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Accurate prediction of significant wave height is of great reference value for wave

energy generation. However, due to the non-linearity and non-stationarity of

significant wave height, traditional algorithms face difficulties in achieving

satisfactory prediction results. In this study, a hybrid CEEMDAN-VMD-TimesNet

model is proposed for non-stationary significant wave height prediction. Based on

the significant wave height in the South Sea of China, the performance of the SVM

model, the GRU model, the LSTM model, the TimesNet model, the CEEMDAN-

TimesNet model and the CEEMDAN-VMD-TimesNet model are compared in terms

of multi-step prediction. It is found that the prediction accuracy of the TimesNet

model is higher than that of the SVM model, the GRU model and the LSTM model.

The non-stationarity of significant wave height is reduced by CEEMDAN

decomposition. Thus, the CEEMDAN-TimesNet model performs better than the

TimesNet model in predicting significant wave height. The prediction accuracy of

the CEEMDAN-VMD-TimesNet model is further improved by employing VMD for

the secondary decomposition of components with high and moderate complexity.

Additionally, the CEEMDAN-VMD-TimesNet model can accurately predict trends

and extreme values of significant wave height with minimal phase shifts even during

typhoon periods. The results demonstrate that the CEEMDAN-VMD-TimesNet

model exhibits superiority in predicting significant wave height.
KEYWORDS

wave height prediction, CEEMDAN, VMD, TimesNet, CEEMDAN-VMD-TimesNet
1 Introduction

More than 70% of the world is composed of oceans. Wave energy, as a clean and

renewable energy source (Reikard et al., 2015), is crucial for addressing the energy crisis. For

wave energy generation, the significant wave height is a crucial metric (Ali and Prasad, 2019).

As a result, there has always been a great deal of focus on accurately predicting significant
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wave height (Deo et al., 2001). However, predicting significant wave

height is challenging. In particular, during extreme weather

conditions such as typhoons, the significant wave height undergoes

rapid changes, posing a significant challenge to accurate prediction.

So far, experts and researchers from various countries have

attempted to establish numerical models to simulate significant

wave height (Reikard et al., 2017). Reikard and Rogers (2011) tried

to predict significant wave height in the Pacific region and the Gulf

of Mexico using the SWAN model. It was found that when the

forecast time exceeds 6 hours, the SWAN model’s prediction

accuracy surpasses that of mathematical models. Chen et al.

(2018) created a wave-current system that combined FVCOM

with SWAN. This system allowed for on-line, two-way coupling

and was also more computationally efficient and user-friendly for

simulating wave-current interactions near the coast. Amunugama

et al. (2020) employed the COAWST model to simulate multiple

intense typhoons in Japan and found that the COAWST model

effectively reproduced typhoon phenomena, storm surges, and wave

height. Vijayan et al. (2023) utilized the dynamic coupling of

SWAN and ADCIRC to simulate Hurricane Michael. They

observed that the accuracy of the simulation was significantly

improved by the dynamic coupling model of SWAN and ADCIRC.

However, traditional physics models often require high

accuracy in terrain and boundary conditions and also require a

significant amount of computing time (Wang et al., 2018).

Consequently, as computer technology advances, an increasing

number of researchers have shown a strong interest in machine

learning. Soares and Cunha (2000) utilized a bivariate AR model

incorporating significant wave height and average wave period to

predict significant wave height at two adjacent stations in Portugal.

Agrawal and Deo (2002) employed ARMA and ARIMA models to

predict significant wave height at a nearshore location in India at

intervals of 3, 6, 12, and 24 hours. By using Support Vector Machine

(SVM), Mahjoobi and Mosabbeb (2009) successfully predicted

significant wave height in Lake Michigan with acceptable accuracy.

Neural networks, known for the superiority in handling non-

linear problems, have gained popularity among researchers. A

growing number of experts have adopted the usage of neural

networks for the purpose of predicting significant wave height.

Chang et al. (2011) developed an Artificial Neural Network (ANN)

model for typhoon waves, using local wind and simulated waves as

the two critical factors for the proposed ANN model’s input

parameters. With the development of deep learning, long short-

term memory (LSTM) network (Hochreiter and Schmidhuber,

1997) has gained attention. LSTM network can effectively capture

the long-term dependencies in time series sequences and utilize

historical data for prediction. Fan et al. (2020) used the wind speed

data from the last 4 hours, together with the wave height and wind

direction data from the previous 1 hour, as input variables to predict

significant wave height at 10 distinct stations with varying oceanic

environmental circumstances. The findings demonstrated that the

LSTM model was capable of attaining precise prediction outcomes.

Bethel et al. (2022) utilized LSTM to predict significant wave height

during hurricanes Dorian, Sandy, and Igor. They found that the

LSTM model is highly suitable for swiftly forecasting hurricane-

forced wave height, with significantly lower computational expenses
Frontiers in Marine Science 02
when compared to numerical wave models. Song et al. (2022)

developed a high spatial and temporal resolution regional

significant wave height prediction model based on the

ConvLSTM model. Additionally, the Mask method and Replace

mechanism were applied to improve the model’s long-term

forecasting capabilities. Gate recurrent unit (GRU), as a variant of

LSTM, has also been put into use. Meng et al. (2021) proposed a

BiGRU network for wave height prediction during TC. The

prediction by BiGRU of 10 buoys during a new typhoon was

compared with machine learning models. The findings indicated

that the BiGRU’s predictive ability is stable, particularly for

predicting 24 hours in advance. Li et al. (2022) predicted

significant wave height at six stations along the coast of China.

The experimental results showed that for a 3-hour forecast, the

GRU network exhibited stronger robustness compared to the LSTM

network. The prediction accuracy of significant wave height has

been improved by the application of these deep learning techniques.

Unlike traditional convolutional neural networks and recurrent

neural networks, the transformer utilized the attention mechanism

to capture data features and has achieved good results (Vaswani

et al., 2017). Shortly after, the Informer was proposed, which greatly

reduced the computation time through the ProbSparse self-

attention mechanism and the self-attention distilling (Zhou et al.,

2021). Based on the Auto-Correlation mechanism, the Autoformer

was successfully proposed. The accurate prediction was achieved

using the Autoformer (Wu et al., 2021). Recently, the one-

dimensional time series was transformed into a two-dimensional

tensor to capture intra-period and inter-period changes. Following

this approach, the TimesNet model was constructed, which

achieved significant progress in time series prediction (Wu

et al., 2022).

Due to the non-stationarity of significant wave height data,

simply altering the network structure often fails to solve the

problem effectively. Therefore, scholars have considered

decomposing the significant wave height data to reduce the non-

stationarity. Empirical mode decomposition (EMD) has

demonstrated excellent performance in handling non-linear and

non-stationary data (Huang et al., 1998). Duan et al. (2016)

utilized EMD-AR to predict significant wave height. The results

proved the effectiveness of EMD in handling non-linear and non-

stationary significant wave height. Hao et al. (2022) decomposed

significant wave height using EMD and then used the LSTM to

predict the decomposed components. They found that the EMD-

LSTM model significantly improves prediction accuracy. Compared

to EMD, ensemble empirical mode decomposition (EEMD) exhibits

greater robustness in terms of sampling and noise (Wu and Huang,

2009). EEMD and LSTM were used to propose a real-time TC wave

height forecasting system (ATDNNS). The experimental findings

revealed that ATDNNS performed much better compared to the

baseline model and had the potential to address the issue of poor

initial forecast performance in numerical models (Meng et al., 2022).

The significant wave height in the Indian Ocean region was

predicted using EEMD-LSTM. It was found that the prediction

results by EEMD-LSTM were more accurate compared to the

prediction results by EMD-LSTM (Song et al., 2023). Variational

mode decomposition (VMD) is another improved version of
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EMD, demonstrating enhanced signal processing capabilities

(Dragomiretskiy and Zosso, 2013). Yang and Huang (2022)

introduced an approach using VMD to estimate the significant

wave height from X-band marine radar images. They found that

VMD-based linear fitting technique outperformed the conventional

EEMD-based linear fitting technique in terms of accuracy. Sharma

et al. (2023) incorporated a hybrid VMD-BiLSTM into the ship’s

autopilot system. The experimental results showed that deep

learning models were able to more correctly capture the observable

variational components in the data due to VMD-based data

decomposition. Zhao et al. (2023) established a VMD-LSTM/GRU

hybrid model to predict significant wave height in the east coast of

China accurately. The finding demonstrated that VMD can handle

non-linear and non-stationary significant wave height effectively.

Although previous prediction models based on single

decomposition such as VMD have achieved notable outcomes,

there is potential for further improvement. This article proposes a

CEEMDAN-VMD-TimesNet model that combines the two-layer

decomposition framework with the TimesNet model. We first

decompose the original significant wave height into IMFs and a

residual component by using complete ensemble empirical mode

decomposition with adaptive noise (CEEMDAN). Next, we

reconstruct each IMF and residual with sample entropy algorithm

and K-means clustering algorithm. The VMD is used to decompose

the high and medium complexity components that cause the main

errors. Compared to the single decomposition, the secondary

decomposition can better reduce the non-stationarity of significant

wave height. In addition, we adopt TimesNet model as the main

model for wave height prediction. This is due to the fact that the

TimesNet model can capture the short-term temporal patterns

within a period and the long-term trends of different periods well,

which is conducive to improving the prediction accuracy.

The present article is organized in the following manner.

Section 2 provides an introduction to the fundamental ideas

behind the TimesNet model, the CEEMDAN algorithm, the

Sample Entropy algorithm, the K-means clustering algorithm and

the VMD algorithm. In Section 3, the dataset employed in the study

and the data processing procedure are delineated. Section 4 of this

article shows the prediction results obtained by the suggested

approaches, followed by a comprehensive discussion of these

findings. Finally, Section 5 provides a conclusion to this article.
2 Methodology

2.1 TimesNet

The temporal variations in the natural world are complex and

intertwined. The changes at each time point are not only related to

short-term temporal patterns within a period but also highly related

to long-term trends of different periods. The former represents

intra-period changes, while the latter represents inter-period

changes. TimesNet can decompose the temporal variations into

intra-period and inter-periodic changes, and identify the long-term

patterns and short-term features of the time series, so as to enhance

the accuracy of prediction. Significant wave height as a time series,
Frontiers in Marine Science 03
we think that TimesNet can well extract the deep information of

significant wave height and apply it in the prediction model.

To capture both types of changes, it is important to identify the

period of the time series. Fast Fourier Transform can be used for

frequency domain analysis of time. X1D represents the original 1D

data, which is the input of the TimesNet model. For the direct

TimesNet model, X1D represents significant wave height. For the

CEEMDAN-TimesNet model, X1D represents H(t) generated in 2.4.

For the CEEMDAN-VMD-TimesNet model, X1D represents the

subsequences generated by the secondary decomposition of

significant wave height by CEEMDAN and VMD. The entire

process is as follows

A = Avg (Amp (FFT (X1D))), f1,⋯, fkf g = arg Topk 
f*∈ 1,⋯,½T2 �f g

(A), pi

= ⌈ T
fi
⌉, i ∈ 1,⋯, kf g (1)

where FFT(·) refers to the FFT, and Amp(·) represents the

computation of amplitude values, A is the amplitude of

each frequency.

Meaningless high frequencies often introduce noise. To acquire

the most prominent frequencies and the unnormalized amplitudes,

the top-k amplitudes will be selected. Due to the conjugate nature of

frequencies, only frequencies within 1,⋯,   T
2

� �� �
will be chosen.

The Equation (1) can be summarized as follows:

A, f1,⋯, fkf g, p1,⋯, pkf g = Period (X1D) (2)

Based on the selected frequency and period, a one-dimensional

time series is transformed into multiple two-dimensional time

tensors using the following equation:

Xi
2D = Reshapepi,fi (Padding (X1D)), i ∈ 1,⋯, kf g (3)

where Xi
2D is the i-th reshaped time series, Padding(·) is to

extend the time series by zeros along temporal dimension to make it

compatible for Reshapepi ,fi , pi and fi represent the number of rows

and columns of the transformed 2D tensors respectively.

TimesNet is stacked by TimesBlocks in a residual way (He et al.,

2016). The structure of the TimesNet model is illustrated in

Figure 1. For a one-dimensional input time series of length T, the

original input is first projected into deep features using an

embedding layer X0
1D =  Embed(X1D). For the l-th layer of

TimesNet Xl
1D, the process can be formalized as:

Xl
1D = TimesBlock  Xl−1

1D

� �
+ Xl−1

1D (4)

A parameter-efficient inception block in 2D space allows

TimesBlocks to collect diverse temporal 2D-variations from k

different reshaped tensors. The procedure is codified in the

following way:

Al−1, f1,⋯, fkf g, p1,⋯, pkf g = Period (Xl−1
1D )

Xl,i
2D = Reshapepi ,fi Padding  Xl−1

1D

� 	� 	
, i ∈ 1,⋯, kf g

X̂
l,i
2D = Inception  Xl,i

2D

� 	
, i ∈ 1,⋯, kf g

X̂
l,i
1D = Trunc  Reshape1,(pi ,fi) X̂ l,i

2D

� 	� 	
, i ∈ 1,⋯, kf g

(5)
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where Xl,i
2D is the transformed 2D tensor, X̂

l,i
2D is the

representation processed by the parameter-efficient inception

block, and X̂
l,i
1D is transformed from X̂

l,i
2D for aggregation.

Given that amplitude is able to indicate the significance of a

certain frequency and period, aggregation can be performed based

on amplitude for one-dimensional representation. The process is

formalized as follows:

Â l−1
f1
,⋯, Â l−1

fk
= Softmax  Al−1

f1
,⋯,Al−1

fk

� �

Xl
1D =o

k

i=1
Â l−1

fi � X̂ l,i
1D

(6)

It should be noted that the parameters representing the input and

the output to the TimesNet model are X1D and Xl
1D respectively.
2.2 CEEMDAN algorithm

By including IMF components with auxiliary noise after EMD

decomposition, rather than simply introducing Gaussian white

noise to the initial signal, the CEEMDAN algorithm overcomes

the mode mixing problem and the transfer of white noise from high

to low frequencies during signal decomposition (Torres et al., 2011).

As a result, the CEEMDAN algorithm can better handle non-linear

and non-stationary data, reduce the complexity of the original data,

and improve the accuracy of prediction compared to EMD.

Significant wave height is non-linear and non-stationary data.

Therefore, we adopt CEEMDAN for the primary decomposition

of significant wave height. However, there are a few drawbacks to

using CEEMDAN. For example, in the beginning of the

decomposition process, CEEMDAN could generate some

“pseudo” modes, and it is difficult to fully extract the information

from components with high and moderate complexity.

f (t) is the input of CEEMDAN algorithm, which represents

significant wave height. The steps of the algorithm are as follows:

1. By adding Gaussian white noise to the original signal f(t)

under decomposition, a new signal yi(t) is obtained:

yi(t) = f (t) + e0di(t), i = 1, 2,…,K (7)
Frontiers in Marine Science 04
where K is the number of white Gaussian noises, e0 is a

coefficient of intensity.

2. By taking the average of all the first decomposition

components of EMD, the first IMF, denoted as, Imf1(t) is obtained

Imf1(t) =
1
Ko

K

i=1
EMD1(yi(t))

r1(t) = f (t) − Imf1(t)

(8)

where EMD1(·) denotes the first IMF component produced by

EMD method, r1(t) indicates the residual for the first stage.

3. To get the second IMF component, the signal r1(t) + e1EM
D1(di(t)) can be further decomposed and combined:

Imf2(t) =
1
K o

K

i=1
EMD1(r1(t) + e1EMD1(di(t)))

r2(t) = r1(t) − Imf2(t)
(9)

where r2(t) is the residual of the second stage.

4. The j th IMF component and j th residual can be calculated as:

Imfj(t) =
1
K o

K

i=1
EMD1(rj−1(t) + ej−1EMDj−1(di(t)))

rj(t) = rj−1(t) − Imfj(t)
(10)

where rj(t) is the residual after the j th decomposition.

5. The algorithm terminates when the residual signal obtained

cannot be further decomposed. The number of intrinsic mode

components obtained at this time is N. The original signal f(t) is

decomposed into:

f (t) =o
N

i=1
 NImfi(t) + rN (t) (11)
2.3 Sample entropy algorithm

Sample entropy is a metric that assesses the complexity of a time

series by assessing the probability of producing novel patterns in the

signal (Richman and Moorman, 2000). A lower value of sample

entropy indicates higher self-similarity in the sequence, while a higher

value indicates greater complexity in the sample sequence. Both Imfi
(t)(i = 1, 2,…,N) and rN (t) generated in 2.2 need to calculate the

sample entropy separately. Imf1(t) is used as an example to illustrate

the sample entropy algorithm. n represents the total number of data

points in Imf1(t). For Imf1(t) = ½x(1), x(2),…, x(n)�, the steps for

calculating sample entropy are as follows:

1. The vectors xm(i) can be calculated as follows:

xm(i) = ½x(i), x(i + 1),…, x(i +m − 1)�, i = 1, 2,…, n −m + 1 (12)

where m denotes the length of sequences to be compared.

2. The distance between xm(i) and xm(j) is defined to be dm:

dm½xm(i), xm(j)� = max  ½xm(i + k) − xm(j + k)�, 0 ≤ k ≤ m − 1 (13)
FIGURE 1

Structure of the TimesNet model.
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3. Let r be the tolerance for accepting matrices. For a given xm(i),

count the number of distances between xm(i) and xm(j) that are less

than or equal to r and denote them as Bi. B
m(r) is the probability of

two sequences matching m points, which is defined as:

Bm(r) =
1

n −m o
n−m

i=1

1
n −m + 1

Bi (14)

4. Increase the dimension to m + 1, count the number of

distances between xm+1(i) and xm+1(j) that are less than or equal to r

and denote them as Ai. A
m(r) is the probability of two sequences

matching m + 1 points, which is defined as:

Am(r) =
1

n −m o
n−m

i−1

1
n −m + 1

Ai (15)

5. Finally, the Sample Entropy is defined as SampEn(m, r):

SampEn(m, r) = lim
n→∞

− ln  
Am(r)
Bm(r)


 �
(16)

Sample Entropy can be defined using the following equation

when n is a finite value:

SampEn(m, r, n) = − ln  
Am(r)
Bm(r)

(17)

The sample entropy of Imfi(t)(i = 2,…,N) and rN (t) is

computed just like Imf1(t). All the calculated sample entropy is

combined to form the sequence s(N).
2.4 K-means clustering algorithm

The K-means clustering technique is a common unsupervised

learning algorithm which uses the degree of similarity between

samples to place them in appropriate groupings. A typical metric

for comparing two objects’ similarities is the Euclidean distance,

which can be expressed as:

d(x, y) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(xi − yi)

2

s
(18)

The sequence s(N) formed in 2.3 is the input of K-means

clustering algorithm, the steps for K-means clustering algorithm

are as follows:

1. K samples are chosen as the first cluster centers aj(I). Set I = 1.

2. Compute the distance between each sample in the dataset

s(N) and the K cluster centers aj(I), then assign it to the class

associated with the cluster center that has the shortest distance.

3. Determine the new cluster center using the following

formula:

aj(I + 1) =
1
cij j os(i)∈ci

s(i) (19)

where ci is the cluster, |ci| is the number of data points in the

cluster, and s(i) is the data points in the cluster.

4. The clustering evaluation metrics J are computed based on

the formula provided below:
Frontiers in Marine Science 05
J(I) =o
n

i=1
o
k

j=1
( si − aj(I)


 

)2 (20)

5. Exit the algorithm if J(I + 1) − J(I)j j ≤ x is met; otherwise, set

I = I + 1 and return to step 2.

After completing the clustering, Imfi(t)(i = 1, 2,…,N) and rN (t)

that are in the same category are added together to form COIMF,

which is denoted as the parameter H(t).
2.5 VMD algorithm

VMD is a non-recursive signal processing method that

decomposes time series data into a series of IMFs with finite

bandwidth. It iteratively searches for the optimal solution of the

variational mode.

By addressing a variational issue, the VMD method efficiently

transforms decomposition into optimization. Hence, we think that

VMD can extract the information in components with high and

moderate complexity that CEEMDAN fails to extract completely,

and further reduce the complexity of the data. Therefore, we use

VMD for the secondary decomposition of significant wave height.

The procedure may be partitioned into two stages the

formulation of the variational issue and its subsequent resolution.

VMD has redefined the intrinsic mode functions:

uk(t) = Ak(t) cos  (fk(t)) (21)

where k is the mode number, Ak(t) is the amplitude of the k

mode, fk(t) is the phase of the kmode, uk(t) is the kmode function.

H (t) is the data generated in 2.4, which is the input of VMD

algorithm. The formulated constrained variational problem is as

follows:

min   ukf g wkf g o
K

k=1

∂t d (t) +
j
p t


 �
*uk(t)

� �
e−jwkt










2
2

( )

s : t :o
K

k=1

uk(t) = H(t)

8>>>><
>>>>:

(22)

where uk represents the respective mode functions, while wk

represents the respective mode center frequencies.

It is necessary to convert the constrained variational problem

into an unconstrained variational problem in order to solve the

described constrained optimization issue. By leveraging the

advantages of quadratic penalty terms and the Lagrange

multiplier method, an augmented Lagrangian function is

introduced (Bertsekas, 1976).

L( ukf g, wkf g, l) = ao
K

k=1

∂t d (t) +
j
p t


 �
*uk(t)

� �
e−jwkt










2
2

+ H(t) −o
K

k=1

uk(t)













2

2

+〈l(t),H(t) −o
K

k=1

uk(t)〉
(23)

where a represents the variance regularization parameter, while

l represents the Lagrangian multiplier.

To address the aforementioned variational problem, the

ADMM is employed (Hestenes, 1969).
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The procedure is outlined as follows:

1. Initialize u1k, �w
1
k , l

1
k and n.

2. The variable n is incremented by 1, and the program proceeds

to enter the loop.

3. According to the Equation (24), the variables uk and �wk are

updated. The updating process stops when the number of iterations

reaches k.

û n+1
k (w) =

Ĥ (w)−oi<kû
n+1
i (w) +oi>kû

n
i (w) +

l̂ n(w)
2

1+2a(w−�wn
k )

2

�wn+1
k =

Z ∞

0
w û n+1

k (w)
�� ��2dwZ ∞

0
û n+1
k (w)

�� ��2dw

8>>>>>>>><
>>>>>>>>:

(24)

4. According to the Equation (25), the variable l is updated.

l̂ n+1(w) = l̂ n(w) + t Ĥ (w) −o
K

k=1

û n+1
k (w)

 !
(25)

5. If the user-defined variable e satisfies the stopping condition
(Equation 26), the loop is terminated, otherwise it proceeds to step 2

and continues the iteration.

o
K

k=1

û n+1
k (w) − û n

k(w)


 

2

2

û n
k(w)



 

2
2

< e (26)

In fact, H(t) after decomposition still has the residual. The

residual is denoted as rk(t).

rk(t) = H(t) −o
K

k=1

uk(t) (27)

uk(t) and rk(t) are the output of VMD algorithm.
2.6 CEEMDAN-TimesNet

The CEEMDAN-TimesNet model for predicting significant

wave height involves four distinct phases. The entire process is

illustrated in Figure 2.
Frontiers in Marine Science 06
1. The initial action involves decomposing significant wave

height f (t) using the CEEMDAN algorithm. This process

produces IMFs Imfi(t) as well as a residual component rN (t).

2. For each IMF and residual component, the sample entropy

is calculated using the sample entropy algorithm. All the

calculated sample entropy is combined to form the

sequence s(N). Then, the K-means clustering technique is

used to categorize Imfi(t) and rN (t) into three distinct

groups COIMF1, COIMF2 and COIMF3 based on s(N).

3. The TimesNet model is utilized to independently predict

COIMF1, COIMF2 and COIMF3.

4. Ultimately, the final result is achieved by the combination

of the prediction outcomes of COIMF1, COIMF2

and COIMF3.
2.7 CEEMDAN-VMD-TimesNet

The process of predicting significant wave height via the

CEEMDAN-VMD-TimesNet model has five distinct stages. The

complete procedure is depicted in Figure 3.
1. The significant wave height f (t) is decomposed through the

utilization of the CEEMDAN algorithm, resulting in the

generation of IMFs Imfi(t) as well as a residual component

rN (t).

2. The sample entropy algorithm is used to calculate the

entropy values of each IMF and residual component. By

combining all the computed sample entropy, the sequence

s(N) is formed. Based on s(N), the K-means clustering

algorithm is then applied to cluster Imfi(t) and rN (t) into

three categories COIMF1, COIMF2 and COIMF3.

3. The COIMF1 and COIMF2 are decomposed again using

VMD to generate new IMFs uk(t) and a residual

component rk(t).

4. The TimesNet model is employed to predict COIMF3 and

new subsequences generated from COIMF1 and

COIMF2 individually.
FIGURE 2

Flow chart of the hybrid CEEMDAN-TimesNet significant wave height prediction model.
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Fron
5. In the final stage, the prediction results of COIMF3 and

new subsequences generated from COIMF1 and COIMF2

are added together to form the ultimate result.
2.8 Evaluation metrics

R2,MSE, RMSE, andMAE are the four metrics used to quantify the

errors between the predicted values and the actual values, which are

used to evaluate the model’s performance in this research. R2 is used to

evaluate the degree of agreement.MSE is used to quantify the average

squared difference. RMSE is used to measure the average difference.

MAE is the mean of the absolute errors. The formulas are as follows:

R2 = 1 −o
n
i=1(ŷ i − yi)

2

on
i=1(�yi − yi)

2 (28)

MSE =
1
no

n

i=1
(yi − ŷ i)

2 (29)
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s
(30)

MAE =
1
no

n

i=1
yi − ŷ ij j (31)

where ŷi represents the predicted value, yi represents the actual

value, �yi represents the mean of the actual values, and n represents

the number of data samples.

The larger R2 indicates better agreement between the predicted

values and the actual values, demonstrating stronger predictive

capacity of the model. In contrast, the smaller MSE, RMSE, and

MAE reflect the lower error and the better predictive performance.

3 Wave datasets preprocessing

3.1 Research area

The South Sea of China was chosen for this study. The original

data for significant wave height was sourced from ERA5 of the
FIGURE 3

Flow chart of the hybrid CEEMDAN-VMD-TimesNet significant wave height prediction model.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1375631
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ding et al. 10.3389/fmars.2024.1375631
European Centre for Medium-Range Weather Forecasts (ECMWF)

and covered the period from January 1, 2010, 00:00:00 UTC to

December 31, 2018, 23:00:00 UTC. The time interval for significant

wave height was one hour. There were a total of 78,888 valid data

points. The dataset1 was selected at position 1, and the dataset2 was

selected at position 2. The coordinates of position 1 were (21.50°

N,113.00°E), and the coordinates of position 2 were (23.00°

N,117.50°E). The location of the selected position in this paper is

presented in Figure 4. The dataset1 and the dataset2 are illustrated

in Figures 5, 6, respectively. The occurrence time of Typhoon Hato

was from August 20, 2017, 14:00:00 UTC to August 24, 2017,

17:00:00 UTC. During the occurrence of Typhoon Hato, the

maximum wind speed at position 1 is 25.08 m/s, and at position

2 is 20.84 m/s.
3.2 Data processing

3.2.1 Siginificant wave height decomposed
by CEEMDAN

This study used the pyEMD package to implement the

CEEMDAN. Figures 5, 6 depict the decomposed outcomes. As

shown in Figures 5, 6, the dataset1 and the dataset2 are both

decomposed into 18 subsequences. It can be observed that the

dataset becomes stationary through CEEMDAN decomposition.

3.2.2 Clustering decomposed sub-sequences by
Sample Entropy and K-means clustering

Sample Entropy was used to measure the complexity of each IMF

by the Python sample module. During the computational process, mm

and r were set to 1 and 0.1, respectively. Then the Kmeans clustering

algorithm was then applied to cluster subsequences into three

categories. We think this classification method effectively captures

the information of various component types and saves

computational time. Figures 7, 8 display the calculated sample

entropy values and the newly clustered IMFs, where IMF18 is the

residual. As shown in Figures 7, 8, for dataset1, these IMFs can be

integrated into three new COIMFs: COIMF0 (IMF1-5), COIMF1
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(IMF6-8), and COIMF2 (IMF9-18). For dataset2, these IMFs can

also be integrated into three new COIMFs: COIMF0 (IMF1-4),

COIMF1 (IMF5-8), and COIMF2 (IMF9-18). It is clear that

COIMF1 is composed of highly complex IMF components, COIMF2

is composed of moderately complex IMF components, and COIMF3 is

composed of lowly complex IMF components.

3.2.3 COIMF1 and COIMF2 decomposed by VMD
Following the first decomposition and reconstruction, the VMD

was used again to decompose COIMF1 and COIMF2, aiming to

enhance the stationarity and decrease the complexity of the data.

Based on previous research and experience (Zhao et al., 2023), both

COIMF1 and COIMF2 were decomposed into 10 IMFs and 1

residual. COIMF3 and new subsequences generated from

COIMF1 and COIMF2 were subjected to maximum-minimum

normalization. Then the data after normalization were predicted

by TimesNet.
4 Results and discussion

4.1 Setup of model

First, the dataset partitioning should be emphasized. The

dataset was partitioned into three subsets a training set including

the initial 70% of the data consisting of 55221 samples, a validation

set including the 10% of the data consisting of 7889 samples, and a

testing set comprising the last 20% consisting of 15778 samples.

The SVM model, the GRU model, and the LSTM model are all

commonly used for significant wave height prediction and are

regularly employed in various studies for conducting comparative

analyses (Meng et al., 2021; Song et al., 2022). Thus, in this research,

we selected these models to assess the performance of our

proposed model.

The experiment was conducted in a Python 3.7 environment.

Based on previous research and experimental results (Meng et al.,

2021), the kernel of the SVM model was Radial Basis Function

(RBF). The tol, C and gamma of the SVM model were 0.001, 1 and
FIGURE 4

Distribution of the selected position in the South Sea of China.
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0.1, respectively. The remaining parameters were set by default in

the scikit-learn.

Based on previous experience and multiple experiments, the

GRU model and the LSTM model were both divided into three

layers input layer, hidden layer, and output layer. The hidden layer

consisted of 32 neurons. The MSE was chosen as the loss function,

and the Adam optimizer was used. Dropout was set to 0.2. The

batch size was set to 32, and the number of epochs was set to 100. To

prevent overfitting, early stopping was implemented with a patience

of 10. The timestep was set to 7, meaning that the significant wave

height of the current hour was considered to be related to the

previous seven hours.
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For the TimesNet model, the sequence length and label length were

both set to 12 based on previous experience and multiple experiments.

The loss function remained as MSE, and the optimizer was still Adam.

The batch size and number of epochs were set to 32 and 7, respectively.

Dropout was set to 0.2. To prevent overfitting, early stopping was

implemented with a patience of 3. The number of heads was set to 8, the

dimension of models was set to 16, and the attention factor was set to 5.

In order to facilitate the analysis, this study selected 400 data

points to create comparative figures.

The time span covered was from August 18, 2017, 00:00:00

UTC to September 3, 2017, 15:00:00 UTC. It is worth noting that

Typhoon Hato occurred during this time period.
B

A

FIGURE 5

Significant wave height time series and decomposition results of dataset1 (A) significant wave height time series, (B) decomposition results.
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4.2 Multi-step prediction results by
different models

To evaluate the accuracy of the predictions, Tables 1, 2 record

the error statistics of the results of the dataset by each model.

Tables 3, 4 record the error statistics of the results of COIMF1,

COIMF2 and COIMF3 by different models. Figures 9, 10 present

the comparison between the predicted and actual values for both

models. “1h” in Figures 9, 10 represents August 18, 2017, at 00:00:00

UTC. The occurrence time of Typhoon Hato in Figures 9, 10 is from

63h to 162h, which is between the dotted lines. Figure 11 shows
Frontiers in Marine Science 10
comparison of RMSE during the typhoon period in different

prediction lead time.
4.3 Discussion of the prediction results

From Tables 1, 2, it can be observed that all models have shown

good performance when the number of prediction steps is small,

and the accuracy of the prediction results by the TimesNet model is

higher compared to that of other models. Furthermore, as the

number of steps increases, the difference becomes more
B

A

FIGURE 6

Significant wave height time series and decomposition results of dataset2 (A) significant wave height time series, (B) decomposition results.
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pronounced. For dataset1, when the number of prediction steps

becomes twelve, R2 of prediction results by the SVM model, the

GRU model and the LSTM model are only 0.5118, 0.5363 and

0.5781, respectively. While R2 of prediction results by the TimesNet

model can reach 0.7414. This phenomenon occurs because the SVM

model, the GRU model and the LSTM model all need to calculate

the value of the current time before using it to predict the next value.

This process introduces cumulative errors, which accumulate and

become larger as the number of steps increases. On the other hand,

the TimesNet model avoids cumulative errors by connecting each

point in the time series with other points. Additionally, the

TimesNet model can effectively capture intraperiod- and

interperiod-variations, resulting in a minimal decrease in the

accuracy of the predictions with an increasing number of steps.

Wu et al. (2022) conducted research on both short-term and long-

term forecasting for time series data and found that the TimesNet

model outperformed the LSTM model in terms of prediction

accuracy, which aligns with the findings of this study.

Considering the advantages of the TimesNet model, this study

chooses to conduct further research using the TimesNet model.
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Observing Tables 1, 2, it is found that there has been a

substantial improvement in the accuracy of the predictions after

decomposing the original significant wave height with CEEMDAN

and clustering IMFs. The decrease in accuracy of the CEEMDAN-

TimesNet model is lower compared to the TimesNet model. For the

12-step ahead prediction results of dataset1, R2 of the prediction

results by the CEEMDAN-TimesNet model is improved by 21.85%

compared to the prediction results by the TimesNet model. MSE,

RMSE and MAE are decreased by 62.66%, 38.86% and 34.57%,

respectively. For the 12-step ahead prediction results of dataset2, R2

of the prediction results by the CEEMDAN-TimesNet model is

improved by 16.13% compared to the prediction results by the

TimesNet model. MSE, RMSE and MAE are decreased by 53.62%,

31.92% and 27.19%, respectively. The wave time series has non-

stationary properties (Londhe and Panchang, 2006), which affects

the prediction accuracy. Applying CEEMDAN and clustering

improves prediction accuracy by reducing the non-stationarity of

the original significant wave height.

A more detailed analysis is required for the prediction results of

COIMFs for further enhancements to the CEEMDAN-TimesNet
FIGURE 7

Sample entropy and clustering results of dataset1.
FIGURE 8

Sample entropy and clustering results of dataset2.
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TABLE 1 Error measures of multi-step predictions of dataset1 by different models.

Size of step Index SVM GRU LSTM TimesNet CEEMDAN CEEMDAN-
VMD

-TimesNet -TimesNet

2

R2 0.9831 0.9789 0.9809 0.9862 0.9899 0.9993

MSE 0.0047 0.0059 0.0053 0.0038 0.0028 0.0002

RMSE 0.0687 0.0767 0.0730 0.0620 0.0530 0.0136

MAE 0.0477 0.0542 0.0518 0.0355 0.0306 0.0092

4

R2 0.9271 0.9210 0.9301 0.9544 0.9726 0.9984

MSE 0.0204 0.0220 0.0195 0.0127 0.0077 0.0004

RMSE 0.1427 0.1485 0.1398 0.1128 0.0875 0.0212

MAE 0.1130 0.1077 0.1035 0.0671 0.0539 0.0144

6

R2 0.8318 0.8361 0.8548 0.9095 0.9553 0.9965

MSE 0.0470 0.0458 0.0406 0.0253 0.0125 0.0010

RMSE 0.2167 0.2139 0.2014 0.1590 0.1118 0.0313

MAE 0.1782 0.1551 0.1512 0.0965 0.0703 0.0215

8

R2 0.7262 0.7362 0.7630 0.8577 0.9400 0.9940

MSE 0.0765 0.0737 0.0662 0.0397 0.0168 0.0017

RMSE 0.2766 0.2715 0.2573 0.1994 0.1295 0.0410

MAE 0.2304 0.1967 0.1951 0.1218 0.0832 0.0281

10

R2 0.6169 0.6330 0.6670 0.7999 0.9227 0.9912

MSE 0.1071 0.1025 0.0930 0.0559 0.0216 0.0025

RMSE 0.3272 0.3202 0.3050 0.2365 0.1470 0.0496

MAE 0.2748 0.2320 0.2322 0.1451 0.0954 0.0336

12

R2 0.5118 0.5363 0.5781 0.7414 0.9034 0.9882

MSE 0.1365 0.1296 0.1179 0.0723 0.0270 0.0033

RMSE 0.3694 0.3600 0.3434 0.2689 0.1644 0.0575

MAE 0.3166 0.2610 0.2618 0.1649 0.1079 0.0386
F
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TABLE 2 Error measures of multi-step predictions of dataset2 by different models.

Size of step Index SVM GRU LSTM TimesNet CEEMDAN CEEMDAN-
VMD

-TimesNet -TimesNet

2

R2 0.9876 0.9859 0.9881 0.9916 0.9952 0.9997

MSE 0.0095 0.0108 0.0091 0.0064 0.0037 0.0003

RMSE 0.0972 0.1039 0.0956 0.0802 0.0609 0.0160

MAE 0.0743 0.0750 0.0671 0.0456 0.3714 0.0113

4

R2 0.9473 0.9463 0.9515 0.9687 0.9880 0.9992

MSE 0.0403 0.0411 0.0371 0.0239 0.0092 0.0006

RMSE 0.2007 0.2027 0.1926 0.1548 0.0957 0.0254

MAE 0.1620 0.1471 0.1388 0.0905 0.0634 0.0181

(Continued)
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TABLE 2 Continued

Size of step Index SVM GRU LSTM TimesNet CEEMDAN CEEMDAN-
VMD

-TimesNet -TimesNet

6

R2 0.8748 0.8874 0.8917 0.9317 0.9779 0.9984

MSE 0.0958 0.0861 0.0829 0.0523 0.0169 0.0012

RMSE 0.3095 0.2935 0.2879 0.2286 0.1300 0.0352

MAE 0.2548 0.2113 0.2079 0.1342 0.0877 0.0251

8

R2 0.7925 0.8168 0.8149 0.8836 0.9604 0.9974

MSE 0.1588 0.1402 0.1416 0.0891 0.0303 0.0020

RMSE 0.3985 0.3744 0.3763 0.2985 0.1741 0.0449

MAE 0.3302 0.2681 0.2718 0.1764 0.1154 0.0323

10

R2 0.7059 0.7407 0.7287 0.8282 0.9318 0.9959

MSE 0.2251 0.1984 0.2076 0.1315 0.0522 0.0031

RMSE 0.4744 0.4455 0.4556 0.3626 0.2285 0.0557

MAE 0.3957 0.3182 0.3289 0.2167 0.1495 0.0400

12

R2 0.6045 0.6644 0.6396 0.7688 0.8928 0.9937

MSE 0.3027 0.2569 0.2759 0.1770 0.0821 0.0049

RMSE 0.5502 0.5068 0.5253 0.4207 0.2864 0.0697

MAE 0.4636 0.3620 0.3791 0.2552 0.1858 0.0497
F
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TABLE 3 Error measures of multi-step predictions of COIMFs for dataset1 by different models.

Size of step Index COIMF1
CEEMDAN
-TimesNet

COIMF1
CEEMDAN

-VMD -TimesNet

COIMF2
CEEMDAN
-TimesNet

COIMF2
CEEMDAN

-VMD -TimesNet

COIMF3
CEEMDAN
-TimesNet

2

R2 0.7579 0.9859 0.9984 0.9996 1.0000

MSE 0.0027 0.0002 0.0001 0.0000 0.0000

RMSE 0.0520 0.0126 0.0010 0.0049 0.0019

MAE 0.0299 0.0081 0.0067 0.0034 0.0014

4

R2 0.3450 0.9679 0.9917 0.9988 1.0000

MSE 0.0073 0.0004 0.0005 0.0001 0.0000

RMSE 0.0856 0.0189 0.0227 0.0087 0.0032

MAE 0.0523 0.0123 0.0155 0.0058 0.0023

6

R2 -0.0322 0.9326 0.9743 0.9971 0.9999

MSE 0.0115 0.0008 0.0016 0.0002 0.0000

RMSE 0.1074 0.0274 0.0398 0.0134 0.0050

MAE 0.0658 0.0179 0.0274 0.0087 0.0035

8

R2 -0.2721 0.8889 0.9384 0.9946 0.9997

MSE 0.0142 0.0012 0.0038 0.0003 0.0001

RMSE 0.1192 0.0352 0.0617 0.0184 0.0077

MAE 0.0723 0.0228 0.0423 0.0119 0.0053

10 R2 -0.3982 0.8434 0.8730 0.9915 0.9994

(Continued)
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TABLE 3 Continued

Size of step Index COIMF1
CEEMDAN
-TimesNet

COIMF1
CEEMDAN

-VMD -TimesNet

COIMF2
CEEMDAN
-TimesNet

COIMF2
CEEMDAN

-VMD -TimesNet

COIMF3
CEEMDAN
-TimesNet

MSE 0.0156 0.0018 0.0079 0.0005 0.0001

RMSE 0.1250 0.0418 0.0886 0.0230 0.0115

MAE 0.0734 0.0264 0.0606 0.0151 0.0077

12

R2 -0.4200 0.8028 0.7802 0.9871 0.9988

MSE 0.0159 0.0022 0.0136 0.0008 0.0003

RMSE 0.1260 0.0469 0.1166 0.0283 0.0163

MAE 0.0717 0.0287 0.0795 0.0189 0.0107
F
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TABLE 4 Error measures of multi-step predictions of COIMFs for dataset2 by different models.

Size of step Index COIMF1
CEEMDAN
-TimesNet

COIMF1
CEEMDAN

-VMD -TimesNet

COIMF2
CEEMDAN
-TimesNet

COIMF2
CEEMDAN

-VMD -TimesNet

COIMF3
CEEMDAN
-TimesNet

2

R2 0.5037 0.9782 0.9973 0.9995 1.0000

MSE 0.0034 0.0001 0.0005 0.0001 0.0000

RMSE 0.0581 0.0122 0.0216 0.0092 0.0042

MAE 0.0341 0.0078 0.0143 0.0065 0.0029

4

R2 -0.0572 0.9539 0.9848 0.9986 0.9999

MSE 0.0072 0.0003 0.0027 0.0003 0.0001

RMSE 0.0847 0.0177 0.0518 0.0159 0.0075

MAE 0.0540 0.0119 0.0342 0.0110 0.0052

6

R2 -0.3627 0.9214 0.9474 0.9971 0.9998

MSE 0.0093 0.0005 0.0092 0.0005 0.0001

RMSE 0.0962 0.0231 0.0961 0.0226 0.0120

MAE 0.0621 0.0158 0.0633 0.0157 0.0082

8

R2 -0.4127 0.8857 0.8698 0.9955 0.9994

MSE 0.0096 0.0008 0.0229 0.0008 0.0004

RMSE 0.0979 0.0279 0.1512 0.0280 0.0188

MAE 0.0630 0.0191 0.0992 0.0197 0.0128

10

R2 -0.3179 0.8498 0.7432 0.9936 0.9988

MSE 0.0089 0.0010 0.0451 0.0011 0.0008

RMSE 0.0946 0.0319 0.2123 0.0335 0.0276

MAE 0.0608 0.0216 0.1403 0.0240 0.0186

12

R2 -0.1811 0.8103 0.5745 0.9898 0.9975

MSE 0.0080 0.0013 0.0746 0.0018 0.0015

RMSE 0.0895 0.0359 0.2732 0.0423 0.0393

MAE 0.0576 0.0241 0.1811 0.0303 0.0261
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model. From Tables 3, 4, it is evident that the main source of error is

COIMF1 and COIMF2. The prediction results of COIMF1 are not

satisfactory even for the small step-ahead prediction. As the

prediction duration increases, the accuracy becomes worse. R2 of

the prediction results is even negative, which is unacceptable.

COIMF2 performs better than COIMF1 in terms of prediction

accuracy when the prediction steps are small. However, as the

prediction steps increase, the prediction accuracy of COIMF2 also

decreases noticeably. Surprisingly, COIMF3 maintains a relatively

stable level, showing consistently outstanding performance in

prediction. The reason for this phenomenon is that COIMF1 is

formed by combining IMFs with high sample entropy, resulting in

the highest complexity and non-stationarity, which introduces

significant errors in the prediction results. COIMF3, on the other

hand, is composed of IMF components with low complexity, making

it stationary and highly accurate in prediction. COIMF2 consists of

IMFs with moderate complexity. Therefore, COIMF2 falls between

COIMF1 and COIMF3 in terms of prediction accuracy.

Given the poor prediction results of COIMF1 and COIMF2,

COIMF1 and COIMF2 are decomposed by VMD again, while

COIMF3 remains unchanged. From Tables 3, 4, it can be observed
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that prediction results of COIMF1 and COIMF2 exhibit a significant

improvement after decomposition, regardless of the number of

prediction steps. The enhancement in the prediction of COIMF1

and COIMF2 has resulted in an overall improvement in prediction

results of significant wave height. For the 12-step ahead prediction

results of dataset1, R2 of the prediction results by the CEEMDAN-

VMD-TimesNet model is improved by 33.29% compared to the

prediction results by the TimesNet model.MSE, RMSE andMAE are

decreased by 95.44%, 78.62% and 76.59%, respectively. For the 12-

step ahead prediction results of dataset2, R2 of the prediction results

by the CEEMDAN-VMD-TimesNet model is improved by 29.25%

compared to the prediction results by the TimesNet model. MSE,

RMSE and MAE are decreased by 97.23%, 83.43% and 80.53%,

respectively. The accuracy of the CEEMDAN-VMD-TimesNet

model far surpasses all the models mentioned earlier. The analysis

leads to the conclusion that the CEEMDAN-VMD-TimesNet model

has a clear advantage in prediction, especially when predicting

multiple steps, significantly improving the prediction results.

Figures 9, 10 illustrate the performance of all models in

predicting typhoons. When the number of prediction steps is

small, all models perform well by capturing the overall
B

C D

FE

A

FIGURE 9

Predictions of significant wave height of dataset1 by different models for several future hours (A) 2 hours, (B) 4 hours, (C) 6 hours, (D) 8 hours, (E) 10
hours and (F) 12 hours.
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characteristics of the original significant wave height and accurately

predicting wave peaks and troughs without massive phase shifts.

However, as the prediction duration increases, the SVM model, the

GRU model, the LSTM model and the TimesNet model show

noticeable phase shifts in the predictions of wave peaks and

troughs due to the effects of non-stationarity. On the other hand,
Frontiers in Marine Science 16
the CEEMDAN-TimesNet model provides more accurate

predictions compared to these models, greatly alleviating the

occurrence of phase shifts. The CEEMDAN-VMD-TimesNet

model stands out among all the models. The twelve-step-ahead

prediction results by the CEEMDAN-VMD-TimesNet model

remain highly consistent with the original significant wave height
B

C D

FE

A

FIGURE 10

Predictions of significant wave height of dataset2 by different models for several future hours (A) 2 hours, (B) 4 hours, (C) 6 hours, (D) 8 hours, (E) 10
hours and (F) 12 hours.
BA

FIGURE 11

Comparison of RMSE during the typhoon period in different prediction lead time for dataset1 and dataset2 (A) dataset1, (B) dataset2.
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in terms of both trend and extreme values, with minimal phase

shifts. Figure 11 shows the comparison of RMSE during the typhoon

period in different prediction lead time between the CEEMDAN-

VMD-TimesNet model and other models. Regardless of the

prediction lead time, the CEEMDAN-VMD-TimesNet model

consistently maintains the lowest RMSE. As the prediction lead

time increases, RMSE grows at the slowest rate. When the

prediction lead time is twelve, RMSE is much lower than other

models, resulting in quite satisfactory accuracy. Thus, it can be

inferred that the application of the CEEMDAN-VMD-TimesNet

model for typhoon prediction is feasible.
5 Conclusion

Wave energy is a significant and environmentally friendly

source of energy that has a wide range of applications. Accurate

prediction of significant wave height plays a crucial role in wave

energy generation. However, due to the complexity of significant

wave height data, accurate prediction of significant wave height

remains a challenge. In this study, a hybrid model called

CEEMADN-VMD-TimesNet was proposed for predicting

significant wave height. The significant wave height used was

sourced from ERA5 of the European Centre for Medium-Range

Weather Forecasts (ECMWF), and two positions in the South Sea of

China were selected. The SVM model, the GRU model, the LSTM

model, the TimesNet model, the CEEMADN-TimesNet model and

the CEEMDAN-VMD-TimesNet model were built to predict

significant wave height. By comparing the performance of these

models, the following findings were obtained:

The SVM model, the GRU model and the LSTM model exhibit

high accuracy for the small step-ahead prediction, but as the

prediction steps increase, the prediction accuracy rapidly declines.

Regardless of the number of prediction steps, the TimesNet model

outperforms the SVMmodel, the GRU model and the LSTM model

in terms of prediction accuracy, and this advantage becomes more

pronounced for the large step-ahead prediction.

The non-stationarity of the original significant wave height is

reduced by decomposing the original significant wave height with

CEEMDAN and clustering IMFs. The CEEMADN-TimesNet

model demonstrates superior accuracy in terms of prediction

compared to the TimesNet model.

Components with high and moderate complexity are the main

source of prediction errors. The accuracy of prediction results of

significant wave height can be greatly improved by decomposing the

components with high and moderate complexity using VMD. The

CEEMADN-VMD-TimesNet model has the strongest prediction

capability among the models used in this study.

The CEEMADN-VMD-TimesNet model can accurately predict

trends and extreme values of significant wave height with minimal

phase shifts during the Typhoon Hato period even for the large

step-ahead prediction.

Although the proposed hybrid model achieves good accuracy, it

still leaves questions for us to ponder. We did not compare the

computation time of the secondary decomposition model with

other models. The effect of the secondary decomposition on the
Frontiers in Marine Science 17
computation time needs to be further investigated. Besides, we did

not compare the results of the CEEMADN-VMD-TimesNet model

with the NWP model, which is a limitation of our study. In future,

this will be the focus of our research.
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