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Ocean Negative Carbon Emission (ONCE) involves utilizing natural marine

chemistry and biology, along with mariculture, to achieve carbon sink goals.

Growing awareness of the interplay between aquaculture and the coastal

carbonate system has drawn researchers ’ attention amid ring CO2

concentrations and the negative impacts of aquaculture on the environment.

In this study, twelve sites representing different maricultural types were selected,

including macroalgae, shellfish, fish, and non-farming areas. The environmental

factors, dissolved inorganic carbon (DIC), total alkalinity (TA), and pCO2, were

measured monthly during kelp farming periods. Nitrate is a major component of

total nitrogen, and the NO3-N concentration in the macroalgal culture zone was

lower than others, indicating effective nitrogen removal by macroalgae

aquaculture. TA and DIC in non-farmed areas demonstrated larger variation

ranges than in farming areas, probably due to the effects of precipitation on

salinity. Aquaculture activities effectively maintained TA and DIC, with

macroalgae cultivation playing an important role in TA stability, potentially

resisting acidification. The pCO2sea-air of macroalgae culture areas in spring

was slightly negative, suggesting carbon sink potential. However, further

research is needed to assess the full extent of this “fourth type” of blue carbon,

including accurate carbon footprint calculation and the contributions of

particulate organic carbon and recalcitrant dissolved organic carbon. This

study provided insight into the comprehensive contribution of different

aquaculture types to the fishery environment and carbonate system, which can

help guide aquaculture management and facilitate the carbon-neutral transition

of aquaculture.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2024.1375839/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1375839/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1375839/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1375839/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1375839/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1375839&domain=pdf&date_stamp=2024-06-07
mailto:jlmu@mju.edu.cn
https://doi.org/10.3389/fmars.2024.1375839
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1375839
https://www.frontiersin.org/journals/marine-science


Zhang et al. 10.3389/fmars.2024.1375839
1 Introduction

Rising atmospheric carbon dioxide (CO2) concentrations over

the past two centuries have led to greater CO2 uptake by the oceans,

altering the saturation state of the oceans with respect to the

carbonate system (Feely et al., 2004). Despite growing awareness

of the seriousness of acidification and unremitting efforts to

mitigate these global changes, ocean acidification is still on the

rise, with CO2 concentrations ongoingly increasing (Kroeker et al.,

2013; Osborne et al., 2020; Burger et al., 2022; Nagelkerken and

Connell, 2022). Most studies have focused on the negative impacts

of increasing CO2 concentration in seawater on marine organisms,

including the calcification of coral reefs and shellfish (Hoegh-

Guldberg et al., 2007; Talmage and Gobler, 2010; Ekstrom et al.,

2015; Lagos et al., 2016), physiology and biochemistry of seagrasses

and algae (Roleda et al., 2012; Koch et al., 2013), growth,

reproduction, and behavior of fish (Nagelkerken et al., 2016;

Cattano et al., 2018), and other structure and function in

population or community levels as well (Meakin and Wyman,

2011; Gaylord et al., 2015; Coni et al., 2021). However, as

biological pumps contribute to the oceanic carbon cycle, how the

adaptation and feedback of these marine organisms affect the

marine carbonate system is poorly understood. Recent studies

have highlighted the importance of the ocean as a carbon sink,

buffering ocean acidification and global warming (Heinze et al.,

2015; DeVries, 2022; Wang et al., 2023a).

Aquaculture is a critically high-protein food source, supplying

the growing population of the world (Jones et al., 2022). However,

aquaculture has faced criticism for excessive greenhouse gas

emissions, eutrophication from feeding, and other environmental

issues (Yuan et al., 2019; Xu et al., 2022; Zhang et al., 2022). For

example, macroalgae blooms in aquaculture ponds lead to green

tides (Liu et al., 2021; Sun et al., 2022; Liu et al., 2022a). Methane

emissions offset atmospheric carbon dioxide uptake in coastal

macroalgae (Roth et al., 2023). The concept of fishery carbon sink

has gradually emerged, linking aquaculture with the response to

global warming (Ahmed et al., 2017; Ren, 2021; Jia et al., 2023). In

particular, the maricultural potential contribution of macroalgae

and non-feeding shellfish may become an important driving force

in addressing climate change (Zhang et al., 2017; Tamburini et al.,

2022). Mariculture blue carbon is also considered an important

component of China’s “blue granary” (Zhang et al., 2017; Dong

et al., 2022).

As global CO2 emissions continue to rise, there is debate over

whether aquaculture acts as a carbon sink or a new source of

emissions (Ahmed et al., 2017; Guan et al., 2022; Jones et al., 2022;

Tamburini et al., 2022). In addition to the growth and metabolism

of cultured organisms themselves, there are few studies on the effect

of the biological pump on the carbonate system in aquacultural

waters (Morris and Humphreys, 2019; Han et al., 2021). Where the

open ocean is difficult to define to account for the contributions and

sources of carbon cycle changes, mariculture in the closed bay

provides an important place for understanding the temporal and

spatial distribution of seawater carbonate systems in fishery waters

and their relationship with aquacultural processes (Li et al., 2021).
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In addition, the closed bay forms an excellent aquacultural

environment, including the advantages of small wind and waves

as well as adequate nutrient input from rivers. As a result, large-

scale aquaculture is concentrated here, especially the formation of

complex aquaculture patterns, including macroalgae, bivalve, fish,

and other invertebrate species.

Sansha Bay (26.50°~26.96°N, 119.43°~120.17°E), a semi-

enclosed bay (about 714 km2) with a depth of more than 10

meters, lies on the coast of Fujian Province, China. The bay has

served as one of the most intensively used mariculture bays in China

for more than 30 years, where the annual production of shellfish

and macroalgae cultivation reached 56.61×104 tons (Song et al.,

2023). The aquaculture modes and species are so complex that the

main cultivation species included non-feeding shellfish and

macroalgae, such as kelp (Saccharina japonica), gracilaria

(Gracilaria lemaneiformis), and oysters (Crassostrea gigas), and

cage aquaculture, such as abalone (Haliotis discus), sea cucumber

(Stichopus japonicus), and yellow croaker (Larimichthys crocea).

Water exchange between the bay and East China Sea through the

only 3 km opening of the bat is driven by semi-diurnal tides. Three

rivers (Huotong River, Baima River, and Bei River) flow into Sansha

Bay, which have formed many natural harbors with busy shipping

transport (Lin et al., 2017, 2019). In addition to the developed

aquaculture and port resources, industry along the coast has been

developed with the rapid expansion of new-energy batteries in

recent years. Here, twelve sites representing different maricultural

types were selected to analyze the spatio-temporal distribution of

water quality, dissolve inorganic carbon (DIC), and total alkalinity

(TA). The aims of this study are to understand the dynamics of

water quality and carbonate systems in different aquaculture types

during the whole aquacultural process, to determine the key factors

of carbonate systems in coastal fishery waters, and, in addition, to

guide the green upgrading of mariculture and provide the scientific

basis for fishery carbon sink accounting and management.
2 Materials and methods

2.1 Sampling and measured parameters
in situ

Monthly survey cruises were conducted five times in Sansha Bay

during kelp farming time (January to June 2023). A total of 12 sites

in Sansha Bay were continuously sampled and monitored. The 12

sites basically cover different areas of Sansha Bay and also

correspond to different aquacultural modes (Figure 1). Hence,

they were grouped into four groups: macroalgae farming area (A),

shellfish farming area (S), fish farming area (F), and non-farmed

area (N).

A multi-parametric sonde (EXO2, YSI, and US) was used in situ

for measurements of water temperature, salinity, DO concentration,

and pH at surface seawater. Water samples were manually collected

with a water sample collector (1L) from 0.3 meters below the surface

at each station for measurement of nutrients, DIC, and TA. All water

samples were taken to the laboratory and analyzed immediately.
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2.2 Nutrients, DIC, and TA measurements

Total nitrogen (TN) and total phosphorus (TP) in water samples

were analyzed by the method of simultaneous digestion introduced by

Valderrama (1981). Then, thesewater sampleswerefiltrated through a

cellulose acetate membrane (MerckMillipore Ltd., Ireland) to analyze

NO3-N, NO2-N, NH4-N, and PO4-P concentrations. NO3-N was

determined with the cadmium−copper column reduction method,

according to Grasshoff et al. (2009). NO2-N was measured by the

method described by Bendschneider and Robinson (1952). NH4-N

was determined with the indophenol blue method, according to Sagi

(1966). PO4-Pwas analyzed by themethod introduced byMurphy and

Riley (1962).

DIC was measured by acidifying 0.3–0.7 mL of water samples

and subsequently quantifying released CO2 using an infrared CO2

detector (Apollo ASC-3) with a precision of ± 2 mmol·L-1 (Cai et al.,

2004). TA was determined on 25 mL samples using an open-cell

setting based on the Gran titration technique with a Kloehn digital

syringe pump. The analytical precision was ± 2 mmol·L-1 (Cai et al.,

2010; Zhao et al., 2020).
2.3 Data analyses

The aqueous partial pressure of CO2 (pCO2) was calculated

with the program CO2SYS-Excel (Pelletier et al., 2007; Xu et al.,

2017) based on TA and DIC. Meanwhile, the component

composition of the carbon system in surface water was also

calculated. The composition of carbonate ions (CO3
2-),

bicarbonate ions (HCO3
-), and dissolved CO2 was found to be

dynamic. pCO2sea-air (DpCO2) is the pCO2 difference between

surface seawater and the atmosphere. In this study, the value of

atmospheric pCO2 is selected at 420 ppm (NOAA’s Global

Monitoring Laboratory). Statistical analysis was performed using

SPSS v20.0 and GraphPad Prism v8.0 software. An analysis of

variance (ANOVA) was used to analyze the effects of season and
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zone on environmental factors, the dynamics of DIC and TA, pCO2,

and DpCO2. According to the results of the homogeneity test,

Tukey’s honestly significant difference, or Tamhane’s T2 test, was

used to evaluate the significance of differences between groups (P

<0.05) after ANOVA. The differences in environmental variables

between different cultural systems were analyzed using a Student’s

t-test. The correlations between DIC, TA, and pCO2 and the

measured variables were tested using Pearson correlation analysis.

A stepwise multiple regression analysis was used to identify the

relationships between pCO2 and environmental variables. pCO2 was

considered the dependent variable, and the measured

environmental factors served as the independent variables. To

investigate the influence of environmental factors on the

parameters of the carbonate system, the best-fit multiple

regression equations for pCO2 in different cultural systems, as

well as the P value and adjusted R2 value of the models, were

determined using the Pearson correlation coefficient.
3 Result

3.1 Characteristics of environmental
factors during the farming season

The variations in environmental parameters are shown in Table 1.

The average water temperature and salinity during the macroalgae

farming period (January to June) ranged from 11.80°C to 28.60°C and

1.52°C to 30.82°C, respectively. The water temperature increases

gradually with each mouth, while the salinity is at its lowest in April

andMay, mainly due to heavy rainfall, especially the very low salinity of

the estuary (N1, N2, and N3). Although rainfall affected salinity, both

farming zones showed a small range of salinity variation except for S1,

suggesting that the increase of runoff due to precipitation in estuaries is

the main factor in salinity changes. Dissolved oxygen (DO) at all

stations peaked in March and then continued to decline. As the

temperature warms up, DO in summer is significantly lower than
FIGURE 1

Map of sampling sites.
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that in winter and early spring. On the other hand, pH is much more

stable, with a small variation ranging from 7.35 to 8.40 (Table 1).

The concentrations of NO2-N, NH4-N, and PO4-P in farming

areas had no difference from those in non-farmed areas, except that

the TN and NO3-N concentrations in farming areas were

significantly lower than those in non-farmed areas. In particular,

with the growth of kelp, NO3-N concentration decreased from close

to non-farmed area in January (0.82, 0.65, 0.67, and 0.86 mg·L-1 in

macroalgae, shellfish, fish, and non-farming groups, respectively) to

half of that from non-farmed area (0.70, 1.07, 1.03, and 1.91 mg·L-1

in macroalgae, shellfish, fish, and non-farming groups,

respectively). The algal culture zone showed much lower NO3-N

concentrations in May and June, only one-third to one-fourth of

those in non-farmed areas. There was no significant difference in

PO4-P concentration during the growth of these culture organisms.
3.2 Distribution of carbonate systems in
maricultural areas

The mean TA of macroalgae, shellfish, fish, and non-farming

groups were 2218 mmol·L-1, 1917 mmol·L-1, 2111 mmol·L-1, and 1570

mmol·L-1, respectively. Temporally, different farming times had a

significant impact on changes in TA (F = 15.60, P-value < 0.01).
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Especially for non-farmed areas in April and May, TA decreased

sharply as the rains increased. TA generally showed a downward

trend from January to May and a slight rebound in June, both in

farming areas and non-farmed areas, except for macroalgae farming

areas, where the region has remained stable in TA (Figure 2).

Spatially, aquaculture modes did not have a significant impact on

TA (F = 2.25, P-value = 0.14). Algae farming area is always the

highest region of TA, while non-farmed area is the lowest with wide

ranges. Shellfish farming areas exhibit a relatively lower TA than

macroalgae and fish farming areas (Figure 2).
FIGURE 2

Spatio-temporal distribution of total alkalinity in different farming
seasons. * and ** represent p-value < 0.05, and 0.01, respectively.
TABLE 1 Characteristics of environmental factors during the farming season.

group
Water
temperature

Salinity DO pH TN/mg·L-1 TP/mg·L-1

January A 14.87 ± 0.17 30.17 ± 0.09 9.32 ± 0.27 7.69 ± 0.06 1.22 ± 0.06 0.12 ± 0.01

S 14.53 ± 0.39 27.07 ± 4.22 9.62 ± 0.30 7.72 ± 0.21 1.76 ± 1.08 0.09 ± 0.01

F 15.00 ± 0.22 29.80 ± 0.45 9.40 ± 0.36 7.81 ± 0.04 0.93 ± 0.25 0.09 ± 0.01

N 14.30 ± 0.16 25.67 ± 2.67 9.65 ± 0.25 7.55 ± 0.16 1.95 ± 0.62 0.11 ± 0.01

March A 13.33 ± 0.40 29.83 ± 0.34 10.24 ± 0.05 8.17 ± 0.17 1.27 ± 0.40 0.12 ± 0.01

S 13.53 ± 1.85 26.20 ± 4.40 10.38 ± 0.61 7.97 ± 0.16 1.71 ± 0.74 0.16 ± 0.01

F 13.40 ± 0.50 28.40 ± 0.88 10.24 ± 0.44 8.00 ± 0.08 1.25 ± 0.12 0.12 ± 0.01

N 15.07 ± 0.26 25.43 ± 1.19 9.67 ± 0.27 7.86 ± 0.12 1.73 ± 0.32 0.12 ± 0.00

April A 14.84 ± 0.12 28.56 ± 0.27 7.17 ± 0.54 8.03 ± 0.20 1.61 ± 0.25 0.07 ± 0.00

S 15.03 ± 1.01 21.62 ± 8.95 7.73 ± 0.31 7.74 ± 0.28 2.19 ± 0.67 0.09 ± 0.02

F 15.17 ± 0.56 26.37 ± 1.82 7.81 ± 0.36 7.90 ± 0.03 1.74 ± 0.30 0.07 ± 0.00

N 15.65 ± 0.11 12.49 ± 6.83 8.39 ± 0.61 7.67 ± 0.12 2.64 ± 0.61 0.08 ± 0.00

May A 18.62 ± 0.78 28.30 ± 0.20 7.34 ± 0.31 8.05 ± 0.12 1.18 ± 0.22 0.07 ± 0.01

S 18.60 ± 0.87 20.59 ± 9.69 7.24 ± 0.18 7.78 ± 0.23 2.40 ± 0.67 0.10 ± 0.01

F 17.80 ± 0.35 26.67 ± 1.89 7.29 ± 0.08 7.94 ± 0.04 1.87 ± 0.41 0.07 ± 0.01

N 18.94 ± 0.51 11.65 ± 7.44 8.09 ± 0.72 7.66 ± 0.22 5.84 ± 2.21 0.11 ± 0.01

June A 26.37 ± 1.59 28.87 ± 0.55 5.91 ± 0.21 8.03 ± 0.04 0.31 ± 0.25 0.04 ± 0.00

S 25.97 ± 1.16 26.61 ± 4.96 5.32 ± 0.16 7.86 ± 0.14 0.53 ± 0.64 0.04 ± 0.03

F 25.30 ± 0.37 29.11 ± 0.70 5.47 ± 0.16 7.97 ± 0.01 2.51 ± 1.79 0.02 ± 0.00

N 27.03 ± 0.40 22.14 ± 2.59 5.58 ± 0.13 7.81 ± 0.08 1.17 ± 0.69 0.04 ± 0.01
A, S, F, and N in the group column stand for macroalgae, shellfish, fish, and non-farming areas, respectively.
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The surface seawater DIC was highest in January, followed by

March and June, which ranged from 486 mmol·L-1 to 2274 mmol·L-1.

The surface seawater DIC was highest in macroalgae farming areas

and lowest in non-farmed areas. There was no significant difference

in DIC between the farmed areas and the non-farmed areas from

January to March and June, but it was significantly higher than the

non-farmed areas from April to May. DIC showed a slightly

downward trend from January to May and then rebounded in

June from non-farmed areas. Among the aquaculture zones, the

DIC of the macroalgae farming areas are slightly higher than that of

the fish and shellfish farming areas, but both of them remain at a

significantly higher level than the non-farmed areas (Figure 3).

Oceanic dissolved inorganic carbon is the largest pool of carbon

that substantially interacts with the atmosphere on human

timescales (Humphreys et al., 2022). Hence, the concentration of

inorganic carbon in surface water was calculated and found

significant variation among different farming areas during the

farming season (Table 2). HCO3
- is an important component,

accounting for 94 percent of the annual average DIC. Except for

January, the concentration of HCO3
- is significantly higher than

that in other areas. The concentration of HCO3
- in fish and shellfish

farming areas stays stable for their composition in the inorganic

system, ranging from 94.20% to 95.09%. Meanwhile, the

concentration of CO3
2- in fish and shellfish is significantly higher

than macroalgae farming areas, suggesting that calcification and

physiological processes in shellfish and fish potentially facilitate the

conversion of the inorganic carbon to organic carbon (Boudreau

et al., 2018; Bianchi et al., 2021). Spatially, there was no significant

difference in the composition of the inorganic carbon system in

different months.
3.3 Characteristics of surface pCO2 and
sea-air CO2 flux

The farming time and aquaculture mode all had a significant

impact on the spatio-temporal changes in surface seawater pCO2

(Figure 4A). For macroalgae farming areas, the surface seawater

pCO2 was highest in January, followed by June and May, ranging
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from 213.24 matm to 2039.25 matm. With the growth of macroalgae,

pCO2 remained at a low level. Especially for A3 station, it showed

negative pCO2sea-air from March to May, suggesting the potential

for carbon sink (Figure 4B). For shellfish farming areas, the

fluctuation of surface seawater pCO2 is very small and low. In

addition, although pCO2sea-air is positive, it is still lower than in

other areas of the nearshore ocean. In the fish farming area, there

was no difference from other aquaculture modes. With the increase

in water temperature, the change in pCO2 and pCO2sea-air is greater

than that of macroalgae and shellfish. In non-farmed zones, pCO2

fluctuations are the largest and peak in May to June, which is

significantly different from farmed zones. In April, however,

negative pCO2sea-air has been detected from all the sites in non-

farmed zones, which might have resulted from heavy rainfall and no

dramatic warming in spring (Figure 4B).
3.4 Correlation between environmental
factors and the carbonate system

In order to investigate the influence of environmental factors on

the parameters of the carbonate system, Pearson correlation

analysis was employed between all environmental factors and TA

and DIC. The results showed that salinity played a decisive role in

the changes of TA (Pearson R=0.99, P-value < 0.01) and DIC

(Pearson R=0.99, P-value < 0.01) (Figure 5). In addition, no other

environmental factors showed a significant correlation with TA or

DIC. The concentrations of total nitrogen and total phosphorus,

however, had no significant effects on the concentrations of TA and

DIC. The concentration of total nitrogen was negatively correlated

with the distribution of DIC (TN, Pearson R=-0.54, P-value = 0.28)

and TA (TN, Pearson R=-0.53, P-value = 0.17). Especially for total

nitrogen between 1 mg/L and 4 mg/L, total nitrogen and TA or DIC

show a significant negative correlation. While total phosphorus had

no significant effect on TA and DIC (Figure 6).
4 Discussion

4.1 Effects of aquaculture on
environmental parameters

Aquaculture has a substantial impact on the water environment

of coastal ecosystems (Wu et al., 2022). As an important

aquaculture bay, Sansha Bay has been reported in a state of heavy

pollution and high eutrophication level after a long-period

observation (Wang et al., 2020). The variation of nutrients was

controlled by river discharge (Niu et al., 2021; Chen et al., 2022).

The concentrations of nitrogen in spring and summer were higher

than those in autumn, and the mean concentration of phosphorus

was the lowest in spring. In spring and summer, terrestrial input

was the dominant source for nitrogen and phosphorus pollution in

the surface water of Sansha Bay. In autumn, concentrations of

nitrogen and phosphorus were determined by the combination of

multiple processes such as endogenous release, seawater dilution,

cage culture, and nutrient uptake of macroalgae or phytoplankton
FIGURE 3

Spatio-temporal distribution of dissolved inorganic carbon in
different farming seasons. *, **, and *** represent p-value < 0.05,
0.01 and 0.001, respectively.
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(Lin et al., 2021; Niu et al., 2021; Huang et al., 2023). Here, seawater

quality is still not optimistic that the concentrations of NO2-N,

NO3-N, NH4-N, and PO4-P are over the Category IV seawater

quality standards of the national standards of China (GB 3097–

1997). The NO3-N concentration in the kelp culture area was

significantly lower than that in other areas, indicating the ability

of macroalgae to eutrophicate. The capacity, however, is potentially

so minimal that the amount of N removed by the cultured seaweed

was estimated to be 288 tons/a, accounting for only 2% of the N

loaded from fish farming in another quantitative study (Ji et al., 2021).

As an important part of ecosystem services, the contribution of
Frontiers in Marine Science 06
shellfish and algae culture to eutrophication still needs to be

integrated and evaluated against the background of carbon sinks for

aquaculture ecosystems (Duarte et al., 2022; Lin et al., 2023). More

importantly, the results also suggested that the current aquaculture

plan might not meet the cultivation capacity of the bay. In the future,

we should carry out reasonable aquaculture planning to ensure that the

service function of the aquaculture ecosystem can be maximized.

Referring to the experience and ecological carrying capacity model of

IMTA fromSanggouBay (Gao et al., 2020; Lin et al., 2020), SanshaBay

should also take a path of sustainable development of aquaculture,

including the adjustment of aquaculture mode, species composition,
TABLE 2 DIC concentration and its component forms during farming seasons.

group DIC/mmol·L-1 HCO3
-/mmol·L-1 CO3

2-/mmol·L-1 CO2/mmol·L-1

January A 2229 ± 38 2120 ± 34 56 ± 14 53 ± 17

S 1997 ± 233 1898 ± 208 67 ± 14 31 ± 4

F 2140 ± 42 2032 ± 45 72 ± 10 35 ± 7

N 2007 ± 10 1909 ± 8 67 ± 2 31 ± 1

March A 2109 ± 33 1960 ± 78 128 ± 52 20 ± 7

S 1957 ± 175 1844 ± 154 91 ± 22 21 ± 2

F 2038 ± 57 1921 ± 52 94 ± 14 23 ± 3

N 1885 ± 73 1785 ± 62 76 ± 12 24 ± 2

April A 2074 ± 97 1917 ± 139 139 ± 53 19 ± 8

S 1752 ± 438 1650 ± 403 75 ± 44 26 ± 8

F 1983 ± 116 1870 ± 108 91 ± 6 22 ± 2

N 1083 ± 440 988 ± 446 86 ± 15 8 ± 7

May A 2048 ± 79 1918 ± 108 104 ± 39 25 ± 10

S 1651 ± 516 1564 ± 490 54 ± 33 34 ± 7

F 1968 ± 110 1871 ± 104 64 ± 6 33 ± 3

N 1109 ± 438 1015 ± 475 16 ± 13 78 ± 50

June A 1993 ± 41 1861 ± 62 108 ± 28 24 ± 6

S 1863 ± 224 1758 ± 209 64 ± 30 41 ± 15

F 2015 ± 33 1909 ± 30 68 ± 10 38 ± 5

N 1657 ± 134 1571 ± 135 37 ± 14 50 ± 14
BA

FIGURE 4

Spatio-temporal distribution of (A) surface water pCO2 and (B) sea-air pCO2 in different farming seasons. * and ** represent p-value < 0.05, and
0.01, respectively.
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and the balance between aquaculture with water flow and

nutrient input.
4.2 Effects of aquaculture on
carbonate systems

Calcium carbonate formation is the primary pathway by which

carbon is returned from the ocean-atmosphere system to the solid

Earth (Isson et al., 2020). The removal of dissolved inorganic carbon

from seawater by precipitation of carbonate minerals—the marine

carbonate factory—plays a critical role in shaping marine

biogeochemical cycling (Wang et al., 2023b). Macroalgae cultivation

contributedmore than 30%TOC in the local area (Wang et al., 2023b).

TA refers to the total amount of all substances contained in water that

can neutralize and react with strong acids. TA plays an important role

in fishery production, and the appropriate TA can stabilize the pH

value of water, improve the buffering force of water, and maintain the
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stability of the aquaculture environment. In general, macroalgae

farming areas can absorb carbonate, thereby increasing the TA of

water, which results from absorbing CO2 and releasing oxygen during

photosynthesis (Chi et al., 2013; Alami et al., 2021; Onyeaka et al.,

2021). In contrast, shellfish and fish generally do not significantly alter

TA. They may have other effects on water quality, such as the

production of wastes such as ammonia and nitrogen through

excretion, but these effects are usually not directly related to changes

in alkalinity. The same results were reported in the oyster aquaculture

system (Han et al., 2021; Villasuso-Palomares et al., 2022). Although

there was no significant difference in TA dynamics among different

aquaculture modes, the trend of TA change was different from winter

to summer. Here, we found that the decrease in salinity caused by

precipitation is the most important influencing factor of TA and DIC,

which resulted from the dilution of low inorganic carbon from rivers

(Ge et al., 2022). However, the cultivation of macroalgae plays an

important role inmaintainingTAstabilitybuthas little impact onDIC.

The changes in TA in the shellfish culture area may be caused by
BA

FIGURE 5

Pearson correlation analyzes salinity with (A) total alkalinity and (B) dissolved inorganic carbon.
FIGURE 6

Correlation between the concentrations of total nitrogen and total phosphorus with total alkalinity and dissolved inorganic carbon.
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biological activities such as excretion and assimilation after water

temperature increases. There was no significant decrease in the fish

culture area. We speculated that the eutrophication caused by feeding

in the fish culture area would indirectly support the increase of local

phytoplankton biomass, so that the photosynthesis of phytoplankton

maintained a high level of TA in the surrounding area in spring and

summer after the temperature increased. Subsequently, it is necessary

to supplement the bottomwater samples to determinewhether there is

vertical stratification, which results in a carbon source through the

continuous accumulation of the bottom acidification (Zhai

et al., 2012).
4.3 The potential for carbon sinking in
macroalgae and shellfish aquaculture

More and more studies have shown that macroalgae and shellfish

aquaculture have certain carbon sink potential (Zhang et al., 2017; Liu

et al., 2022b). Macroalgae culture is undoubtedly carbon sinking

through sequestering carbon by photosynthesis, which directly

absorbs and uses carbon dioxide (Krause-Jensen and Duarte, 2016;

Ortega et al., 2019). Through in-situ mesocosm cultivation

experiments, the kelp aquaculture area became a source of CO2 at

the aging stage of kelps but a sink of CO2 at the fast-growth stage

(Xiong et al., 2024). In addition,macroalgal farms canutilize the excess

inorganic nutrients supplied by other anthropogenic activities,

although the generated organic matter remains in the water body

(Xie et al., 2020). In this study, in thematurity stage of kelp culture, the

pCO2 of the kelp culture area decreased significantly, and the pCO2sea-

air in some stations was negative, indicating that it had a direct effect on

carbon sinks.However, because the harvested product is sooneaten, its

value as a carbon sink is greatly diminished. We should evaluate the

benefitsof thewholeecosystemscientifically by integrating itspotential

as a carbon sink and other ecological service values like

water purification.

The carbon sink properties of shellfish are even more

controversial (Fodrie et al., 2017; Mariani et al., 2020; Gu et al.,

2022). On the one hand, from the perspective of marine chemistry,

calcification in forming shells undoubtedly produces CO2 (Ray

et al., 2018; Morris and Humphreys, 2019). In the present study,

the results of pCO2, calculated by DIC and TA, are positive.

However, this study has also proved that the shellfish aquaculture

zone has a crucial contribution to the excess of inorganic carbon to

organic carbon and the potential resistance to ocean acidification

(Filgueira et al., 2015). In addition, shellfish also play an important

role in the downward deposition of organic carbon through

biological pumps. Hence, filter-feeding shellfish aquaculture has

an indirect carbon sink capacity. Overall, we still need to

quantitatively study the contribution of carbon sources and sinks

in aquaculture through containment experiments in the future.

4.4 The future of aquaculture in
Sansha Bay

From 2003 to 2016, the areas dedicated to cage and macroalgae

culture in Sansha Bay expanded rapidly, with expansion rates of 1.7
Frontiers in Marine Science 08
km2/a and 9.3 km2/a, respectively (Xue et al., 2019; Ying et al., 2020;

Chen, 2021). In 2018, the intensive cage aquaculture area was

renovated by the local government for ecological restoration in

Sansha Bay. Hence, the environmental status has improved (Xie

et al., 2020). In this study, the seawater quality in Sansha Bay is still

under great pressure. With the population return caused by the

epidemic and the vigorous development of new energy, a rising

upward trend in aquaculture has been seen in Sansha Bay over the

past twoyears.Rationalplanningofaquaculture layoutandcontinuous

environmental monitoring remain top priorities not only for the

government but also for the relevant practitioners around the bay.

Under the ambition of carbon neutrality, there is a road to green

development transformation in Sansha Bay. More attention should be

paid to the carbon sink mechanism of macroalgae and shellfish

aquaculture, as well as the evaluation of new ecological service values.
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