., 2016; Heggeset et al.,

2019) and nitrogen starvation (Chen et al., 2022) could stimulate

the accumulation of intracellular lipids. Laboratory domestication

and phased cultivation strategies (Wang et al., 2021a; Chen et al.,

2022) have been developed. Additionally, the inclusion of lipase

inhibitors (Orlistat) (Ma et al., 2021), antioxidants (Zhang et al.,

2020) and plant hormones (Yu et al., 2016) in the culture medium

can influence PUFAs metabolism and promote lipid accumulation.

While fermentation optimization could increase the lipid yields, the

targeted modification and alteration of key genes in the fatty acid

synthesis pathway represent a rational design approach in

molecular breeding with tremendous potential for application

(Table 2A). For example, overexpressing glucose-6-phosphate

dehydrogenase (Cui et al., 2016) and disrupting the 2,4-dienoyl-

CoA reductase (Liang et al., 2022) had both been shown to enhance

the accumulation of PUFAs in thraustochytrids. By knocking out a

copy of the fatty acid synthase gene to deactivate the competitive

pathway of DHA biosynthesis, and overexpressing acetyl-CoA

carboxylase and diacylglycerol acyltransferase to enhance

substrate supply and triglyceride synthesis, mutant strains of

thraustochytrids have been developed (Wang et al., 2021b). The

DHA purity in the intracellular lipids of these mutants can account

for 61% of the total fatty acids, offering a significant approach for

the production of high-purity DHA in thraustochytrids (Wang

et al., 2021b). Many scholars have also experimented with non-

rational design through mutagenesis and selection, obtaining

mutant strains with excellent traits and significant application

potential (Qi et al., 2017; Liu et al., 2020b; Nazir et al., 2022).

Furthermore, researchers are continually seeking new effective

molecular targets to provide novel insights into the rational

design of thraustochytrid strains and the construction of

thraustochytrid cell factories (Lan et al., 2021; Chi et al., 2022).
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4.2 Strategies for enhancing squalene
production in thraustochytrids through
metabolic engineering

Squalene is a class of terpenoid hydrocarbons, an important

precursor in cholesterol biosynthesis, present in many

microorganisms, higher plants and animals. In thraustochytrids,

the accumulation of squalene can account for about 20% of the cell

dry weight (Kaya et al., 2011; Patel et al., 2022). The biosynthetic

pathways of squalene in organisms include the mevalonate (MVA)

and methyl-Derythritol 4-phosphate (MEP) pathways. In

thraustochytrids, the MVA pathway is predominant and is

characterized by low flux. The peak accumulation of squalene

usually occurs on the second to third day of cultivation, when

most strains are in the logarithmic growth phase. Further extending

the cultivation period drastically reduces the squalene yield, to the

point where it may not be detectable. Additionally, thraustochytrid

strains in squalene synthesis research are mainly focused on the

Aurantiochytrium and Schizochytrium genera. The intracellular

accumulation of squalene can be improved by optimizing

fermentation culture parameters or using metabolic engineering

strategies (Table 2B). The bioactive substance a-tocopherol
significantly increases the squalene production in A .

urantiochyum sp. TWZ-97 by reducing the levels of reactive

oxygen species and upregulating key genes in central carbon

metabolism pathways (Ali et al., 2023). Compared to sodium-free

media, the addition of sodium chloride to the culture medium of T.

sp. ATCC 26185 doubled the concentration of squalene to

123.6 mg/L (Zhang et al., 2021). This is due to sodium induction

shifting energy production from carbohydrate to lipid oxidation

and increasing ATP generation. Thereby enhancing squalene

synthesis by overcoming thermodynamic constraints in low flux

pathways through increasing ATP consumption (Zhang et al.,

2021). Moreover, the expression and overexpression of type-2

Acyl-CoA:diacylglycerol acyltransferases (DGAT2) genes,

T66ASATb in A. sp. T66 and its homologs AlASATb in A.

limacinum SR21, could improve squalene accumulation by up to

88% in A. sp. SR21 (Rau et al., 2022). Additionally, the expression of

3-hydroxy-3-methylglutaryl-coenzyme A reductase 29 (HMGR) is

the bottleneck of squalene synthesis, and its constitutive expression

could improve squalene production in A. sp. 18W-13a (Yang et al.,

2022b). Furthermore, the discovery of new molecular targets and

the development of efficient gene editing tools will accelerate the

construction of thraustochytrid squalene cell factories (Huang

et al., 2021).
4.3 Enhancing carotenoids production in
thraustochytrids with genetic
manipulation strategies

Carotenoids are valuable tetraterpene pigments, and could

be synthesized by various organisms such as microorganisms,

plants and animals. The majority of organisms capable of

synthesizing carotenoids, such as cyanobacteria and microalgae,

are phototrophs. However, the non-phototrophic protists like the
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labyrinthulids can acquire the ability to synthesize carotenoids

through horizontal gene transfer from Actinobacteria,

Proteobacteria and archaea (Rius et al., 2023). Thraustochytrids

can accumulate high levels of astaxanthin and are characterized by

short growth cycles and simple astaxanthin extraction processes,

making them a promising source of this compound (Table 2C). The

synthesis pathway of astaxanthin in thraustochytrids is not fully

understood. But overexpression of the b-carotene hydroxylase gene
(crtZ) in A. limacinum significantly increases astaxanthin content

per culture volume (ng/mL) and per cell (ng/mL * OD) by 2.8 and

4.5 times, respectively (Yoshimi et al., 2023). Furthermore, extended

light exposure increases astaxanthin yield in wild-type strains and

decreases b-carotene content, indicating that light duration is a

critical factor influencing astaxanthin synthesis (Yoshimi et al.,

2023). Under light conditions, A. limacinum reduces ATP

consumption to decrease the reactive oxygen species (ROS)

occurrence in mitochondria while accumulating astaxanthin to

prevent ROS damage (Kubo et al., 2022). The overexpression of

the 3-ketoacyl-ACP synthase (KAS) III-like gene YxwZ3 increases

carotenoids production in A. sp. SZU445, including b-carotene
(37.96 mg/g), phytoene, b-cryptoxanthin, antheraxanthin, a-
cryptoxanthin and echinenone (Song et al., 2022). This results in

the reduced accumulation of fatty acids by increasing the

consumption of malonyl-CoA through the MVA pathway of

carotenoid synthesis (Song et al., 2022). The geranylgeranyl

pyrophosphate synthase encoding gene (AlGGPPS) and

isopentenyl pyrophosphate isomerase encoding gene (AlIDI) from

A. limacinumMYA-1381 were integrated into the de novo carotene

biosynthetic pathway in Escherichia coli, which increased the

carotenoid by 2.99-fold compared with the initial strain (Shi

et al., 2023). This indicated the participation of the two novel

genes functioned coordinately in the carotene biosynthesis and

provided novel functional elements for carotenoid engineering

improvements (Shi et al., 2023). These studies provide vital

references for biosynthesis research of carotenoids and other

metabolic products in different thraustochytrid species.
4.4 Challenges in the development of
genetic tools for thraustochytrids

Compared to model microorganisms such as Escherichia coli

and Saccharomyces cerevisiae, non-model microorganisms like

thraustochytrids often exhibit more complex phenotypic

characteristics. This offers significant potential advantages for

future scale production of biofuels and chemicals (Riley and Guss,

2021). Developing precise genetic editing tools for these non-model

microorganisms is crucial. As it allows for rational optimization of

their metabolic pathways, and thereby enhances the efficiency of

target product synthesis (Riley and Guss, 2021). Metabolic

engineering techniques enable microorganisms to meet the titer,

rate and yield requirements for industrial applications and to

synthesize a diverse array of metabolic products (Riley and Guss,

2021). However, the research and application of non-model

microorganisms are limited by the lack of efficient genetic

manipulation tools, hindering their widespread use and
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development of high-performance strains (Riley and Guss, 2021).

Research has been conducted on genetic tools for marine protists

across different taxonomic groups, yet no universally applicable

solutions have been found (Faktorová et al., 2020). The diversity in

genomic sequence features as well as differences in cell structure and

morphology lead to significant variations in the strategies for

exogenous DNA transformation and selection of DNA elements

among different microorganisms. Consequently, the genetic

manipulation schemes developed for thraustochytrids have largely

been restricted to one or a few strains (Rau and Ertesvåg, 2021).

However, advances in sequencing technology and cost reductions,

along with the increase of omics analysis data and DNA synthesis

technology, have made it more convenient to obtain genomic

sequence information and identify gene editing targets. This

facilitates the development of genetic tools and the optimization

of metabolic engineering strategies (Rau and Ertesvåg, 2021).

Furthermore, it is essential to establish an accurate species

classification system based on the physiological, biochemical and

molecular biological characteristics of thraustochytrids. This will

provide a more practical reference for developing genetic tools for

new strains and related species within the same genus or species.
5 Potential applications in nutritional
supplementation and
pharmaceutical industry

For the abundant amounts of high-value-added metabolites,

especially unsaturated fatty acids (DHA, EPA), squalene and

astaxanthin, thraustochytrids had been proposed to be applied in

various fields, such as Feed, pharmacological and cosmetics

industries. Most of the applicational researches for thraustochytrids

were focused on the animal feeds of aquatic animals, poultry and

livestock with improved growth and physiological indicators, as well

as the higher DHA contents in their bodies or eggs (Yamasaki et al.,

2007; Carvalho et al., 2018; dos Santos et al., 2019; Keegan et al.,

2019). Besides, some natural products such as terpenoids in

thraustochytrids could exert antioxidant effect, thus substitute for

the antioxidants and pigments chemicals in cosmetics. In addition,

thraustochytrids had exhibited anti-inflammatory and anti-cancer

activities (Shakeri et al., 2017; Takahashi et al., 2019), and were

proposed to be used to develop oral vaccines for their beneficial

characters (Dahmen et al., 2023). The active lipids and defatted by-

products of thraustochytrids with important nutritional value, have

great potential in the development of functional food (Paulo et al.,

2020; Reboleira et al., 2021).
5.1 Thraustochytrid supplementation
strategies in enhancing feed nutrition

5.1.1 Enhancing fish nutrition with
thraustochytrid-based feeds

W-3 long chain polyunsaturated fatty acids (LC-PUFAs)

especially DHA and EPA, were proposed to exert vital effects in
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not only regulating normal physiological activities but the resistance

to inflammation related diseases, which were thus suggested to be

supplemented into human daily diets (Liu et al., 2014a). As is

known, deep-sea fish accumulating large amounts of LC-PUFAs by

preying on primary marine microalgae and microorganisms with

PUFAs metabolic pathways, was the traditional sources. In the last

decades, thraustochytrids have been considered as potential

alternatives of DHA to traditional fish oils for several beneficial

characters in growth and metabolism. On the other hand, marine

animals were supposed to utilize and store LC-PUFAs in their

bodies through diet supplementation and simultaneously exhibited

excellent growth and physiological indicators. Besides, the

feasibility of substitution of thraustochytrid oils for fish oils in

full or partially has been demonstrated in several different

marine animals.

In the aquatic feed industry, significant efforts had been made

on exploring sustainable and environmental alternatives for

fishmeal and fish oils (Torrecillas et al., 2017). Terrestrial meals

and vegetable oils with high protein and lipid contents were

excluded for undesired and adverse effects, for example,

absorption suppression for amino acids, vitamins and minerals, as

well as the deficiency in LC-PUFAs (Krogdahl et al., 2010; Tocher,

2015). Meanwhile, focus was paid on marine microalgae and

microorganism, which was considered as desirable baits with

certain physiological active substances. Among them, marine

heterotrophic thraustochytrids attracted the most attention for

absolute advantages e.g. fast growth, high DHA content and

wide-sourced substrates.

Generally, dietary supplementation of thraustochytrids

belonging mainly to two genera, namely Aurantiochytrium and

Schizochytrium, could improve growth performance and PUFAs

content of fishes. To investigate the feasibility of complete

replacement of fish oil with plant oil mixtures (canola oil and

palm oil) and A. sp. in juvenile yellowtail Seriola quinqueradiata, A.

sp. supplementation at 0% (AM0), 1% (AM1), 2% (AM2), 3%

(AM3) and 4% (AM4) into the mixtures of canola oil and palm oil

was studied (Fukada et al., 2019). Results showed that the AM2

group exhibited significant higher final body weight than the AM0

group, thus indicated the beneficial effect of A. sp. on yellowtail

aquaculture (Fukada et al., 2019). In addition, Nile tilapia juveniles

fed A. sp. meal had significantly greater weight gains when

compared to fish fed cod liver oil (CLO) diet, so as the DHA,

EPA and LC-PUFAs contents (Nobrega et al., 2019). Similar results

were obtained as for shrimp. A. limacinum BCC52274 (AL)

enriched by instar-II Artemia benefited the growth performance

of post-larval (PL) shrimp with an increasing trend of PL biomass

gain as percent of the enriched meals increased (Visudtiphole

et al., 2018).

Generally, thraustochytrid-based feed has been shown to

improve growth, metabolism, digestion, immunity and

reproductive indices in farmed fish species such as Nile tilapia

(Batista et al., 2021; Nobrega et al., 2022; Luc et al., 2023), European

sea bass (Soudant et al., 2022),Micropterus salmoides (Habte-Tsion

et al., 2020), Salmo salar (Wei et al., 2021), Cyprinus carpio (Eljasik

et al., 2020), humpback grouper (Cromileptes altivelis) (Sun et al.,

2019) and Oncorhynchus mykiss (Sevgili et al., 2019). And it is
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applicable in the nutrition of larval feeds such as rotifers and

Artemia nauplii and in DHA enrichment of fish flesh (Yamasaki

et al., 2007). Recent transcriptomic approaches have explored the

positive impacts of thraustochytrids supplementation on growth,

metabolism, immunity and gonadal development in zebrafish, a

model organism and provide a new molecular perspective for the

application of thraustochytrids feed (Yang et al., 2022a; Huang

et al., 2023). Furthermore, compared to other PUFAs sources, such

as marine microalgae and oilseed crops, thraustochytrids, with their

heterotrophic nature, rapid growth and high-density fermentation

capabilities, offer unparalleled advantages. The addition forms of

thraustochytrids in feed primarily include lipid extracts and freeze-

dried biomass. Lipid extracts in feed are probably more readily

absorbed and utilized by animals. While due to the thick cell walls of

the organisms, the freeze-dried biomass is not easily digested in the

animal gut. Therefore, broken-cell freeze-dried biomass appears

more advantageous for simplifying feed preparation processes and

improving food utilization rates. In summary, to further explore the

potential of thraustochytrids as a sustainable feed resource, future

research could focus on the effects of feed supplementation at

different aquaculture stages, application in various aquaculture

systems, long-term and short-term impacts on farmed animals, as

well as its effects on aquaculture water environments. Furthermore,

expanding the application of thraustochytrids feed to a broader

range of aquatic animals could significantly contribute to the

development of the aquaculture industry.

5.1.2 The role of thraustochytrid supplements in
growth, health and environmental sustainability
in shrimp aquaculture

Long-chain PUFAs play a crucial role in the growth,

development and health maintenance of shrimps, which have

limited capacity to synthesize these essential fatty acids and rely

on dietary intake from feed. Firstly, the incorporation of

thraustochytrid biomass has been found to promote the healthy

growth of shrimps and PUFAs accumulation in their tissues.

Utilizing A. mangrovei fiku008 as a juvenile shrimp feed

supplement has been shown to enhance growth rate, survival rate

and tissue PUFA content in Penaeus semisulcatus (Yilmaz et al.,

2023). Additionally, direct supplementation of A. limacinum

BCC52274 in feed significantly improved growth rate and survival

of Litopenaeus vannamei juveniles and enhancing their lipid profile

meanwhile (Visudtiphole et al., 2021). Furthermore, replacing fish

oil entirely with S. sp. in shrimp feed did not adversely affect growth

performance, survival rate and muscle fatty acid composition (Allen

et al., 2019). Secondly, supplementation of thraustochytrid biomass

can enhance the antioxidant capacity of shrimps. Low-fishmeal

diets supplemented with S. limacinum significantly improved the

antioxidant capacity of Litopenaeus vannamei, altering its

transcriptomic expression patterns, particularly genes related to

antioxidant and immune functions, thus enhancing the health

status of the shrimp (Xu et al., 2022). Moreover, the biofloc

technology is an emerging and environmentally friendly

aquaculture method. A biofloc system integrated S. sp. with

Lactobacillus plantarum maintained suitable water quality
Frontiers in Marine Science 10
conditions, promoted shrimp growth and reduced concentrations

of common pathogens (e.g., Vibrio spp.) (Pacheco-Vega et al.,

2018). It is thus demonstrated to have obvious competitive

advantage in maintaining water quality and promoting shrimp

growth (Pacheco-Vega et al., 2018). Future developments in

encapsulation technologies for thraustochytrids, such as

microencapsulated bacterial feed (Willer et al., 2020), and the

development of thraustochytrid-based probiotic consortia, are

significant for developing sustainability aquaculture feeds.

5.1.3 Enhancing nutritional value of
poultry products through
thraustochytrid supplementation

Chicken meat and eggs, being among the most consumed

protein sources in human diets, can benefit the public health

improvement from enhanced nutritional value, particularly in

increasing w-3 fatty acid content. Compared to traditional w-3
sources such as salmon oil (SO) and flaxseed oil (FO), the

supplementation of Schizochytrium powder (SP) in chicken feed

could significantly increasing DHA content in thigh meat (Jeon

et al., 2022). While SO and FO treatments showed notable increases

in EPA and linolenic acid (ALA), respectively (Jeon et al., 2022).

Furthermore, the tissue DHA concentrations increased by adding

A. limacinum throughout the whole life and fattening periods of

broiler chickens (Keegan et al., 2019). Though DHA enrichment

levels supplemented in two different period were similar, the fat

deposition was unrelated to increased w-3 PUFA levels, likely

influenced by other nutritional and genetic factors (Keegan et al.,

2019). Adding A. limacinum as w-3 fatty acid sources significantly

altered certain skeletal characteristics of ISA Brown and Shaver

white breeders and progeny, influencing the bone mineralization

process in chicken embryos, with varying impacts on the skeletal

health of pullet of the two breeds (Kakhki et al., 2020). Therefore,

the enrichment of PUFAs in chicken eggs and tissues is related to

factors such as the DHA source and dose, feeding duration and

chicken breed.

Except for DHA, thraustochytrids also contain antioxidants

such as carotenoids and squalene, stabilizing DHA in its non-

oxidized state. Supplementation with DHA-rich thraustochytrids

significantly increased the DHA content and other bioactive

components, such as carotenoids and tocopherols in broilers

meat, effectively improving the nutritional value of the meat

(Kalogeropoulos et al., 2010). Adding 1.0% A. sp. to layer chicken

feed significantly increased DHA content in egg yolks within

approximately 30 days, reduced the w-6/w-3 ratio and improved

the anti-atherogenic and anti-thrombotic index of egg yolks (Liu

et al., 2020a). Additionally, carotenoid supplementation from

thraustochytrids enhanced egg yolk color, helped to slow down

lipid oxidation and increased the lipid oxidation stability of DHA-

rich egg yolks (Liu et al., 2020b). Future studies are anticipated to

further investigate the impact of long-term storage and refrigeration

conditions on DHA retention in egg yolks. Additionally, It is

expected to explore the mechanisms of absorption and conversion

of DHA and carotenoids in egg yolks, which are expected to

enhance the nutritional value of eggs.
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5.1.4 Omega-3 levels in livestock and insect
feeds with thraustochytrid supplements

Meat from the beef, lamb and pork are also staple delicacies in

the public daily diet. Although the addition of w-3 fatty acids to the
feed of these large livestock can increase the w-3 fatty acid content

in the meat, the impact on growth, meat color and flavor cannot be

overlooked. The supplementation of S. limacinum in cattle feed

increased the w-3 fatty acid content in beef, but also increased the

degree of meat oxidation, adversely affecting color stability and

flavor (Phelps et al., 2016). Adding S. sp. to steer feed improved the

w-3 fatty acid content in beef and enhanced insulin sensitivity, but

had no significant effect on the growth and carcass characteristics

(Carvalho et al., 2018). Feeding pigs with DHA-rich Schizochytrium

dry biomass improved the growth efficiency, lowered blood

triglyceride levels and promoted the expression of fat oxidation

genes (Jon Meadus et al., 2011). The longissimus dorsi muscle of

pigs, a prime part of pork, showed increased DHA content with the

increasing addition of A. limacinum in the diet (Moran et al., 2017).

And the maximum values were 2.7 and 4 folds higher than the

control in pig longissimus dorsi and back fat, respectively, with a

greater increase in sows compared to boars (Moran et al., 2017).

When fed with S. sp., the lambs showed slower growth rates but did

not affect carcass weight and GR fat content (Burnett et al., 2016).

Overall, research on thraustochytrid supplementation in feed for

large livestock is relatively limited. This may be due to the larger size

of livestock, requiring a greater amount of thraustochytrids

biomass, minor positive effects on growth and DHA enrichment

and economic costs, have not shown a clear advantage.

Additionally, the black soldier fly, Hermetia illucens (HI), due to

its high reproduction rate and nutritional value, is a valuable

alternative ingredient for feed and food production. A substrate

containing 10% biomass of S. sp. for insect rearing increased thew-3
PUFAs content of HI pre-pupae, while higher proportions of S. sp.

did not provide additional nutritional value (Truzzi et al., 2020).

Therefore, future research could focus more on feed addition of

thraustochytrid biomass or lipid extracts for insect, to develop

novel functional feed and food nutrition components derived

from insects.
5.2 Harnessing thraustochytrids for
nutraceutical and functional
food advancements

Existing research has demonstrated that thraustochytrid PUFAs

or intracellular lipid extracts possess anti-inflammatory (Takahashi

et al., 2019), antioxidant (Hien et al., 2022; Kalidasan et al., 2022;

Kaliyamoorthy et al., 2023), neuroprotective (Hien et al., 2022) and

anticancer properties (Shakeri et al., 2017; Kalidasan et al., 2022),

highlighting their significant medicinal value (Table 3). Dietary

supplementation with DHA has been proven to effectively elevate

plasma total DHA levels (reaching 65 mM) (Mayer et al., 2003).

Additionally, terpenoids like squalene and carotenoids also exhibit

potent antioxidant, anticancer and anti-inflammatory activities.

However, when co-produced with PUFAs in thraustochytrids,
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they are often emphasized as high-value by-products to reduce

production costs . Among all thraustochytrid species ,

Schizochytrium was the only genus approved for commercial

production of DHA-rich oils primarily for food and nutraceutical

industries with completed feed safety evaluations for animals during

2001-2003 (Hammond et al., 2001a, b, c; Abril et al., 2003). It’s

worth noting that currently only DHA-enriched oils extracted from

S. sp. are permitted for use as nutritional additives, but not whole

cells. Moreover, oils with high DHA content produced from

genetically modified thraustochytrids are not accepted by the food

and pharmaceutical industries in many countries (Wang et al.,

2021a). Upon the European Commission’s request, the European

Food Safety Authority (EFSA) Panel on Nutrition, Novel Foods and

Food Allergens (NDA) evaluated the safety of S. sp. oil, specifically

strains WZU477, FCC-3204, TKD-1 and CABIO-A-2, all belonging

to the species S. limacinum, as novel foods under Regulation (EU)

2015/2283 (Turck et al., 2020; Turck et al., 2021a, b; Turck et al.,

2023a, b). These oils, intended for use in infant and follow-on

formulae with DHA at a level of 20-50 mg/100 kcal based on

Regulation (EU) 2016/127 guidelines (Turck et al., 2020; Turck

et al., 2021a; Turck et al., 2023a, b). And strain FCC-3204 was added

for food supplements at up to 1 g DHA/day for adults (excluding

pregnant and lactating women) (Turck et al., 2021b). These

additions were deemed safe despite the absence of strain-specific

toxicological studies. This conclusion was drawn from existing

toxicological data on Schizochytrium-derived oils, their Qualified

Presumption of Safety (QPS) status, free from marine biotoxins and

viable cells production process. However, the oil from strain S. sp.

ATCC-20889 was not confirmed safe due to insufficient species-

level characterization and a potential unknown toxin risk (Turck

et al., 2022). It highlighted the EFSA’s cautious approach to

ensuring food safety and the necessity for detailed data on

specific strains.

Furthermore, the genus Aurantiochytrium, closely related

evolutionarily to Schizochytrium, exhibits rapid growth, high

DHA content and physiological activities such as anti-

inflammation, antioxidant and neuroprotection, becoming a

significant target in pharmacological research. However, studies

on the dietary safety and toxicology of Aurantiochytrium for

animals are currently scarce. Limited research indicates that

unextracted Aurantiochytrium biomass, when added to dog food

at recommended levels (5 times) and fed for 15 days, showed no

adverse effects on the health and safety of adult Beagles (Moran

et al., 2018). Studies evaluating the toxicological potential of

unextracted A. limacinum biomass as a food additive observed no

significant mutagenic activity, genotoxic activity, induction of

genotoxicity in human lymphocytes and death or acute toxicity

(Dillon et al., 2020). Additionally, scientists have already initiated

attempts to produce anti-SARS-CoV-2 antibodies related to

interventions for Coronavirus disease 2019 (COVID-19) using A.

acetophilum as a host (Dahmen et al., 2023). Furthermore, the

development of novel functional foods enriched with DHA,

particularly a yogurt enriched with A. sp. biomass (Paulo et al.,

2020), appears to underscore the advantages of thraustochytrid-

sourced DHA. Unlike DHA derived from fish oil, which has a
frontiersin.org

https://doi.org/10.3389/fmars.2024.1371713
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1371713
pronounced fishy taste, DHA from thraustochytrids is more

palatable. Moreover, the presence of potential functional

nutritional components in the defatted biomass waste of

thraustochytrids, such as abundant protein, dietary fiber, glutamic

and aspartic acid, makes the biorefinery process of utilizing these

defatted by-products for the development of food supplements

more feasible (Reboleira et al., 2021). Overall, future research in

the pharmacological study of the genus Aurantiochytrium, as well as

the development of functional foods, is poised to further enhance

the role of thraustochytrids in biotechnological development and

functional food and pharmaceutical manufacturing.
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6 Conclusions and prospects

As a marine heterotrophic protist, thraustochytrid contribute

significantly to marine ecosystems and human welfare.

Understanding their taxonomic characteristics is crucial for better

utilization of these protists. However, current research on

thraustochytrid taxonomy necessitates a more in-depth and

systematic approach, incorporating physiological, biochemical and

molecular biology methods, particularly genomics, to establish an

accurate and scientific polyphasic taxonomy system. The diversity of

metabolic products in thraustochytrids renders them a
TABLE 3 Summaries of studies on the pharmacological activity and functional food application of thraustochytrids.

Strains Objective Adding form Results Reference

Schizochytrium sp. Sprague–Dawley-derived
rats Crl : CD(SD)BR

S. sp. dried microalgae No effect on estrus cycles or reproductive performance, offspring
viability and physical development of F1 animals

Hammond
et al., 2001a

Schizochytrium sp. Sprague–Dawley derived
rats and New Zealand
White rabbits

Dried orange
powder biomass

Neither maternal nor developmental toxicity was observed Hammond
et al., 2001b

Schizochytrium sp. Sprague–Dawley rats Dried orange
powder biomass

No adverse effects of relevance to humans at dosages up to 4000 mg/
kg/day for 13 weeks

Hammond
et al., 2001c

Aurantiochytrium
sp. qe-4

Gastric cancer AGS cells Thraustochytrids oil Exhibited an inhibitory effect on gastric cancer cells Shakeri
et al., 2017

Aurantiochytrium
limacinum

Mature Beagle dogs Unextracted A.
limacinum biomass

No negative effects on health or safety in mature beagle dogs Moran
et al., 2018

Aurantiochytrium
mangrovei
18W-13a

Lipopolysaccharide
-induced inflammatory
responses in RAW264
murine macrophages

Ethanolic extract Inhibit the NO production, the secretion of proinflammatory
cytokines and exhibited anti-inflammatory effects on
murine macrophages

Takahashi
et al., 2018

Aurantiochytrium
limacinum 4W-1b

Murine Macrophage
RAW264 Cells

Ethanol extracts Anti-inflammatory effect Takahashi
et al., 2019

Aurantiochytrium
limacinum

Salmonella typhimurium
strains, Sprague Dawley
rats, human lymphocytes,
rabbits guinea pigs

Unextracted A.
limacinum
biomass (AURA)

No significant mutagenic activity or clastogenic activity, no genotoxic
activity in human lymphocytes, non-irritant for the eye and skin of
the rabbit and non-sensitizing to guinea pig skin

Dillon
et al., 2020

Aurantiochytrium
sp. SC145

Mice PUFAs in the free
(FFA) and the alkyl
ester (FAAE) forms

Showed antioxidant and AChE inhibitory properties and
neuroprotective activities against damage caused by H2O2- and
amyloid-ß protein fragment 25–35 (A25-35)-induced C6 cells

Hien
et al., 2022

Schizochytrium
sp. (SMKK1)

Colon cancer cell
line (HT29)

Methanolic extract High total antioxidant activity and the low nitric oxide radical, and
could destroy the colon oncoprotein responsible for anti-
colon carcinogen

Kalidasan
et al., 2022

Aurantiochytrium
acetophilum

The ConamaxTM platform
based on A. acetophilum

Assayed the targets in
vitro for an activity
which confirmed proper
structural folding

The produced purified CR3022 antibody could reduce the cytopathic
effect of SARS-CoV-2, and exhibited ACE2-specific
proteolytic activity

Dahmen
et al., 2023

Thraustochytrium
sp. and
Aurantiochytrium
mangrovei

Antibacterial activities and
antioxidant activities

Biomass extracted in
organic solvents

Exhibited antibacterial activity, free radical scavenging and nitric
oxide radical scavenging activities

Kaliyamoorthy
et al., 2023

Aurantiochytrium
sp.

Develop a novel functional
lean yogurt supplemented
with A. sp. biomass rich in
bioactive lipids

Freeze-dried
microalgal biomass

the fatty acid bioaccessibility was not high (below 60–70%). Paulo
et al., 2020

Aurantiochytrium
sp.

To analysis the nutritional
characterization and fatty
acid composition of
defatted biomass

Enzymatically
defatted biomass

Rich protein, dietary fiber, glutamic and aspartic acid, a favourable
lysine/arginine ratio of 3.73, significant Weissela cibaria and
Bifidobacterium bifidum growth-enhancing potential, and residual
ferric reducing antioxidant power (FRAP) activity

Reboleira
et al., 2021
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biotechnological resource with enormous potential. Future use of

rapid detection technologies, including Raman spectroscopy, as well

as natural product isolation and identification methods, will enrich

our understanding of high-value metabolites and low-concentration

components in thraustochytrids. Additionally, fermentation

optimization and molecular genetic modifications can significantly

enhance the accumulation of key bioactive substances including

PUFAs, squalene and carotenoids. These will promote the

construction of thraustochytrid cell factory.

Currently, studies on the metabolic engineering and application

of thraustochytrids primarily utilizes strains from the genera

Schizochytrium and Aurantiochytrium. However, thraustochytrid

belonging to other genera and their close relatives Labyrinthula sp.,

could accumulate significant amounts of DHA as well. Future studies

with different strains might yield better feed utilization results.

Moreover, existing studies on thraustochytrids supplementation to

enhance the PUFAs content of meat or egg yolks have overlooked the

utilization and transformation of other active components (squalene,

carotenoids, proteins and substances in low quantities) in them.

In summary, future challenges and opportunities lie in unlocking

the full potential of thraustochytrids through advanced research tools

and exploitation of species resources. Innovations in metabolic

engineering, cultivation techniques and biorefinery approaches

will be critical to increase the efficiency and sustainability of

thraustochytrid-based production systems. Furthermore, expanding

the understanding of thraustochytrid taxonomy and genetics can

facilitate the discovery and optimization of strains with superior

production capacities. Besides, regulatory approval and market

acceptance will hinge on demonstrating the safety, efficacy and

economic viability of thraustochytrid-derived products. As we delve

deeper into the capabilities of these protists, we stand on the brink of

a new era in biotechnology. Then, thraustochytrids could play a

pivotal role in meeting global demands for sustainable and health-

enhancing commodities.
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Nobrega, R. O., Batista, R. O., Corrêa, C. F., Mattioni, B., Filer, K., Pettigrew, J. E.,
et al. (2019). Dietary supplementation of Aurantiochytrium sp. meal, a
docosahexaenoic-acid source, promotes growth of Nile tilapia at a suboptimal low
temperature. Aquaculture 507, 500–509. doi: 10.1016/j.aquaculture.2019.04.030
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