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Accurate significant wave height (SWH) forecasting is essential for various marine

activities. While traditional numerical and mathematical-statistical methods have

made progress, there is still room for improvement. This study introduces a novel

transformer-based approach called the 2D-Geoformer to enhance SWH

forecasting accuracy. The 2D-Geoformer combines the spatial distribution

capturing capabilities of SWH numerical models with the ability of

mathematical-statistical methods to identify intrinsic relationships among

datasets. Using a comprehensive long time series of SWH numerical hindcast

datasets as the numerical forecasting database and ERA5 reanalysis SWH datasets

as the observational proxies database, with a focus on a 72-hour forecasting

window, the 2D-Geoformer is designed. By training the potential connections

between SWH numerical forecasting fields and forecasting errors, we can

retrieve SWH forecasting errors for each numerical forecasting case. The

corrected forecasting results can be obtained by subtracting the retrieved SWH

forecasting errors from the original numerical forecasting fields. During long-

term validation periods, this method consistently and effectively corrects

numerical forecasting errors for almost every case, resulting in a significant

reduction in root mean square error compared to the original numerical

forecasting fields. Further analysis reveals that this method is particularly

effective for numerical forecasting fields with higher errors compared to those

with relatively smaller errors. This integrated approach represents a substantial

advancement in SWH forecasting, with the potential to improve the accuracy of

operational SWH forecasts. The 2D-Geoformer combines the strengths of

numerical models and mathematical-statistical methods, enabling better

capture of spatial distributions and intrinsic relationships in the data. The

method's effectiveness in correcting numerical forecasting errors, particularly

for cases with higher errors, highlights its potential for enhancing SWH

forecasting accuracy in operational settings.
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1 Introduction

Significant wave height (SWH) constitutes an essential aspect of

marine surface dynamics, encapsulating the mean peak of the

highest third of waves (Zhang, 2012; Qiu et al., 2019). This metric

is of substantial consequence, underpinning safety and operational

planning across a broad array of maritime, research, and

recreational activities (Qiu et al., 2019). Accurate SWH forecasts

are particularly vital for the northwestern Pacific region, where

maritime economic activities are bustling, and the presence of

tropical cyclones introduces considerable variability, making

reliable predictions a complex and challenging task. The accurate

prediction of SWH is essential not only for safeguarding maritime

navigation but also for advancing scientific knowledge and

enhancing oceanic enjoyment. However, achieving precise

forecasts is inherently difficult due to the dynamic interplay of

various factors that influence wave generation, growth, and

dissipation. These factors include a range of kinetic, physical, and

environmental conditions, underscoring the substantial scientific

endeavor involved in improving SWH prediction accuracy (Zhang

et al., 2009; Xiao et al., 2023).

In the realm of SWH forecasting, two predominant

methodologies are recognized. The first hinges on physical-

dynamic principles, utilizing wave numerical models that

meticulously simulate the birth, movement, and fading of ocean

waves through the computational resolution of the underlying wave

dynamic equations. These models incorporate a suite of physical

processes such as wave generation, spectral distribution,

propagation, nonlinear inter-wave interactions, dissipation

mechanisms, and the effects of refraction and diffraction (Zhao

et al., 2014; Qiao et al., 2016; Bennis et al., 2020; Wang et al., 2021;

Bitner-Gregersen et al., 2022; Saavedra et al., 2023). Prominent

among such numerical models are the Wave Watch III (WW3)

(Tolman, 2009; Amarouche et al., 2023), the Simulating Waves

Nearshore (SWAN) system (Booij et al., 1999; Ris et al., 1999), and

the MASUM model (Yong-zeng et al., 2005). Each of these has

demonstrated exceptional efficacy in predicting SWH, as

substantiated by various studies (Wang et al., 2016; Ponce De

León et al., 2018; Qiu et al., 2019). Presently, operational wave

forecasting systems predominantly rely on these advanced

numerical wave models to deliver accurate SWH forecasts.

Alternative methods for forecasting SWH utilize mathematical-

statistical approaches. These can be broadly categorized into point

forecasting and spatiotemporal forecasting. Point forecasting delves

into the spectral features, context, and temporal dependencies

within SWH sequences to facilitate continuous time series

forecasting. This category encompasses a variety of methods such

as wavelet analysis, Particle Swarm Optimization (PSO), Extreme

Learning Machine (ELM) approaches, Bayesian hyperparameter

optimization, Elastic Net methods, Singular Value Decomposition

(SVD), and Empirical Mode Decomposition (EMD) (Altunkaynak,

2015; Kaloop et al., 2020; Pirhooshyaran and Snyder, 2020;

Demetriou et al., 2021; Zhou et al., 2021; Çelik, 2022). An

expanded version of point forecasting not only analyzes the time

evolution of SWH but also integrates influencing factors like wind

speed, direction, duration, fetch, sea level pressure, and air
Frontiers in Marine Science 02
temperature. Techniques in this domain include Long Short-

Term Memory (LSTM) networks, hierarchical machine learning

models, Artificial Neural Networks (ANN), Multiple Additive

Regression Trees (MART), hybrid models of wavelets and neural

networks (WNN), and Pruning Radial Basis Function (GAP-RBF)

networks (Fernández et al., 2015; Kumar et al., 2017; Oh and Suh,

2018; Fan et al., 2020; Elbisy and Elbisy, 2021; Shi et al., 2023).

Spatiotemporal forecasting goes a step further by considering

both the time evolution and spatial correlations of SWH, along with

the spatiotemporal dynamics of influencing meteorological factors.

This approach broadens the forecasting scope to encompass entire

regions. Examples of such comprehensive methodologies include

convolutional LSTM networks and multivariate 3-layer LSTM-

based methods, which offer a more integrated and regionally

encompassing forecast of SWH (Han et al., 2022; Song et al.,

2022; Zilong et al., 2022). These sophisticated techniques aspire to

capture the complexity of wave dynamics across both time and

space for enhanced maritime prediction accuracy.

Advancements in mathematical-statistical methodologies have

substantially progressed SWH forecasting. However, they have not

achieved the predictive accuracy comparable to numerical wave

models (Choi et al., 2020; Zhang et al., 2021). This gap is attributed

to the reliance of traditional approaches on long-term observational

data, which often overlooks the advancements in numerical wave

modeling that significantly enhance SWH forecasting. While

numerical models offer improved accuracy, their performance is

dependent on the quality of input data, model resolution, and

precise representation of physical processes. Any inaccuracies in

these factors can critically affect forecast outcomes (Wang et al.,

2016; Ponce De León et al., 2018; Allahdadi et al., 2019; Amarouche

et al., 2023; Xiao et al., 2023).

Despite these shortcomings, mathematical-statistical methods

excel in uncovering complex correlations within datasets, while

numerical models proficiently capture the physical dynamics of

SWH. Acknowledging these strengths and limitations, our study

proposes a novel integrated approach that merges the precision of

numerical wave models with the analytical capabilities of

mathematical-statistical methods. This synergy aims to harness

the high predictive accuracy of numerical models and the deep

analytical insights of statistical approaches.

At the heart of our methodology is the deployment of

transformer techniques, renowned for their proficiency in data

analysis, particularly within the context of Spatiotemporal

Attention Mechanisms. These mechanisms enable the model to

dynamically focus on relevant spatial and temporal features,

enhancing its ability to understand complex patterns and

relationships in the data. By leveraging these advanced

transformer methods, our approach not only captures the

intricate dynamics of spatiotemporal data but also significantly

improves the accuracy and efficiency of predictions across various

applications. This integration of spatiotemporal attention with

transformer architectures represents a substantial advancement in

the field, offering a powerful tool for analyzing and forecasting data

that varies both across space and over time (Zheng et al., 2021; Zhou

and Zhang, 2023; Bertasius et al., 2021; Vaswani et al., 2017). These

methods are applied to historical hindcast SWH datasets to
frontiersin.org

https://doi.org/10.3389/fmars.2024.1374902
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Kang et al. 10.3389/fmars.2024.1374902
scrutinize and characterize the evolution of forecasting errors. Our

primary aim is to develop an advanced diagnosing model that

rectifies inherent errors in numerical predictions. This strategy

seeks to amalgamate two distinct forecasting methodologies,

providing a more accurate and holistic tool for SWH prediction.

Through this integration, our goal is to significantly enhance SWH

forecasting, thereby contributing to the safety and efficiency of

maritime operations.
2 Data and methodology

2.1 Data

The SWH hindcast data employed in this study is sourced from

an ocean forecasting system specifically tailored for the 21st-

Century Maritime Silk Road (Qiao et al., 2019). This system is

based on the surface wave-tide-circulation coupled ocean model

developed by the First Institute of Oceanography (FIO-COM),

Ministry of Natural Resources, China. It was officially

commenced operational service on Dec. 10, 2018, and represents

a significant milestone in Chinese oceanographic modeling. The

dataset spanning from its inception date Dec. 10, 2018, to Nov. 29,

2023, forms the basis of the analysis presented in this research. The

hindcast process within this system is executed daily at 12:00 UTC,

ensuring a consistent and continuous flow of data. Although the

model is capable of global coverage, to optimize computational

efficiency and resource management, our study has strategically

focused on the northwestern Pacific region, defined by the

coordinates 98°E to 175°E and 18°S to 48°N. This particular area

is not only of crucial importance to the Maritime Silk Road initiative

but also presents a diverse range of oceanographic and

meteorological conditions, making it an ideal subject for detailed

study. To capture the dynamic nature of the ocean environment, the

model operates with a high spatio-temporal resolution. Data is

updated every three hours, and the spatial resolution is set at 0.1° by

0.1°. This level of detail in the model’s output allows for an in-depth

analysis of wave patterns, providing valuable insights into the

marine conditions along one of the world’s most vital maritime

routes. The utilization of this data is pivotal in enhancing our

understanding of the oceanic conditions along the Maritime Silk

Road. This, in turn, informs safer and more efficient maritime

navigation, aids in the design of maritime structures, and supports

climatological research relevant to the region.

The gridded SWH reanalysis data from ERA5, developed by the

European Centre for Medium-Range Weather Forecasting

(ECMWF), is utilized in this research. As a global reanalysis

dataset, ERA5 marks a substantial progression in atmospheric

analysis, incorporating advanced methodologies to aggregate

diverse meteorological data (Hersbach et al., 2020). The SWH

reanalysis datasets were generated by applying ERA5 wind fields

to drive the Wave Model (WAM) with Source Term 3 (ST3) physics

(Group, 1988), supplemented by the assimilation of extensive

altimeter data (Lionello et al., 1992). We procured ERA5 SWH

data on a 0.25° by 0.25° grid, covering the period from Dec. 10,
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2018, to Dec 2, 2023, focusing on the area between 98°E to 175°E

and 18°S to 48°N, with data updated every 3 hours. The precision of

the ERA5 dataset in depicting actual SWH characteristics is

exceptional, establishing it as a crucial instrument for wave

analysis (Shi et al., 2021; Wang and Wang, 2022). Due to its

accuracy, it is increasingly used as an alternative to traditional

grid observations of SWH (Muhammed Naseef and Sanil Kumar,

2020; Takbash and Young, 2020). In this paper, the ERA5 SWH

data is employed to correct forecasting errors in the numerical

SWH predictions made by the FIO-COM.

Our study is dedicated to examining the distribution and

temporal evolution of errors in SWH forecasting, and their

interrelationship with the distribution and evolution of forecasted

SWH. Following this analysis, we propose to develop a deep learning

model specialized in diagnosing these errors, utilizing the forecasted

SWH as a foundational dataset. In an effort to balance computational

efficiency with the need for reliable data, we have opted for a grid

resolution of 0.5° by 0.5°. This choice allows us to manage the vast

data effectively while maintaining sufficient detail for accurate

analysis. Both the SWH forecasting results and the ERA5 reanalysis

data have been meticulously interpolated to this standardized grid,

ensuring consistency in our spatial analysis. Our focus is narrowed to

short-term forecasting, specifically targeting a 72-hour period with

intervals of 3 hours. This temporal restriction enables us to effectively

manage and reduce the dimensionality of our dataset to Ntime �
Nlat � Nlon = 25� 132� 154, making the data more tractable for

extensive computational processing. The forecasting errors for each

hindcast scenario is performed by deducting the ERA5 reanalyzed

SWH values from the forecasted SWH fields. The resulting processed

SWH forecasting fields, alongside the error fields, constitute an

extensive database for the training and validation of our deep

learning model, laying a robust groundwork for enhancing the

accuracy and reliability of SWH forecasting.
2.2 Methodology

2.2.1 2D-Geoformer methods
In this study, we have employed a model that is a customized

adaptation of Zhou’s 3D-Geoformer (Zhou and Zhang, 2023),

specifically modified for our two-dimensional (2D) case studies and

thus aptly named the 2D-Geoformer. While the original 3D-

Geoformer by Zhou is developed for analyzing three-dimensional

multivariate distributions and their spatiotemporal interactions, our

adaptation, the 2D-Geoformer, focuses on the horizontal

spatiotemporal attention aspects pertinent to SWH forecasting and

its associated errors. This adaptation takes into account the crucial

relationship between the forecasted SWH and its corresponding errors.

In alignment with the architecture of leading transduction models, the

2D-Geoformer is constructed on an encoder-decoder framework,

encompassing various integral components. These include two data

preprocessing modules designed to optimally prepare the input data,

the encoder and decoder units that are central to the model’s

processing and predictive capabilities, and an output layer that

synthesizes and outputs the model’s predictions. The detailed
frontiersin.or
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architecture and functionality of these components are

comprehensively documented in the Appendix.

The 2D-Geoformer model processes 25 sets of forecast data as

inputs (Xin
Tin�Nlat�Nlon

), each representing SWH predictions every 3

hours over a 72-hour period. The data’s dimensions are Tin �
Nlat � Nlon = 25� 132� 154, where Nlat � Nlondenotes the spatial

grid points. The model aims to diagnose the following 25 sets of

forecasting error fields with the same dimension (Xout
Tout�Nlat�Nlon

). As

illustrated in Figure 1A, the preprocessing module initially handles

the inputs Xin
Tin�Nlat�Nlon

by dividing them into non-overlapping

patches of size h0 �  w0  = 4� 4 across the channel dimension.

These patches are transformed into symbolic representations with

embedded spatiotemporal data (Figure 1B). The symbolic

representations are then processed by the encoder, consisting of

four identical encoding blocks n = 4. Each encoding block includes

a multi-headed spatiotemporal attention layer (with eight heads, as

shown in Figure 1C) and a fully connected network. This encoder

compresses the representations into a feature map matrix for the 25

inputs. Subsequently, this feature map is analyzed by the decoder

through four decoding blocks (m = 4). Finally, the model outputs

are mapped to forecast error fields. Xout
Tout�Nlat�Nlon

, maintaining the

same spatial resolution as the input SWH forecasting fields in the

output layer.

2.2.2 Model training strategy
The 2D-Geoformer model employs SWH forecasts as inputs

and targets the corresponding 25 forecasting errors as output fields,
Frontiers in Marine Science 04
leveraging self-attention mechanisms for efficient model training.

This method significantly mitigates error growth typically seen in

sliding prediction strategies. To evaluate the relationship between

retrieved and actual errors, we adopt the root mean square error

(RMSE) as our loss function, which quantifies the deviation

between retrieved and actual errors. The loss function is defined as:

Loss =
1

Tout
o
Tout

t=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nlat � Nlon
o
Nlon

i=1
o
Nlat

j=1
(Xout

t:j:i − Xtg
t:j:i)

2

s

Here, Xtg represents the actual error fields of FIO-COM

forecasts, and Xout denotes the output fields retrieved from the

2D-Geoformer.

For optimization, we employ the Adam algorithm, enhanced

with a learning rate warm-up strategy starting at an initial rate of

1 � 10−4. Post each training epoch, we assess the model’s RMSE

accuracy using the validation set and retain the model parameters

that yield the least RMSE.

We have utilized hindcast datasets spanning fromDec. 10, 2018, to

Dec. 31, 2022, for training, and datasets from Jan. 01, 2023, to Nov. 29,

2023, for testing. It is important to note that our dataset’s spatial

domain includes land regions, which can significantly interfere with

error correction. To minimize this impact, we implemented a strategy

of nullifying data from these land areas. This approach ensures that the

model predominantly focuses on marine regions, thereby more

precisely capturing the spatiotemporal distribution of SWH and

improving the correction model’s effectiveness.
B

C

A

FIGURE 1

Schematic Overview of the 2D-Geoformer Model for SWH forecasting Error retrieving. (A) Depicts the comprehensive architecture of the 2D-
Geoformer, which includes dual preprocessing modules at the bases of the encoder and decoder stacks, an advanced encoder-decoder framework
utilizing a multiheaded spatiotemporal attention mechanism, and a final output layer concluding the decoder. The input to the model comprises 25
time steps of SWH forecasts, with each step representing a 3-hour interval; these are paired with corresponding SWH forecasting error fields at
identical forecast hours, serving as target retrieving fields for supervised training. (B) Details the intricate design of the preprocessing module, which
encompasses a field decomposition and a patch embedding process. (C) Illustrates the complex structure of the multihead spatiotemporal
attention module.
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3 Results

3.1 The overall correction effects

In the correction phase, each numerical forecast instance

employs SWH forecasts generated by FIO-COM, featuring

predictions at 3-hour intervals across a 72-hour timeframe, as

input for the 2D-Geoformer model. This model subsequently

identifies potential errors within the FIO-COM SWH predictions.

The identified errors are regarded as estimated discrepancies for the

FIO-COM SWH forecasts. These estimated errors are then

deducted from the FIO-COM predictions to produce the adjusted

SWH forecasts.

Following this correction procedure, an error statistical analysis

is conducted, comparing the original FIO-COM SWH forecasts and

the corrected SWH forecasts against reanalysis SWH datasets,

which serve as observational benchmarks. This validation process

is systematically repeated for each hindcast forecast case spanning

from Jan. 01, 2023, to Nov. 29, 2023. While error correction is

performed across all 25 time steps within the 72-hour forecasting

period, our analysis primarily focuses on samples at 24, 48, and 72-

hour forecast intervals. The reason for this targeted analysis is that

the correction effects observed at these specific intervals (24H, 48H,

72H) are representative of the overall performance across all time

steps. This approach ensures a comprehensive understanding of the

model’s correction efficacy at critical forecasting junctures, thereby

providing a robust evaluation of the 2D-Geoformer’s capabilities in

enhancing SWH forecast accuracy.

Following correction, the SWH forecasting accuracy of FIO-

COM demonstrates significant enhancement, a phenomenon

consistently observed across various cases within the evaluation
Frontiers in Marine Science 05
period. As illustrated in Figure 2A, the spatially-averaged RMSE

values for the adjusted SWH forecasts are substantially lower than

those of the original FIO-COM forecasts for the selected intervals.

To quantify this enhancement, the differential in RMSE between the

original and corrected SWH forecasts is calculated. Figure 2B

presents this comparison, indicating that the correction process

decreases the RMSE by a range of 0.0 to 0.37, thereby highlighting

the efficacy of the correction methodology. It is noteworthy that a

marginal decline in correction effectiveness becomes apparent as

the forecast horizon extends, reflecting the expected escalation in

complexity and uncertainty associated with error evolution over

more extended forecasting periods.

This comprehensive analysis of RMSE values, covering all cases

throughout the testing period, offers deeper insights into the efficacy

of the correction methodology applied to the FIO-COM SWH

forecasts (Table 1). Initially, the uncorrected FIO-COM model

demonstrated average RMSEs of 0.37, 0.38, and 0.41 for forecast

intervals of 24, 48, and 72 hours, respectively. Post-correction, these

RMSE values showed a significant reduction, dropping to 0.21, 0.23,

and 0.28, respectively. This substantial reduction in RMSE indicates

not only an enhancement in forecast accuracy but also the uniform

effectiveness of the correction method across various forecasting

horizons. In quantitative terms, this improvement translates to

overall accuracy enhancements of 43.2%, 39.5%, and 31.7% for

each respective interval. Such a marked advancement in forecast

precision, underscores the robustness and efficiency of the adopted

correction methodology. Intriguingly, as forecasting intervals

extend, a marginal increase in RMSE for both pre- and post-

correction forecasts was observed, indicating a diminishing

impact of both the numerical model and correction methods over

prolonged forecasting periods. This trend highlights the increasing
B

A

FIGURE 2

(A) Time series of spatial-averaged RMSE (Units: m) for forecasting intervals at 24, 48, and 72 hours, comparing between original SWH forecasts of
FIO-COM and the corrected fields in 2023. (B) Illustrates the differential analysis of RMSE skills between the original FIO-COM and corrected SWH
forecasts. A specific dotted hindcast scenario, initiated on May. 26, 2023, at 12:00 UTC, is marked for detailed case analysis.
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complexity and nuanced challenges in long-term forecasting.

Additionally, the diminishing percentage of improvement with

extended forecasting intervals suggests a gradual reduction in the

correction method’s effectiveness in longer-term forecasts, further

emphasizing the need for refined approaches in extended

forecasting scenarios.

Such a significant enhancement in forecast accuracy is

particularly remarkable, given the advanced state of current SWH

numerical models. The fact that substantial improvements are

achieved not through fundamental optimizations in the numerical

model but rather through post-processing corrections is a testament

to the innovative approach and effectiveness of the 2D-Geoformer

model. This outcome highlights the potential of integrating

advanced data correction techniques in enhancing the accuracy of

established numerical wave prediction models.

The preceding analysis yields a comprehensive understanding

of the overall correction effects on the FIO-COM model’s forecasts.

However, it primarily provides a macroscopic perspective, lacking

in detailed spatial distribution insights of these correction effects. To

address this gap, a granular investigation was conducted on the

RMSE values at each grid point across the 24, 48, and 72-hour

forecast intervals during the entire testing period. This approach

facilitates a more nuanced understanding of the spatial variability in

the correction effectiveness. By analyzing the RMSE at each grid

point, we can discern specific areas where the correction

methodology had pronounced impacts, as well as regions where it

was less effective. Such spatially-resolved analysis not only enhances

the depth of our understanding but also provides critical insights

that can guide future improvements in the correction process and

its application in varying geographic contexts.

Figures 3A–C depict an upward trend in the RMSE for the FIO-

COMmodel as the forecasting interval extends from 24 to 72 hours.

Notably, RMSE values are higher in the northern and southeastern

sectors of the study area, often exceeding 0.4 meters, which suggests

a lower predictive accuracy in these regions. Conversely, the

southwestern sector demonstrates stronger model performance,

with RMSE values typically below 0.3 meters. After correction,

there is a significant reduction in RMSE across all forecasting

periods (Figures 3D–F, G–I), especially in the southeastern area

where the RMSE decreases from above 0.4 meters to below 0.3

meters. Although the reduction in the northeastern section is less

pronounced, the improvement in RMSE is still significant.

Further analysis of the corrected forecasts, as displayed in

Figures 3D–F, reveals a continuous increase in RMSE with the
Frontiers in Marine Science 06
extension of the forecast interval. This pattern suggests a marginal

decrease in the effectiveness of the 2D-Geoformer correction over

lengthier forecast durations. However, the spatial distribution of

RMSE effectively highlights the 2D-Geoformer’s robustness in

refining SWH forecasts across the entire study area. The most

significant improvements are observed in regions where the original

FIO-COM model exhibited higher errors, thereby emphasizing the

2D-Geoformer’s exceptional performance in areas with initial high

forecasting inaccuracies. This comprehensive analysis underscores

the 2D-Geoformer’s value in enhancing forecast accuracy and offers

vital insights into its performance across varied spatial and

temporal scales.
3.2 A case analysis of correction effects

While the RMSE effectively quantifies the overall performance

of the FIO-COM numerical forecasting and the subsequent

corrections applied through the 2D-Geoformer, it inherently lacks

the capability to reflect the phase characteristics of the forecasting

error. Specifically, RMSE does not discern whether the error in

forecasting is an overestimation or underestimation relative to the

actual observations. Consequently, to gain a more comprehensive

understanding of the forecasting effectiveness, it becomes

imperative to employ additional error statistical metrics and

making further analysis.

Our analysis concentrates on a particular hindcasting case

initiated on May. 26, 2023, at 12:00 UTC. The selection of this

case is twofold: firstly, it exhibited the most pronounced correction

effects throughout the entire testing period, making it an exemplary

instance for detailed examination. Secondly, the case displays

substantial variability in SWH, with values exceeding 8 meters in

the open ocean southeast of Taiwan Island, compared to

approximately 2 meters in other areas. This pronounced variation

in wave heights present an ideal scenario to assess the model’s

performance under diverse conditions. Figure 4 provides a visual

comparison of the spatial distribution of SWH as forecasted by FIO-

COM (Figures 4A–C) and as observed in the ERA5 reanalysis

(Figures 4D–F). The similarities in patterns between the two

indicate FIO-COM’s robust ability in capturing the spatial

dynamics of SWH. However, a closer inspection reveals

noticeable disparities between the FIO-COM SWH forecasts and

the ERA5 reanalysis data. These disparities highlight areas where

the model’s predictive accuracy can be further refined.

In this meticulous analysis of the specific forecasting case, it was

observed that the FIO-COM model generally overestimates the

SWH above 2 meters in the oceanic regions surrounding Taiwan

island. Conversely, in most other areas, FIO-COM exhibits a slight

overestimation tendency of approximately 0.5 meters. Notably, in

the southwestern sectors of the study area, FIO-COM tends to

underestimate the SWH (Figures 5A–C). The application of the 2D-

Geoformer model in this context revealed an extraordinary

capability to accurately retrieve the spatial distribution of these

predictive errors. The patterns of both overestimation and

underestimation errors, as identified by the 2D-Geoformer
TABLE 1 Average RMSE comparisons for all testing cases between FIO-
COM and the corrected forecasts, along with the percentage
improvement post-correction at 24, 48, and 72 forecasting hours.

Forecast
interval (hour)

FIO-
COM
(m)

Corrected
(m)

Improvement
(%)

24 0.37 0.21 43.2

48 0.38 0.23 39.5

72 0.41 0.28 31.7
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(Figures 5D–F), displayed remarkable alignment with those

observed in the original FIO-COM forecasts, indicating the

model’s precision in detecting discrepancies within the FIO-

COM predictions.

Upon applying the 2D-Geoformer’s error corrections to the

FIO-COM SWH forecasts, the revised forecasts, as depicted in

Figures 5G–I, demonstrated notable enhancements. A key

observation was the substantial reduction of errors in most

regions, particularly around the Taiwan islands, where errors

decreased significantly from above 2 meters to approximately 0.5

meters. This improvement is especially significant given the

tendency of the FIO-COM to produce large errors in conjunction

with high SWH forecasts. Accurate SWH forecasting is crucial,

especially in high-wave scenarios, due to its implications for

maritime navigation and coastal management. High SWH
Frontiers in Marine Science 07
conditions pose significant risks, underscoring the need for

precision in forecasting. The effectiveness of our methodology in

markedly reducing high SWH forecast errors within the FIO-COM

is therefore invaluable for maritime and coastal applications. This

pronounced decrease in error magnitude not only highlights the

2D-Geoformer’s capability in refining SWH forecast models but

also emphasizes its critical role in enhancing maritime safety and

operational efficiency.

An intriguing observation was noted in a small region to the

east of the Taiwan islands, where the FIO-COM forecasts at 48 and

72 hours displayed negative values (Figures 5B, C), a detail that was

not captured by the 2D-Geoformer (Figures 5E, F). This led to the

corrective process exacerbating the original forecast errors in this

region (Figures 5H, I). The underlying reason for this discrepancy

lies in the 2D-Geoformer’s patch-based retrieving methodology.
B C

D E F

G H I

A

FIGURE 3

Spatial Distribution of RMSE (Units: m) for Forecast Intervals at 24, 48, and 72 hours. (A–C) depict RMSE skills of FIO-COM forecasts; (D–F) illustrate
RMSE skills of post-corrected fields; (G–I) illustrate the difference of RMSE between Corrected and original fields. This figure provides a comparative
visualization of the forecast accuracy before and after applying the correction methodology.
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The inputs are divided into non-overlapping patches, each of size

(h0 �  w0  = 4� 4), across the channel dimension, equating to a

resolution of 2° by 2°. While the 2D-Geoformer excels in learning

the overall characteristics between different patches and assigning

average coefficients, it lacks the capability for finer analysis within

individual patches. Therefore, for small regions with negative values

surrounded by positive values, the 2D-Geoformer may overlook

critical localized information.

We further evaluated the correction effects of the 2D-

Geoformer at individual grid points by concurrently plotting the

error distribution of the FIO-COMmodel and the reproduced error

as determined by the 2D-Geoformer (Figure 6). In this graphical

representation, the positioning of data points within the first and

third quadrants indicates positive correction effects by the 2D-

Geoformer on the FIO-COM forecasting errors. Closer proximity of

these points to the diagonal line, which extends across the first and

third quadrants, signifies a more robust and effective correction.

Conversely, data points residing in the second and fourth quadrants

suggest instances where the 2D-Geoformer may have inadvertently

exacerbated the FIO-COM forecasting errors. A significant

observation from this analysis is the 2D-Geoformer’s ability to

accurately reproduce the FIO-COM forecasting errors, particularly

in grid points characterized by high SWH errors. However, its

effectiveness appears somewhat diminished in grids where the

original FIO-COM forecasting errors are relatively minor. This

pattern remains consistent across various forecasting periods,

including 24, 48, and 72 hours (Figures 6A–C).
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To rigorously quantify the correction effectiveness, an analysis

was conducted to calculate the proportion of effectively corrected

grids compared to the total number of grids, based on the varying

magnitudes of FIO-COM forecasting errors (Table 2). For errors

ranging between -0.5 and 0.5, the correction impact was moderate,

with effectively corrected grid proportions at 59.6%, 51.1%, and

46.7% for the 24, 48, and 72-hour forecasting intervals, respectively.

In cases of errors below -0.5, the correction was markedly more

significant, resulting in 96.2%, 88.9%, and 77.9% of grids being

effectively corrected for these respective intervals. Similarly, for

errors exceeding 0.5, the correction was also substantial, with 98.4%,

96.8%, and 97.2% of grids effectively corrected for the same

forecasting durations. This analysis highlights that grids with

higher initial FIO-COM SWH forecasting errors predominantly

underwent effective refinement following correction. Conversely,

grids with lower initial errors exhibited a decreased rate of effective

correction. The significance of these findings underscores the vital

importance of accurate SWH forecasting, particularly in scenarios

involving high SWH, due to its implications for maritime safety and

operational planning.
4 Conclusion

The significance of accurate SWH forecasting is widely

recognized due to its various applications. While wave numerical

models have advanced significantly over the past decades, they still
frontiersin.or
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FIGURE 4

Illustration of the spatial distribution of SWH forecasts (Units: m) initiated on May 26, 2023, at 12:00 UTC. (A–C) display the SWH forecasts at 24, 48,
and 72 hours, respectively. (D–F) correspond to the ERA5 reanalysis for the same intervals. This comparison provides insight into the model’s
accuracy in capturing spatial variations in SWH over different forecast periods.
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face considerable errors due to the incomplete representation of

various physical processes. Deep learning methods have also

progressed, mainly focusing on single-point forecasting; however,

their effectiveness in spatial forecasting is not as prominent as that

of numerical models. These deep learning approaches primarily

seek to uncover internal regularities within SWH datasets,

particularly the time-evolving characteristics, but often overlook

the advancements in numerical modeling.

This paper introduces an innovative approach that amalgamates

the latest developments in numerical wave forecasting and the

adeptness of deep learning in identifying patterns within datasets.

By designing a 2D-Geoformer deep learning model, we aim to

elucidate the relationship between original numerical forecasting

fields and their associated errors. Subsequently, this model

identifies the numerical forecasting errors of SWH, which are then

subtracted from the original forecasts to yield corrected SWH
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forecasts. Our findings reveal the remarkable effectiveness of this

method in rectifying numerical SWH forecasting errors. Throughout

the testing period, this approach consistently reduced the RMSE

significantly compared to the original numerical forecasts.

Particularly noteworthy is the refinement of SWH forecasts in most

grids, especially those with initially high SWH numerical

forecasting errors.

By amalgamating numerical advancements with deep learning

techniques, this approach significantly advances beyond traditional

SWH forecasting methods, which generally depend solely on either

numerical models or deep learning frameworks. However, the

present study predominantly assesses the FIO-COM numerical

forecasting model within a constrained research scope. Future

investigations are warranted to ascertain the effectiveness of this

methodology across a wider array of domains and with various SWH

forecasting models. Moreover, expanding this method’s application
frontiersin.or
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FIGURE 5

Depiction of Spatial Error Distribution (Units: m) in SWH Forecasts for case Commencing on May. 26, 2023, at 12:00 UTC. (A–C) illustrate the
original SWH forecasting errors by the FIO-COM at 24, 48, and 72 hours. (D–F) present the error patterns retrieved by the 2D-Geoformer for the
corresponding intervals. (G–I) showcase the corrected SWH errors post 2D-Geoformer adjustment for these respective time frames.
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to global oceans will require overcoming computational challenges

and refining the 2D-Geoformer model to boost its efficiency. It is also

pertinent to highlight that this research employs ERA5 reanalysis

datasets as the observational benchmark. Although ERA5 reanalysis

SWH data serve as a robust surrogate for actual observations, they are

not devoid of errors. Subsequent studies should consider the

incorporation of data from diverse sources to improve

observational precision. Additionally, the current investigation

utilizes the 2D-Geoformer, a statistically based method; future

endeavors could explore physically based deep learning techniques

(Xu et al., 2021; Sun et al., 2022; Jiang et al., 2023; Wang and Huang,

2024), potentially yielding more robust outcomes. In conclusion, the

methodologies delineated in this study are crucial for the progression

of SWH forecasting, providing significant advantages for maritime

navigation, coastal management, and the broader spectrum of marine

economic activities.
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