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The effects of anthropogenic sources of light on the circadian biology of marine

animals are largely unexplored at the molecular and cellular level. Given that light

is a major driver of circadian rhythms at the behavioral, physiological, cellular, and

even molecular levels, it is important to consider the effects that anthropogenic

light, especially at night, has on aquatic species. With the expanding data

generated from circadian clock research, it is surprising that these techniques

have not been applied more frequently to better understand how artificial light

affects animal circadian rhythms. Circadian research has been limited to

behavioral and physiological observations in wild marine animals rather than a

cellular and molecular understanding due to the logistical constraints. While

there are some benefits to using artificial light at night (ALAN), there have also

been many studies reporting physiological and behavioral consequences in

response to exposure to ALAN. Here, the benefits and consequences of using

ALAN in the marine environment are reviewed. Furthermore, perspectives on

research limitations and future research directions are discussed. Taken together,

this is an important area in which more information is required to translate our

understanding of circadian biology into better practices to promote the health

and welfare of marine animals.
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Introduction

Environmental stimuli such as photoperiod (light/dark cycles), temperature, and tidal

changes govern many behavioral and physiological processes in animals. Because light is a

major driver of circadian rhythms, the use of artificial light, especially at night, should be

considered in efforts to conserve species in both natural populations and those under managed

human care. Disruption of natural lighting through the exposure of artificial light at night

(ALAN) or the incorrect use of ALAN in managed care settings can disrupt these pathways. In

most animals, the circadian clock is the internal molecular timekeeping mechanism. The

hallmark of the circadian clock mechanism is a transcriptional/translational feedback loop
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2024.1372889/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1372889/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1372889/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1372889&domain=pdf&date_stamp=2024-02-07
mailto:stantond2@ufl.edu
https://doi.org/10.3389/fmars.2024.1372889
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1372889
https://www.frontiersin.org/journals/marine-science


Stanton and Cowart 10.3389/fmars.2024.1372889
where one revolution of this feedback loop takes approximately 24

hours to complete under normal environmental conditions. (Dubruille

and Emery, 2008; Takahashi, 2017; Stanton et al., 2022). This

mechanism is integrated with numerous other physiological

pathways including metabolism, sleep regulation, reproduction,

development, cell turnover, and immune regulation (Morris et al.,

2020; Stanton et al., 2022). Outputs of these pathways can also fine-

tune the circadian clock mechanism through post-translational

modifications, which are well characterized in vertebrate model

organisms (Morris et al., 2020).

The circadian clock is entrained by internal and external

environmental stimuli referred to as ‘zeitgebers’ (Figure 1). Many

specific behaviors and biological/physiological processes are

evolutionarily adapted to the rhythms of natural photoperiods

(Tidau et al., 2021). Tidal cycles, as well as photoperiod, function

as zeitgebers that entrain biological clocks of marine species and

synchronize large scale responses (Tidau et al., 2021). While

peripheral circadian clocks can be entrained by localized

zeitgebers, such as feeding, the master circadian regulator is

entrained by light (Morris et al., 2020; Stanton et al., 2022).

Animals perceive light information through their eyes or through

photoreceptors in the absence of eyes (Stanton et al., 2022).

Cryptochromes (CRYs) function as primitive photoreceptors

activated in response to blue light (Schlacher et al., 2007; Mendes

et al., 2017; Cheng et al., 2022; Stanton et al., 2022). Sessile

organisms such as corals respond to different wavelengths of
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light, whereas, mobile aquatic species use phototaxis (movement

toward or away from a light stimulus). The phototactic nature of

fish results in light-directed swimming and aggregation with

varying preferences for different wavelengths of light (Marchesan

et al., 2005). Furthermore, different wavelengths of light result in

different behavioral and physiological effects. For example, red light

has been shown to stimulate feeding behavior and metabolism in

Nile tilapia (Oreochromis niloticus) (Volpato et al., 2013).

Melatonin is another regulator of an animal’s circadian biology

that is superseded by the molecular circadian clock (Falcón et al.,

2009; Tan et al., 2010). Melatonin production has been identified in

aquatic invertebrates including cnidarians, dinoflagellates, mollusks,

annelids, flatworms, nematodes, and crustaceans (Hardeland and

Poeggeler, 2003; Muñoz et al., 2011; Roopin and Levy, 2012; Sainath

et al., 2013; Peres et al., 2014; Tosches et al., 2014; Tran et al., 2020;

Zhu et al., 2022). ALAN suppresses melatonin synthesis and has been

linked to a reduction in fitness (Jones et al., 2015; Grubisic et al.,

2019). The ability to monitor melatonin synthesis is another method

that may be used to assess the impact of ALAN on marine animals.

Here, the effects of using ALAN are discussed. Considerations

such as the timing of light/dark periods and wavelength of light are

both important factors when adapting these practices to minimize

impacts on an animal’s circadian clock mechanism. Accordingly, a

perspective on current gaps in knowledge and research opportunities

to inform best care and conservation practices for managed marine

animals is provided.
FIGURE 1

Mechanisms and rhythms of circadian regulation. Molecular and hormonal circadian mechanisms occur in response to environmental stimuli. The
molecular clock is a transcription/translational feedback loop where the expression of positive regulators are highest during the day and expression
of negative regulators are highest at night. Light is the master regulator of this mechanism. Light also regulates melatonin synthesis, which occurs
during the night leading to high melatonin accumulation before dawn. Melatonin decreases as it is circulated and utilized. Both mechanisms regulate
physiological and cellular processes in a circadian manner in marine animals. Created with BioRender.com.
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The effects of ALAN on marine
animals in coastal environments

The use of artificial light at night (ALAN) near coastal

environments brings few documented benefits, which are

generally restricted to enhancing fish yield through aquaculture.

This is exemplified by the continuous ALAN illumination in ocean

pens that is common practice for species of salmonids (McConnell

et al., 2010). This continuous illumination attracts a multitude of

invertebrate species that aggregate in the illuminated area,

increasing the available food resources for fish in the pens

(Delupis and Rotondo, 1988; Jékely et al., 2008; McConnell et al.,

2010; McLeod and Costello, 2017; Siddik and Satheesh, 2021).

However, the resounding effects that ALAN has on the circadian

biology of these farmed fish is largely understudied and it is

reasonable to hypothesize that there will be long-term effects on

behavior and physiology due to chronic circadian clock disruption.

In coastal communities, specifically marine intertidal areas, the

use of ALAN is noted to have substantial negative effects on the

aquatic species inhabiting these nearshore locations. These species

receive relatively constant exposure to varying levels of ALAN due

to significant coastal development and urbanization. Constant

exposure to ALAN may disrupt normal circadian clock function

by interfering with an individual’s ability to function appropriately

during natural cycles of light and dark (Kopperud and Grace, 2017).
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This has downstream effects on different behavioral and

physiological processes, many of which are innately tied to

circadian or circatidal rhythms (Brüning et al., 2015). Such

alterations can be observed in variations in activity patterns or

disruptions in the expression of circadian clock genes. Examples

include loss of circadian rhythm of activity in the isopod (Tylos

spinulosus), arrhythmic expression of circadian clock genes in the

Pacific oyster (Crassostrea gigas), higher activity levels in rockfish

(Girella laevifrons) that may be attributed to a loss of internal

circadian and circatidal rhythms over time, and direct effects on the

rhythmic production of melatonin in European perch (Perca

fluviatilis) with many fish lacking circadian melatonin rhythms as

compared to control fish (Brüning et al., 2015; Duarte et al., 2019;

Pulgar et al., 2019; Botté et al., 2023).
The use of ALAN in the
oceanic environment

Pelagic species may be exposed to ALAN through different

venues including lighting from bridges, oil platforms, or vessels

such as commercial fishing vessels or cruise ships (Hölker et al.,

2010; Davies et al., 2014; Szekeres et al., 2017). Interruptions to the

natural biological clocks may have significant detrimental effects on

individual marine organisms and biodiversity as a whole (Figure 2).
FIGURE 2

Effects of artificial light at night (ALAN) exposure in the aquatic environment. ALAN is beneficial in enhancing fishing practices and reducing bycatch.
However, ALAN exposure disrupts the circadian clock in fish and some invertebrates leading to alterations in important processes such as
metabolism, cell division, and reproduction. The effects of ALAN on the circadian biology of marine megafauna are currently unknown. Created
with BioRender.com.
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Data is severely lacking in regards to the effects of ALAN on the

circadian rhythms of pelagic species, which is likely due to the

logistical constraints of research in the pelagic environment.

Regardless, some information does exist demonstrating the

advantages and disadvantages of ALAN exposure, particularly in

commercial fisheries and coral research, respectively.

ALAN has been utilized on commercial fishing vessels to

enhance fish yields as well as reduce bycatch of unwanted species

(Arakawa et al., 1998; Marchesan et al., 2005; Nguyen and Winger,

2019). This reduces the need for continuous net redeployment to

meet fish quotas and reduces fuel consumption (Nguyen and

Winger, 2019). Ultraviolet, blue, and green light-emitting diode

(LED) lights on nets and lines have been shown to reduce the

amount of bycatch of fish and sea turtles; however, the mechanism

by which this occurs is unknown (Wang et al., 2013; Hannah et al.,

2015; Virgili et al., 2018). Therefore, use of ALAN in commercial

fisheries has proven to be a beneficial conservation tool. The

potential effects from commercial fishery use of ALAN on the

circadian clock of marine organisms may be short-lived as the clock

can resynchronize with the subjective day and animals may not

encounter a fishing vessel every night.

Outside of commercial fisheries, simulated ALAN exposure

experiments have demonstrated the negative effects of ALAN on

different offshore species. The majority of this research has

focused on corals, which are highly photosensitive and have

well-developed circadian behaviors (Rosenberg et al., 2019), and

are thus intensely vulnerable to the effects of ALAN (Fobert et al.,

2023). In coral species collected from oceanic environments,

ALAN exposure reduced reproductive fitness by delaying

gametogenesis and inhibiting synchronization of gamete release

(Ayalon et al., 2021). Furthermore, it has also been demonstrated

that spawning occurs closer to a full moon in corals exposed to

ALAN, suggesting that speeding up the spawning time can lead to

decreased fertilization and survival of gametes (Davies et al.,

2023). Additionally, metabolic fitness was reduced as a result of

a lower rate of photosynthesis, a lower electron transport rate, and

the disruption of coral-dinoflagellate symbiosis (Ayalon et al.,

2019; Levy et al., 2020; Tamir et al., 2020). In Acropora

eurystoma, constant exposure to ALAN resulted in arrhythmic

expression of known clock genes and alteration of cellular

pathways (Rosenberg et al., 2019).

ALAN exposure has also been shown to negatively impact the

physiology and overall fitness of reef fishes with significant effects

on metabolism, embryo quality, growth, and survival (Fobert et al.,

2023). In certain reef fishes, such as clownfish (Amphiprion

ocellaris) and sergeant majors (Abudefduf saxatilis), the timing of

embryo hatching is linked to specific intensities of light within the

natural photoperiod. Constant illumination by ALAN eliminates

photoperiod cues necessary for hatching, thus inhibiting successful

hatching in these species (Robertson et al., 1990; Fobert et al., 2019;

Fobert et al., 2023). These negative effects demonstrate the potential

disruption of the circadian rhythms of various oceanic organisms in

response to ALAN exposure, representing yet another conservation

concern for overall biodiversity in illuminated areas.
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Lessons learned from the laboratory

The circadian clock mechanism and the effects of ALAN on

circadian biology have been well-studied in laboratory settings.

Exposure to ALAN can result in widespread disruption of the

circadian clock mechanism, changes in behavior, irregular sleep

and activity patterns, reproductive dysfunction, immune regulation

issues, and metabolic dysfunction (Morris et al., 2020; Fobert et al.,

2021; Hillyer et al., 2021). Although limited in number, these studies

have been instrumental in beginning to elucidate the effects of

ALAN on circadian biology, physiology, and behavior of

aquatic species.

Circadian clock genes have been identified in several marine

invertebrate species including the marine annelid Platynereis

dumerilii, the Pacific oyster (Crassostrea gigas), and a few

Xenacoelomorphan and platyhelminth marine worms (Zantke

et al., 2013; Stanton, 2015; Stanton et al., 2022; Botté et al., 2023).

Laboratory experiments have demonstrated the negative effects of

ALAN exposure on these species. For example, changes in activity

patterns have been observed after switching P. dumerilii from a

diurnal photoperiod to continuous light (Zantke et al., 2013).

Similarly, the Pacific oyster demonstrates a comparable pattern of

disruption in circadian clock gene expression and increase in valve

activity when cultured under ALAN conditions (Botté et al., 2023).

Laboratory studies examining the circadian biology of fish have

also provided useful insights on the effects of ALAN in ex situ

populations. This has allowed extensive studies of fish light

reception and circadian clock entrainment including: studies of

eyes, photoreceptors, pineal gland, brain receptivity to light and

their downstream effects on behavior, physiological, and cellular

processes (Whitmore et al., 2000; Doyle and Menaker, 2007; Tamai

et al., 2012; Foulkes et al., 2016). In the zebrafish (Danio rerio),

ALAN exposure resulted in arrhythmic melatonin synthesis and an

increase in inflammatory cytokines (Khan et al., 2018). In Japanese

medaka (Oryzias latipes), zebrafish, and clownfish, ALAN exposure

inhibited displays of dominance resulting in fish becoming

subordinate and leading to a decline in reproductive success

where males under constant light produced half the number of

offspring that males maintained under diel lighting conditions

produced (Tamai et al., 2004; Fobert et al., 2019; Frøland Steindal

and Whitmore, 2019; Fobert et al., 2021; Closs et al., 2023). ALAN

exposure also increased the interval between spawning events,

resulting in smaller eggs and a reduction in clutch size (Tamai

et al., 2004; Fobert et al., 2019; Frøland Steindal and Whitmore,

2019; Fobert et al., 2021).

These examples demonstrate that behavioral and physiological

responses are regulated in a circadian manner by the circadian clock

mechanism and disruptions to these natural rhythms have

significant downstream effects. This emphasizes the need for

additional research to understand the effects of ALAN and the

development of mitigation strategies to minimize these effects on

the aquatic ecosystem. Furthermore, these findings can be used for

the improvement of artificial conditions to recapitulate the natural

environment for animals under managed care.
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Perspectives on the use of ALAN

While there are some benefits to using ALAN, the stark reality is

that there is insufficient data to understand how detrimental the use

of ALAN can be to species in the aquatic environment. There has

been limited research on the effects of ALAN on the potential

disruption of the circadian biology of marine animals. The duration

of using intermittent ALAN, in the case of commercial fisheries,

likely will not have as pronounced an effect on the circadian clock

mechanism. With this, daylight will likely re-entrain circadian

rhythms and the animal may not encounter a commercial fishing

vessel again for some time. Therefore, this represents a situation in

which the potential negative effects of ALAN would be minimal.

However, the disruption of the circadian clock is likely in animals

maintained in aquaculture pens as they would not be able to escape

constant ALAN exposure. This is one area of opportunity for

additional research to better understand the effects of circadian

disruption and increase overall welfare in these animals.

Data from aquatic invertebrates, fish, and marine reptiles have

begun to illuminate the consequences of ALAN in managed

settings. While laboratory studies have been important in

understanding circadian biology and how perturbations alter

aspects of their circadian clock, physiology, and behavior, there

are additional challenges. Given that the laboratory setting is highly

controlled, it is possible that the results of a laboratory experiment

are an artifact of the controlled conditions and are not able to be

recapitulated in a natural setting. Comparative studies are needed to

better understand the effects of ALAN-associated circadian

disruption on behavior and physiology.

Apart from sea turtles, there is a lack of studies examining the

effects of ALAN on marine megafauna, including marine mammals

and elasmobranchs. Effects of ALAN exposure on the circadian clock

mechanism and melatonin biosynthesis in marine megafauna

represents another area where research efforts should be directed. It

is likely that there is variation in circadian regulation among marine

megafauna. For instance, vertebrate melatonin produced by the

pineal gland appears to be a synapomorphy amongst most

vertebrates (Falcón et al., 2009; Tan et al., 2010). The pineal gland

has been identified in several aquatic species including fish, sharks,

and pinnipeds (Little and Bryden, 1990; Boyd, 1991; Frøland Steindal

and Whitmore, 2019; Carroll and Harvey-Carroll, 2023). However, it

appears to be vestigial or lost along with the associated melatonin

synthesis and receptor genes that have been either inactivated

through a mutation or lost in the cetacean and sirenian lineages

(Ralph et al., 1985; Huelsmann et al., 2019; Lopes-Marques et al.,

2019). Taken together, variation in melatonin regulation should be

expected and is likely lineage specific.

Understanding circadian disruption in response to adverse

exposure to ALAN is also important for animals under managed

care. Facilities often cater to the needs of guests by extending hours

beyond the subjective day and leaving work lights on as part of

emergency lighting systems (Rose et al., 2017). It is currently

unknown if these lights are detrimental and if altering the

wavelength could improve aquatic animal welfare. The

adjustment of lighting regimens based on research for a given

species or groups of species should be considered. The
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development of LED-based aquarium lighting systems has been

beneficial in aquarium settings and has solved problems with light

penetrating the water column in deep aquarium environments

(Soni and Devendra, 2005; Cheng et al., 2019). Studies are needed

to understand the basic circadian biology and the effects of circadian

perturbations on behavior and physiology in managed animals. It is

possible that disruption of the circadian clock mechanism can

impact marine animal health and delay healing in sick and

injured megafauna in managed care.
Future directions

While our knowledge of circadian biology and its integration

with different physiological systems has expanded over the last

twenty years, there remains a significant knowledge gap in regards

to aquatic species. This reflects a critical need to gain a foundational

understanding of the natural circadian biology of different aquatic

species, in particular, marine megafauna, in order to sufficiently

understand the potential negative effects of ALAN exposure on

different aquatic species. Given that many cell types have an

endogenous circadian clock, utilizing samples that are minimally

invasive, such as skin/oral mucosa, hair follicles, and blood, may be

viable options for assessing changes to an animal’s circadian

rhythm. Due to the logistical constraints of sampling and/or re-

sampling free-ranging animals, adaptations for the laboratory

setting, such as cell cultures and CRISPR technologies, can prove

to be powerful tools (Gabriel et al., 2021).

Animal activity and sleep patterns have also been measured to

understand how patterns of activity change with different

perturbations in light exposure. (Alves-Simoes et al., 2016; Wang

et al., 2020). This type of data is not easily obtainable in many

aquatic species; however, data logger technology implanted into

animals has significantly advanced research efforts to record data

such as body temperature, heart rate, activity, telemetry, and even

depth patterns. This technology has been successfully used in some

aquatic species including fish, sharks, pinnipeds, and cetaceans (Lin

et al., 2013; Krause et al., 2016; Chaise et al., 2017; Elisio et al., 2019;

Piot et al., 2023; Morgenroth et al., 2024). This technology could be

translated for use in animals both in wild and managed settings to

observe changes in circadian biology in response to ALAN

exposure, feeding, water temperature, and/or water quality. These

techniques can also be utilized to test the efficacy of different

mitigation strategies for improving animal health and welfare.

While these approaches will have multiple applications, a

central focus on understanding how light regulates the circadian

biology of aquatic species is needed. Knowledge of the effects

abnormal lighting conditions, including the use of ALAN, have

on an animal’s circadian biology is paramount to developing

improved mitigation practices. Implementation of novel

techniques will allow researchers to gather a vast amount of data

that can be directly applied to the development of mitigation

strategies to minimize the adverse effects on an animal’s circadian

biology. This provides an avenue for applying research that will not

only benefit species in managed care, but also those in

natural settings.
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