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grouper calls detection and call
types classification
Ali K. Ibrahim1,2*, Hanqi Zhuang2, Michelle Schärer-Umpierre3,
Caroline Woodward1, Nurgun Erdol2 and Laurent M. Chérubin1

1Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, United States,
2Department of Electrical Engineering and Computer Science (EECS), Florida Atlantic University, Boca
Raton, FL, United States, 3HJR Reefscaping, Boquerón, Puerto Rico
In this paper, we present the first machine learning package developed specifically

for fish calls identification within a specific range (0–500Hz) that encompasses four

Caribbean grouper species: red hind (E. guttatus), Nassau (E. striatus), yellowfin (M.

venenosa), and black (M. bonaci). Because of their ubiquity in the soundscape of

the grouper’s habitat, squirrelfish (Holocentrus spp.) sounds along with vessel noise

are also detected. In addition themodel is also able to separate grouper species call

types. This package called FADAR, the Fish Acoustic Detection Algorithm Research

is a standalone user-friendly application developed in Matlab™. The concept of

FADAR is the product of the evaluation of various deep learning architectures that

have been presented in a series of published articles. FADAR is composed of amain

algorithm that can detect all species calls including their call types. The architecture

of this model is based on an ensemble approach where a bank of five CNNs with

randomly assigned hyperparameters are used to form an ensemble of classifiers.

The outputs of all five CNNs are combined by a fusion process for decisionmaking.

At the species level, the output of themultimodel is thus used to classify the calls in

terms of their types. This is done by species specific deep learningmodels that have

been thoroughly evaluated in the literature on the species concerned here,

including transfer learning for red hind and yellowfin groupers and custom

designed CNN for Nassau grouper, which has a greater number of known call

types than the other species. FADARwasmanually trained on a diversity of data that

span various regions of the Caribbean Sea and also two recorder brands,

hydrophone sensitivities, calibrations and sampling rates, including a mobile

platform. This strategy has conferred FADAR substantive robustness to a diversity

of noise level and sources that can be found in the grouper calls frequency band

such as vessels and marine mammals. Performance metrics based on sensitivity

(recall) and specificity showed the same performance level for both balanced and

unbalanced datasets and at locations not used in the training set.
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1 Introduction

Many fish species undergo long distance migrations, where

mature adults gather in high densities to form large spawning

aggregations that are reoccurring in time and space (Domeier and

Colin, 1997). Many known fish spawning aggregations (FSA) sites

are also multi-species breeding hot spots (Heyman and Kjerfve,

2008), which increases the vulnerability of these spawning

populations to harvest and environmental changes (Erisman and

Rowell, 2017). Site fidelity, temporal predictability, bathymetric

features (i.e. shelf-break, capes) and circulation anomalies (eddies,

flow reversals) are some of the major characteristics of the spawning

habitat (Claro and Lindeman, 2003; Kobara and Heyman, 2008;

Chérubin et al., 2011; Kobara et al., 2013; Reglero et al., 2018).

While these characteristics ensure reproductive success, their

predictability is the cause of over-exploitation and depletion of

aggregating populations (Sadovy, 1997; Sala et al., 2001). Of

numerous historical Caribbean-wide FSAs (Smith, 1972; Eklund

et al., 2000), only a few are protected and remain to date while many

are in need of protection (Sadovy et al., 2008). They play a critical

role in the persistence of marine populations and their

disappearance through the extirpation of large predatory fishes

contributes to top-down changes in coral reef ecosystems and

biodiversity loss (Mumby et al., 2006).

While many of the FSAs are known to fishers, which they

specifically target during spawning season, not all of them have been

documented. There may be unreported FSAs, which, if discovered,

would contribute to the assessment of the grouper population, for

example, in the greater Caribbean region and elsewhere in the

world. Characterization of the FSAs in terms of the timing,

duration, sex ratio and size of the aggregation is crucial for stock

assessment, the design and evaluation of management measures,

and conservation. FSAs, being the sole reproductive events, are

critical to the marine ecosystem. They are globally under threat

because of their small numbers and size, which negatively impacts

the fish population and the ecosystem, along with the livelihood and

socioeconomic of the fishing communities.

More than eight hundred soniferous fish species have been

identified (Looby et al., 2022; Rice et al., 2022). Among them,

codfishes, drum fishes, grunts, groupers, snappers, jacks, and

catfishes are part of the most abundant and commercially

important species (Rountree et al., 2006). Invertebrates also

produce sounds. Among those, important to fisheries, are white

shrimp (Penaeus setiferus) Berk (1998), spiny lobsters (Palinuridae)

(Moulton, 1957; Fish, 1964; Patek, 2002), American lobster (Homarus

americanus) (Fish, 1966; Henninger et al., 2005), mussels (Mytilus

edulis), sea urchins (Fish, 1964), and perhaps squid (Theuthida)

(Iversen et al., 1963). Most soniferous fish species produce low

frequency sounds, usually below 1000 Hz (Ladich, 2004) that are

typically broadband short-duration signals. Some fish species can

produce sound with frequencies that can reach 8 kHz (Zelick et al.,

1999; Tavolga et al., 2012) or with more complex acoustic features

(Vasconcelos et al., 2011). Sound producing mechanisms are species

dependent and sound characteristics vary with circumstances, such as

courtship, threats or territorial defense (Kasumyan, 2008). Therefore,

fish sound can be used to monitor fish activity, and in particular
Frontiers in Marine Science 02
courtship to identify the location and delineate FSAs (Chérubin et al.,

2020), to determine temporal and seasonal patterns of the spawning

activity (Locascio and Mann, 2008; Mann et al., 2009, 2010; Nelson

et al., 2011; Schärer et al., 2012b), the behavior of fishes including

population structure and its changes (Hawkins, 1986; Luczkovich

et al., 1999; Rountree et al., 2006, 2008; Walters et al., 2009; Rowell

et al., 2011). Some calls produced by fish aggregated to spawn are

known as courtship associated sounds (CASs) in their behavioral

context (Mann et al., 2010), whereas others are agonistic or territorial

but also part of the FSA (Rowell et al., 2018).

Passive acoustic monitoring (PAM) has been used for more than

sixty years in fish biology and fishery surveys [see Fish et al. (1952);

Fish and Mowbray (1970) for review]. PAM is a fishery-independent,

non-intrusive method that can provide in-situ information critical for

understanding the efficacy of management measures and for the

discovery of new or previously extirpated aggregations recovering

from overfishing (Woodward et al., 2023). PAM data can also provide

a window into the number of species using the FSA site, its

biodiversity and fishing pressure through the monitoring of vessel

noise (Mahale et al., 2023), establishing the significance of the site to

multi-species spawning aggregations and its fishery management.

Where the recovery of threatened and endangered species, such as the

Nassau grouper (Epinephelus striatus), is difficult to monitor by more

traditional means, PAM offers a solution to this type of population

assessments. High signal to noise ratio is paramount to the detection

of sound sources in PAM surveys of FSAs, which is best achieved

when the recording station is fixed. However, assessing the spatial

extent of the FSA is limited by the number of recorders and their

locations. This constraint can be mitigated with the use of mobile

autonomous platforms, which have provided new insights into the

fish distribution in general (Wall et al., 2017) and at FSAs (Chérubin

et al., 2020; Woodward et al., 2023). While substantially beneficial at

advancing science and management, long-term PAM generates large

volumes of high-resolution acoustic data that is extremely labor

intense to analyze by listening and visualizing spectrograms.

Challenges primarily stem from the identification of the sound

sources and the enumeration of species specific sounds, from

differences in human perception, and from the signal to noise ratio

in the recordings.

In recent years, automatic fish sound signal detection methods

have been developed. These traditional machine learning (ML)

techniques, inspired by automatic speech recognition (Vieira

et al., 2015), require a pre-processing step to convert raw audio

data into features that are used as input to a machine learning

(ML) model to identify a signal of interest (Pace, 2008; Bahoura

and Simard, 2010; Kottege et al., 2015; Urazghildiiev and Van

Parijs, 2016; Choi et al., 2019). For example, Noda et al. (2016)

successfully classified one hundred and two different species offish

sounds. They used linear Frequency Cepstral Coefficients, Mel-

Frequency Cepstral Coefficients (MFCC), Shannon Entropy and

Syllable Length for feature extraction. For the classification, they

evaluated the three conventional machine-learning algorithms: K-

Nearest Neighbors, Random Forest (RF), and Support Vector

Machines (SVMs). They applied their method to two public

databases, FishBase and Discovery of Sound In The Sea

(DOSITS) and obtained a classification accuracy of 95.24%,
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93.56%, and 95.58%, for each classifier, respectively. Sattar et al.

(2016a, b) also used similar techniques based on fish call feature

analysis to identify grunts, growls and groans from the plainfin

midshipman (Porichthys notatus) in large acoustic datasets.

Handcrafted acoustic cepstral features were used for

classification and detection of four Caribbean grouper species

CAS by Ibrahim et al. (2018a) with 82.7% accuracy. The main

disadvantage of this kind approach is that the chosen features

must be uniquely designed for a specific application, and may

involve nontrivial steps that require expertise in multiple

disciplines Baumgartner and Mussoline (2011). Non trivial steps

include feature dimension reduction using PCA Binder and Hines

(2012), acoustic index calculation and complex entropy based

detectors as used in Siddagangaiah et al. (2019) and, image

correlation methods (Matthews and Beaujean, 2016; Ricci et al.,

2017) as examples.

Deep Learning (DL) methods have emerged as an effective tool

in the field of bioacoustics due to their huge success and widespread

adoption in other pattern recognition fields such as image

classification (He et al., 2016), object detection (Zhao et al., 2019),

speech recognition (Meng et al., 2019) and music processing (Nam

et al., 2018). DL improves the process by acting as a feature

extractor that is an integral part of the architecture of a Deep

Neural Network (DNN) (Bohnenstiehl, 2023), learning non-linear

representations of the data through a multi-layer neural network

approach. This relative simplicity, inherent to DNNs, makes them

highly versatile to conduct for various classification tasks

(O’Mahony et al., 2019), outperforming conventional ML

techniques since they are able of more discriminatory

representations than traditional feature extraction (Shorten and

Khoshgoftaar, 2019). In practice, however, some DL-based

detectors and classifiers for acoustic signals still employ a pre-

processing step like computing spectrograms (Shiu et al., 2020;

Vickers et al., 2021).

DL methods have been successfully applied in terrestrial

environments for the sound classification of animals such as insects

(Silva et al., 2013), frogs (Huang et al., 2009), birds (Bravo Sanchez

et al., 2021; Mehyadin et al., 2021), bats (Parsons and Jones, 2000),

and other mammals (Pandeya and Lee, 2018; Clink and

Klinck, 2021), including the monitoring of farm livestock welfare

through their sound Mcloughlin et al. (2019). Automated approaches

to identify bird vocalizations are also based on classifiers trained on

spectrograms and are becoming increasingly popular for conducting

avian PAM within broad-scale monitoring programs. BirdNET, for

example, is a user-friendly freely available, multispecies classifier, that

uses a convolutional neural network (CNN) to efficiently process

large quantities of audio data to quickly identify more than nine

hundred bird species (Kahl et al., 2021).

More recently, DL techniques have been applied to automated

detection and classification of marinemammal and fish sounds. Their

success has been demonstrated by many studies for binary marine

mammal species detection and multi-class species classification

(Belghith et al., 2018; Liu et al., 2018; Bergler et al., 2019; Bermant

et al., 2019; Shiu et al., 2020; Yang et al., 2020; Zhong et al., 2020;

Allen et al., 2021; Ibrahim et al., 2021; White et al., 2022), advancing

the capabilities of mining large PAM datasets for detecting species of
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interest. However, these methods generally require large amount of

validated training data and progress has been limited by challenges

related to the lack of labeled datasets adequate for training and

testing. Large quantities of known and as yet unidentified broadband

signal types mingle in marine recordings, with variability introduced

by acoustic propagation, source depths and orientations, and

interacting signals (Frasier, 2021; Laplante et al., 2021). Manual

classification of these datasets is unmanageable without an in-depth

knowledge of the acoustic context and biodiversity data of each

recording location. A signal classification pipeline which combines

unsupervised and supervised learning phases with opportunities for

expert oversight to label signals of interest was presented in Frasier

(2021). The workflow presented in the former was implemented with

user-interfaces within the publicly available acoustic data processing

software package Triton (Wiggins et al., 2010). White et al. (2022)

trained a DL model for multi-class marine sound source detection to

explore its utility for extracting sound sources for use in marine

mammal conservation and ecosystem monitoring. A training set was

developed comprising existing datasets amalgamated across

geographic, temporal and spatial scales, collected across a range of

acoustic platforms. Transfer learning was used to fine-tune an open-

source state-of-the-art CNN to detect odontocete tonal and

broadband call types and vessel noise (from 0 to 48 kHz). The

input to the CNN algorithm consists of spectogram images to exploit

the differences of this time-frequency representation between each

sound source.

Here, we present a DL-based workflow called Fish Acoustic

Detection Algorithm Research (FADAR) initially designed to

identify and classify the CAS of four Caribbean grouper species,

namely Nassau grouper [E. striatus - Schärer et al. (2012b)], red

hind [E. guttatus - Mann et al. (2010)], black grouper

[Mycteroperca bonaci - Schärer et al. (2014)], and yellow fin

grouper [M. venenosa - Schärer et al. (2012a)]. FADAR also

identifies squirrelfish [Holocentrus spp - Luczkovich and

Keusenkothen (2007)] and vessel noise as a background noise

class. This workflow is the outcome of several DL models

development specifically applied to fish sounds detection

and classification.

In Ibrahim et al. (2018b), CNN and Long Short TermMemory

(LSTM) networks were used to classify the previous four groupers

species. CNNs were designed to effectively identify spatial

patterns from images (Yamashita et al., 2018). LSTMs are a

special type of Recurrent Neural Networks (RNN) that were

designed to solve the vanishing gradient problem stemming

from long-term dependencies contained in a time-series (Bengio

et al., 1994). However, RNNs are also known for their pattern

discrimination capabi l i t ies in time signals . Denoised

spectrograms of CAS were used as input to both DL models.

The CNN classifier was better than LSTM at discriminating the

fish calls with over 90% accuracy. It also outperformed the

handcrafted MFCC classifier built for the same species (Ibrahim

et al., 2018a). Not only groupers species could be successfully

identified through their calls, but also the various call types within

species (Ibrahim et al., 2019; Wilson et al., 2020).

Call types among CAS exhibit significant acoustics feature

differences. They can be used to understand the evolution of the
frontiersin.org
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fish behavior during the spawning season. The change in their

relative numbers can be observed during the days leading and

following peak calls (Wilson et al., 2020; Zayas et al., 2020). Using

calls recorded during three consecutive spawning seasons at a

Nassau grouper FSA in the Cayman Islands, Wilson et al. (2020)

described the spectral and temporal characteristics of nine call types

known or presumed to be produced by the four epinephelid species

of interest in this study. For example, red hind grouper produce at

least four distinct types of sounds that are most commonly heard

during FSA (Zayas et al., 2020). Unsupervised classification

methods can be used to determine the underlying representation

in the input data without labeled data. One such method, known as

stacked auto encoder or SAE was successfully applied to the specific

task of identifying red hind call types by learning the latent

representation of the main call types (Ibrahim et al., 2019).

The concept of Transfer Learning (TL) is also built into the

foundation of FADAR (Ibrahim et al., 2020). Transfer learning

relies on pre-trained DNNs, that have been trained for specific

image recognition tasks on a large number of images. Their ability

to identify specific patterns can be used for other pattern

recognition tasks. Additional layers of neurons are then added to

the pre-trained model to train the newmodel on the specific dataset.

In essence, the pre-trained DNN acts as feature extractors that are

generic enough that they apply to multiple tasks (Laplante

et al., 2022).

The remainder of the paper is organized as follows. Section 2

presents the acoustic characteristics of the call types of all the fish

species currently identified by FADAR. The architecture of the

proposed FADAR tool composed of multiple classifiers, the datasets

used for training and testing, and the metrics used to evaluate FADAR

skills are presented in Section 3. Section 4 presents the classification

results of the grouper sounds and the evaluation of FADAR on

datasets from various Caribbean regions, depths and instruments. In

Section 5 the FADAR App is presented followed by a discussion in

Section 6. Concluding remarks are given in Section 7.
2 Grouper sounds

The four epinephelid species of interest in this study are found in

the greater Caribbean, including the Gulf of Mexico and the

Bahamas. They all spawn during the winter and spring months

(December toMay) in the Northern Hemisphere (Nemeth, 2012) and

their spawning aggregations are cued to the moon and the winter

solstice (Nemeth et al., 2007). FSAs often occur at remote locations

and in water depths between 30 and 80 m, near the shelf break, where

spawning activities usually peak at dusk but are contingent upon

water temperatures and local current conditions (Nemeth, 2009).

Spawning grouper population are thus challenging to observe and

monitor (Kobara et al., 2013) and their CAS production constitutes

the only way to monitor their presence remotely and their spawning

activity across the entire spawning season.

Red hind produce at least four distinct types of stereotyped

sounds that are heard during FSAs and in captivity during the

spawning week (Wilson et al., 2020; Zayas et al., 2020). The first
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red hind sound (RH1) is a combination of a short pulse followed

by a short tone (Figure 1A) with frequency range 20–360 Hz. The

short tone is a short pulse-period pulse train (Ibrahim et al., 2019),

whose period can vary and that can be extended by various longer

pulse-period, short duration pulse trains. The second red hind

sound (RH2) is composed of a series of pulses followed by an

extended tone (Figure 1B). It can be combined with a pulse train

before or after the call and the tone can be modulated like RH1

and also be extended or shortened. The third type of red hind

sounds consists of a grunt (RH3). It can be produced as a single

grunt or in a train consisting of two or three successive grunts as

shown in Figure 1C. The fourth type of red hind calls is the pulse

which can be produced alone or as a train alone or as part of other

call types, usually before or after RH1 or RH2 calls. Figure 1D

shows consecutive short pulses, resulting in a pulse train without

any other type of calls. Figure 1E shows a combination of RH4 and

RH2, where several pulses of increasing frequency precede the

long tone. The fifth type of sounds associated with the red hind

FSA is called a chorus. It consist of the continuous overlap of call

types RH1 and RH2. Both call types are not immediately

dist inguishable in the spectrogram but can be heard

(Appeldoorn-Sanders et al., 2023).

Nassau grouper calls have also been categorized as four

distinct types as shown by Schärer et al. (2012b); Wilson et al.

(2020), and Rowell et al. (2018). The Nassau grouper call N1 is an

alarm call, composed of a variable number of low frequency pulses

(Figure 2A). The CAS call N2 consists of a modulated tone that

may be preceded by a variable number of pulses or a shorter tonal

call (Figure 2B). N3 is an agonistic call made of pulses and double

pulse segments (Figure 2C) that occurs along with competitive

displays of males as described in Rowell et al. (2018). The fourth

type of calls, labeled N4 is a Nassau grouper call that included a

variable number of grunt pairs in sequence (Figure 2D). All

Nassau grouper calls peak frequency ranged between 90 and

300Hz as shown in Wilson et al. (2020). Further descriptions of

the four call types frequency and duration characteristics can be

found in Wilson et al. (2020).

Yellowfin grouper calls have been categorized as two types that

may occur subsequently or separately Schärer et al. (2012a).

They consist of variable series of fast pulses or tonal calls labeled

YF1 (Figure 3A) and of a rather uniform pulse train labeled YF2

(Figure 3B). Tonal calls average duration is about 3s ranging

between 1.29s and 5.69s with a peak frequency in the range 88.9

to 141.7Hz. Pulse calls duration is in the same range as the tonal call

with peak frequency range of 101.4Hz to 132.4Hz. Both calls are

known as CAS and were recorded at FSAs.

Black grouper produces at least two variations of a lower

frequency, modulated tonal call, which ranges between 60 Hz and

120 Hz, but generally has a longer duration than Nassau grouper

call N2 (Figure 4A). This call is sometime preceded by a set of pulses

and associated to courtship displays as shown by Schärer et al.

(2014) and Wilson et al. (2020).

Although our focus was mostly on epinephelids, we noticed that

in a significant number of recordings the presence of another sound,

in an overlapping frequency range with the grouper range. This
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sound was identified to be from squirrelfishes, mainly Holocentrus

rufus and H. adscensionis, which are a primary component of the

Caribbean coral reef soundscapes (Moulton, 1958). Their grunts

form an acoustic signature known as the ‘staccato’. It consists of a

pulse train in the frequency range 120–400 Hz with a duration of 1

to 2 s (Figure 4B), which is well described in Winn and Marshall

(1963), Winn et al. (1964), and Parmentier et al. (2011). In Puerto

Rico both species have been documented in reef habitats in similar

abundances (National Centers for Coastal Ocean Science (NCCOS)

and Southeast Fisheries Science Center (SEFSC), 2020). This call

was considered as one of the classes to improve the FADAR’s

accuracy as it would otherwise be mislabeled as a yellowfin grouper

call, which looks very similar structurally, although of different

frequency range as shown by Figures 3B, 4B.
Frontiers in Marine Science 05
3 Methods

3.1 FADAR workflow

FADAR was developed in Matlab™, with Deep Learning,

Signal Processing and Audio toolboxes. The general workflow of

the algorithm consists of a preprocessing stage where the sound

signal is converted into an RGB image of the spectrogram. Then the

images are analyzed by the DL models that constitute FADAR,

which produces an output that is the classification of the sound

sources according to the classes defined for the models (Figure 5).

However, the classification process involves two stages. For the

general identification of grouper species, not including their call

types, FADAR consists of an ensemble of deep learning models with
A B

C

D E

FIGURE 1

Spectrograms of four red hind grouper call types and a combination of call types. Note that the times axis differs among images. (A) Red hind call
RH1; (B) Red hind call RH2; (C) Red hind call RH3; (D) Red hind call RH4; (E) Combination of call types RH4 and RH2. The spectrograms were
calculated with a FFT size of 4096 points and show the relative intensity in dB. The calls were recorded off the west coast of Puerto Rico, at Abrir la
Sierra fish spawning aggregation site during the spawning season of 2015.
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A B

C D

FIGURE 2

Spectrograms of four Nassau grouper call types as identified in the literature. (A) Nassau grouper call N1; (B) Nassau grouper call N2; (C)
Nassau grouper call N3; (D) Nassau grouper call N4. The spectrograms were calculated with a FFT size of 4096 points and show the relative
intensity in dB. The calls were recorded off the west coast of Puerto Rico, at Bajo de Sico fish spawning aggregation site during the spawning
season of 2014.
A B

FIGURE 3

Spectrograms of yellowfin grouper call types. (A) Yellow fin call YF1. (B) Yellow fin call YF2. The spectrograms were calculated with a FFT size of
4096 points and show the relative intensity in dB. The calls were recorded off the west coast of Puerto Rico, at Mona Island fish spawning
aggregation site during the spawning season of 2013.
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randomly selected hyper parameters. The classification of call types

for the different species though, is conducted by species specific

deep learning sub models as shown hereafter.

In the pre-processing stage, the input audio files are first re-

sampled to 10 kHz then divided into 2 s audio segments without

predetermined filtering. A spectrogram is created for each segment in

the 0–500 Hz frequency range and then converted into an intensity

image using Matlab™ RGB conversion tools. Spectrograms were

generated by applying a Hanning window, with a frame length of 0.1

s (1000 samples), 80% overlap and an NFFT size of 4096 points.

These images were thus used to train and test FADAR for all the

classes chosen for this model. No calibration was applied to the input.

During the training stage, the diversity of data resulting from different

gain setups was accounted for as shown below, which increases the

classification robustness to the data source.

FADAR training took place with a total of 73466 spectrograms

(or images) encompassing all four grouper species call types,
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squirrelfish sounds, vessel and background noise. The data split

was 80% for training and 20% for validation. 180162 images offish

CAS and 632850 images of vessel and ambient noise, not part of

the training/validation set were used for testing and were

manually labeled. The numbers per class are presented in

Sections 3.3 and 3.4.
3.2 Main FADAR model

Classifying data with an automated approach is an iterative

process that hinges on the formulation of the problem, the data

analysis, feature extraction and selection, classifier selection, and

the validation of the model. Classification models fail for several

reasons, including insufficient data preprocessing, overfitting

during the training stage, unsuitability of the model for the

tasks, and lack of independent data for model validation.
A B

FIGURE 4

Spectrogram of (A) black grouper courtship call and (B) of holocentrids (squirrelfish). The spectrograms were calculated with a FFT size of 4096
points and show the relative intensity in dB. The calls were recorded off the west coast of Puerto Rico, at Abrir la Sierra fish spawning aggregation
site during the spawning season of 2014.
FIGURE 5

Fish Acoustic Detection Algorithm Research (FADAR) workflow.
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Ibrahim (2019) proposed an ensemble-based approach for DL

data classification and event forecasting, called multimodel deep

learning (MMDL). In the proposed method, the architecture

construction process is automated by diversifying the structure

of CNN classifiers. The selection of hyperparameters for each

classifier of the ensemble is randomized to allow the system to

devise the most suitable network architecture for a given dataset.

The MMDL algorithm then fuses the results from the different

architecture classifiers, which collectively improves the

performance of individual classifiers. Such approach was

proposed and implemented for the detection of North Atlantic

right whale up-calls by Ibrahim et al. (2021). The general network

architecture of the CNNs consists of a randomized number of

convolutional blocks that each contain convolutional layers, a

ReLU activation layer, a batch normalization layer, and a max-

pooling layer as shown in Figure 6. Therefore the proposed

MMDL algorithm for grouper CAS detection and classification

consists of a bank of five CNNs where, to reduce the design

complexity, a randomized generation process is applied to assign

values to hyperparameters by setting up a range for the number of

convolutional layers [3 5], number offilters [8 32], neurons in fully

connected layers [300 790], and batch size [16 128]. These

randomly generated DL models form an ensemble of classifiers.

The outputs of each model are combined by using a fusion

strategy for decision making as shown in Figure 7. The fusion

block analyzes the outputs of individual models to identify locally

consistent, discriminative, and representative patterns. The types

of metrics used in this process were selected according to the

results of an early study by Moreno-Seco et al. (2006) that tested

the efficacy of fusion methods like Majority Voting, Unweighted

Average, and PatternNet. The latter consistently outperformed the

other methods, and was used in the MMDL. The fusion process

and implementation is further described in (Ibrahim et al., 2021).
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The MMDL, is thus the main FADAR model that is used to

detect and classify the four groupers species’ CAS, regardless of the

call type, as well as squirrelfish and boat sounds. In order to classify

the call types, species specific classifiers or sub-models were

designed for red hind, Nassau and yellowfin groupers, which are

presented in the following sub-section. The sub-models are applied

to the outputs of the MMDL as shown in Figure 5.
3.3 Species specific call types classifiers

3.3.1 Red hind call types classifier
In Ibrahim et al. (2019), a random ensemble of stacked auto-

encoders was designed to classify RH1 and RH2 red hind grouper

call types. An accuracy of 95% was obtained with 15 random SAEs,

which requires extensive processing times with large numbers of

parameters. In order to make the model more efficient, an approach

based on Transfer Learning was preferred. Transfer Learning

involves leveraging a DL model that has been trained for one task

(source domain) as the starting point for a new task (target

domain). Typically, the source model is trained on vast quantities

of data where the layers of the network have learned to extract

features that are useful to the given task. Ideally, some of these

features would be generic enough that they may be shared across

tasks. Transfer Learning occurs when the knowledge learned in the

source domain is transferred during the start of the training process

of a new model to make predictions on the target domain.

Specifically, the knowledge learned is contained within the

weights of the trained network, and can be easily loaded as the

starting point of the new training process. Usually, the target

domain has limited access to data and therefore, greatly benefits

from the inherited knowledge. Transfer Learning can be applied in

many different ways, depending on the problem. It can involve
FIGURE 6

General structure of an individual CNN network with a convolution blocks.
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techniques such as freezing certain layers of the network therefore

preserving the weights of those layers that were learned previously,

replacing the classification layers, training for only a few epochs to

fine-tune the network, or a combination of these techniques. Pre-

trained models were selected for extracting the deep informative

features from spectrogram images generated from red hind sounds.

Different types of pre-trained model were used such as ResNet,

MobileNetV2 (Howard et al., 2017), Efficient Net (Tan and Le,

2020), and ShuffleNet (Zhang et al., 2017) as shown in Ibrahim et al.

(2019). White et al. (2022) used a similar transfer learning approach

based on EfficientNet B0 to classify marine sound sources, which

provides a computationally efficient architecture for rapid

classification. EfficientNet introduces a compound scaling method

that uniformly scales the depth, width, and resolution of the

network. This scaling approach ensures that the model becomes

more powerful as it gets larger while maintaining efficiency. By

carefully balancing these scaling factors, EfficientNet achieves

improved accuracy compared to other models while using fewer

resources. The combination of accuracy and efficiency of the

EfficientNet, along with its scalability and transfer learning

capabilities, makes it a relevant choice as the red hind call types

classifier but also because of its higher accuracy than the others.

More than 17000 samples were used for training and validation

following the same 80/20 ratio as in the other DL models (Table 1).

More than 94000 were used for testing and were separate from the

training/validation set (Table 2). The structure of the red hind call

types submodel is shown in Figure 8.
Frontiers in Marine Science 09
3.3.2 Nassau grouper call types classifier
While at least four Nassau call types have been identified, only

two classes were used for the call type classification. Class 1 labeled

as FN1 encompasses pulse-like calls such as N1, N3, and N4 and

class 2, labeled as FN2 tonal calls such as N2. Due to this added

complexity within the FN1 class a transfer learning approach did

not provide satisfying results. Therefore, a CNN model was

specifically designed for the Nassau grouper call type

classification. The superior performance of the shallow CNN

model over the transfer learning could be attributed to its

reduced complexity. The simplified architecture of the shallow

CNN, with fewer layers and parameters, allows it to more

effectively focus on the specific features relevant to the Nassau

grouper call types classification task. While pre-trained intricate

design is tailored for a broader range of challenges, its complexity

might lead to overfitting or less adaptability to the target dataset. In

contrast, the shallow CNN’s simplicity enables it to efficiently

extract and learn the key characteristics of Nassau grouper call

type images, ultimately resulting in enhanced classification

performance. The Nassau CNN model utilizes a 16-layer

structure with seven layers of convolution, three fully connected

layers and a softmax layer (Figure 9). The first two convolutional

layers contain 3x3 filter of stride 1, the number offilters being 8, and

a maxpooling layer of 2x2 filter of stride 2. The next two

convolutional layers are made of 3x3 filter with stride 1, the

number of filters being 16, which are followed by a maxpooling

layer of 2x2 filter of stride 2. Each of the remaining three
TABLE 1 Numbers of 2-second sound samples used for training and validation (80/20 split) per location.

Location EGUT ESTRI MVEN MBON Squirrelfish Others

ALS and RHB

Fixed recorders 16815 9380 10135 2640 5610 20253

Wave glider 415 220 0 0 170 1500

Cayman Islands 1240 831 920 2137 0 1200
Most training and validation samples were obtained from Abrir la Sierra (ALS) in Puerto Rico, and Red Hind Bank (RHB) in St. Thomas USVI for the period 2014–2017. Wave glider data came
from the southern shelf edge of St. Thomas in 2017. And the Cayman Island data spanned the period 2013–2017. Squirrelfish sounds were not present in sufficient numbers in the Cayman Island
data to contribute to the training data. Acoustic data in Puerto Rico and in St. Thomas were recorded with Loggerhead DSGs and with the wave glider passive acoustic monitoring system, and in
the Cayman island, the training data was recorded with Loggerhead DSGs.
EGUT stands for E. guttatus, ESTRI for E. striatus, MVEN for M. venenosa, MBON for M. bonaci, and Others for vessels sounds and background noise.
FIGURE 7

Multi-model deep learning (MMDL) CNN ensemble flow chart used in the Fish Acoustic Detection Algorithm Research (FADAR).
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convolutional layers are followed by a maxpooling layer. The

number of filters of the remaining convolutional layers are 32, 48,

64, respectively. The last maxpooling layer is followed by a fully

connected layer with 1024 nodes, a dropout layer with a probability

of 0.25, then another fully connected layer with 512 nodes, a

dropout layer with a probability of 0.5, then yet another fully

connected with 2 nodes with a SoftMax activation layer that

ensures the output predictions across all classes. More than 10000

samples were used for training and validation following the same

80/20 ratio (Table 1). About 19678 were used for testing and were

separate from the training/validation test (Table 2).

3.3.3 Yellowfin grouper call types classifier
The design of the yellowfin grouper call-type classification

model also utilizes a Transfer Learning concept as done in

Ibrahim et al. (2020) because of the relatively comparable

dissimilarity between call types as in the red hind calls.

EfficientNet was also selected as the pre-trained model to classify

yellowfin grouper call types. Using Transfer Learning in this case

improved the accuracy of the classification. This model is the same

as the one used for the red hind grouper but trained with yellowfin

calls. The number of call used in this model for training and
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validation was about 11000 (Table 1). About 11864 were used for

testing and were separate from the training/validation test (Table 2).

3.3.4 Data annotation, classes and call counting
The same pre-processing conversion steps were applied to all

the acoustic data used to create the training library. An important

consideration is the assurance that one or more, call or call type, -

including part of the call only if located at the beginning or end of

the window - of the species concerned was comprise within the 2s

window used for each sample as described in Section 3.1. The

classes of the main FADAR model comprised one class for red hind

that included the two main call types RH1 and RH2, one class for

Nassau grouper that included call types FN1 and FN2 (see Section

3.3.2), one class for both call types of yellowfin grouper, one class for

black grouper, one class for squirrelfish and one class boat and

background noise, all in the same frequency range. For the call type

classification, new classes were created, corresponding to each of the

call types for the species concerned. Classes were labeled by a team

trained by the authors. Each file was auditively analyzed with

canceling headphones and/or visualized with acoustic analysis

software. Grouper sounds were quantified per file by visual

inspection of spectrograms using Ishmael Bioacoustics (version
FIGURE 8

General structure of the red hind grouper call type model. BN indicates Batch Normalization. FC indicates fully connected layers with 1000 neurons
and the last FC layer has only two neurons.
TABLE 2 Numbers of 2-second sound samples used for testing per location.

Location EGUT ESTRI MVEN MBON Squirrelfish Others

ALS and RHB

Fixed recorders 32557 8943 7172 1913 5750 111350

Wave Glider 235 168 0 0 130 1450

Cayman Islands 1625 1409 417 1621 3905 15000

Mona Island (2016) 5899 1590 1234 84 6322 100000

Mona Island (2017) 34143 1262 1117 2743 3823 100000

B4 2985 357 248 872 2537 100000

ALS Deep 3591 638 602 711 3133 100000

BDS 1007 3298 767 1453 13980 200000

Florida Keys 11989 2013 307 2182 3430 20000
Testing samples were obtained from Abrir la Sierra (ALS) for the period 2014–2017 but were not part of the training set and from other FSAs surrounding ALS such as Mona Island, Bajo de Sico
(BDS), B4, ALS Deep on the western shelf of Puerto Rico for the period 2016–2017. Testing samples were also obtained from Red Hind Bank (RHB) for the period 2014–2017 but were not part of
the training set. Wave glider data came from the western shelf of Puerto Rico in 2017 and the southern shelf edge of St. Thomas in 2017 but were not part of the training set. Cayman Island data
spanned the period 2020 and were recorded with Soundtrap instruments. Data in Puerto Rico and in St. Thomas were recorded with Loggerhead DSGs and with the wave glider passive acoustic
monitoring system. In the Florida Keys, testing data were recorded with Soundtrap instruments and spanned the period 2019–2020.
EGUT stands for E. guttatus, ESTRI for E. striatus, MVEN for M. venenosa, MBON for M. bonaci, and Others for vessels sounds and other sound sources.
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3.0) or Audacity (version 3.3.3) or Matlab™ software. For each file

an image of the sound was created and classified by an observer

depending on the pattern, duration, and frequency of each signal.

Classes were labeled from a wide range of data sources as shown in

Table 1, which included different recorder types, mobile or fixed

platforms, depth, geographical regions and sampling rates. No

calibrations were applied to the input data in order to improve

the code flexibility at handling a diverse set of data types without

significant pre-processing.

While the 2s window length was selected to mostly capture

one call at once, input files were in general longer than 20s.

Therefore, the splitting of the file in 2s windows can lead to the

same call being counted twice. To remedy this issue, when

identifying the number of calls in each file, we implemented the

following algorithm. The amplitude of the signal in the first and

last 0.5s of each 2s window is calculated and compared to a

carefully chosen threshold. If the successive window amplitude is

above the threshold, then the signal is part of the same call,

otherwise it signifies the end of the call. This operation ultimately

provides the number of calls in each input file.
3.4 Datasets

To obtain a robust classifier, the training data should

encompass the full diversity of each class. To increase the

diversity of our training set we utilized data collected by a variety

of institutions, under differing survey protocols and across a range

of geographic locations and temporal scales. However, all the

acoustic data used in this study was collected at FSA sites in the

Caribbean Sea. The dataset spans the period 2014–2020 and

encompasses three geographic regions from the western shelf of

the island of Puerto Rico, in the Greater Antilles, and spans multiple

years at the same locations. A second set of data was collected in the

neighboring islands of St. Thomas and St Croix of the U.S. Virgin

Islands. They were collected under the auspices of three different

organizations, namely the Caribbean Fisheries Management

Council (CFMC), the Caribbean Coral Reef Institute (CCRI) of

the University of Puerto-Rico and the National Oceanic and

Atmospheric Administration (NOAA) Southeast Area Monitoring

and Assessment Program (SEAMAP-C). The other geographic

region that contributed acoustic data to this dataset is in the

Cayman islands, more specifically the western shelf edge of Little

Cayman. And the third geographic region is the western tip of the
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Florida Keys in the Gulf of Mexico, namely Riley’s Hump and

Western Dry Rocks.

Because all the deployments targeted grouper spawning

aggregation sites, all four groupers species can be heard but may

not be present at every site. On the Puerto-Rican shelf and in the

U.S. Virgin Islands, red hind is the most abundant species.

However, spawning sites for yellowfin and Nassau groupers were

also monitored and at some locations black grouper CAS were also

heard. In the Cayman islands, the recorders were deployed at

Nassau grouper spawning sites with the incidental presence of red

hind, yellow fin and black grouper. In the Florida Keys, recorders

were deployed at spawning aggregation sites of multiple groupers

species. All recordings also include the sound of squirrelfish and

surface vessels, however, the other sound sources vary with the

locations and were not specifically identified for this study. While

most acoustic data were obtained from bottom mounted fixed

recorders, we also added to this dataset recordings from a mobile

surface platform that surveyed the insular shelf edge of St. Thomas

and Puerto Rico [see Chérubin et al. (2020); Woodward et al. (2023)

for more details]. The relative proportion of data per class between

locations used for training and validation is given in Table 1. The

relative proportion of data per class between locations used for

testing is given in Table 2. The testing data wasn’t used in the

training/validation stage although it came from the same overall

dataset as shown in Tables 1, 2.

Along with the different locations, research groups, and

methods, the type of recorders also varied but consisted mainly of

Loggerhead Instruments recording units. Each unit was

programmed to record ambient sounds either continuously for

short-term week-long deployments or through a duty cycle for

long-term months-long deployments. In Puerto-Rico and the U.S.

Virgin Islands most units were Loggerhead Instruments digital

sprectrogram recorders (DSG), using a sampling rate of 80 kHz.

In the Cayman Islands, acoustic recordings were obtained from

DSGs between 2013 and 2020 Wilson et al. (2020) and Ocean

Instruments SoundTrap Model 300HF in 2020. DSG instruments

recorded at a sample rate of 50 kHz and Soundtrap at 48 kHz. In the

Florida Keys, Soundtrap recorders were used with sampling rates of

44.1 kHz. All these recorders were fixed on the ocean floor. Acoustic

recording units from mobile platforms were also considered in our

training data set. They were collected by an embedded system on a

wave glider and recorded ocean sounds between 10 and 20 m below

the surface. More details on the glider operations and the payload

system can be found in Chérubin et al. (2020); Woodward et al.
FIGURE 9

General structure of the Nassau grouper call types Convolutional Neural Network (CNN) model. FC stands for fully connected.
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(2023). The sampling rate for the PAM system was 10 kHz.

Therefore, the training dataset encompasses several types of

recorders, hydrophone sensitivities, gain setups, and sampling

rates that will contribute to the robustness of FADAR.
3.5 FADAR testing procedure and
performance metrics

In this section, we present the model testing procedure, the

evaluation metrics and then the explainability tools that were

applied to identify the spectral features used in the classification

process. The experiments were implemented inMatlab™ following

a standard validation procedure, which is explained next. The

dataset used for training is shown in Table 1, and the testing

dataset is shown in Table 2. Among the training data, 80% of the

data were randomly chosen for training, while the remaining 20%

were reserved for validation. This process was repeated five times

until all data points in the training set were validated once. Finally,

the trained model was tested using the reserved test data.

Sensitivity, specificity, and accuracy defined as Equations 1–3:

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

TN + FP
(2)

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(3)

where TP stands for true positive, TN true negative, FP false

positive and FN false negative were calculated for each class to

measure the performance of the various classification models. Here,

TN corresponds to the vessel/ambient noise class. The ability of a

model to identify true positives is referred to as sensitivity also called

recall, while the ability of a model to identify true negatives, which is

one of our classes is referred to as specificity. More specifically, the

sensitivity score shows the ability of the model to correctly identify

the candidate sample’s call-type, while the specificity score shows the

ability of the model to correctly state that the candidate sample does

not belong to that particular call-type. While accuracy may be an

inadequate measure of the performance of the classifier for

imbalanced datasets, where TN ≫ TP, Hildebrand et al. (2022)

recommend measuring the classifier performance using metrics that

are expressed in terms of ratios, namely the true positive and true

negative rates. Here we also calculated for each of the six classes the

receiver-operating-characteristic curves (ROC).
3.6 Enhancing model transparency with
interpretability techniques

In our pursuit of a more comprehensible and transparent

classification model, we integrated three pivotal interpretability

techniques known as Gradient-weighted Class Activation Mapping
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(Grad-CAM), Local Interpretable Model-agnostic Explanations

(LIME), and Occlusion Sensitivity. These methodologies collectively

shed light on the decision-making processes within complex CNN

architectures. In scientific and engineering contexts, the notion of a

“black box” underscores the challenge of understanding processes

devoid of explanatory insights, meaning that humans, even those who

design them, cannot understand how variables are being combined to

make predictions (Rudin and Radin, 2019).

Grad-CAM operates as a post-hoc explanation approach,

facilitating model interpretability without necessitating structural

alterations to the examined CNN architecture (Selvaraju et al.,

2019). By producing heat maps that vividly highlight regions of

an input image contributing positively to the network’s

classification decision for a specific class, Grad-CAM provides a

visual representation of activation intensity, ranging from vibrant

orange (high activity) to cooler blue (lower activity). This technique

offers transparent insights into the decision rationale of diverse

CNN-based models (Selvaraju et al., 2019).

LIME constitutes an approach that furnishes explanations for

classifiers of all kinds, striving to construct a locally interpretable

model closely approximating the actual model’s behavior for a given

input and prediction (Ribeiro et al., 2016). By highlighting

superpixels in orange to denote positive contributions and in blue

for negative ones, LIME effectively segments an image, pinpointing

regions with substantial influence on the classification outcome.

This approach quantifies contributions, thus illuminating areas that

significantly affect classification results.

Occlusion Sensitivity enhances model interpretability by

systematically occluding portions of an input image and measuring

the corresponding impact on the classification outcome. By iteratively

masking different sections of an image, the technique discerns the

image regions that exert the most influence on the model’s

predictions. Occlusion Sensitivity thus further contributes to the

transparency and insights into how the CNN arrives at its

decisions, enhancing the model’s overall interpretability.

Collectively, these techniques offer a deeper understanding of

the intricate decision-making processes within our model.
4 Results

4.1 Features of interest in the call
type classification

In the study herein, because the classification is based on RGB

spectrogram images, FADAR classification of the calls is based on the

identification of spectral features as shown by Figure 10. The

identification of tonal calls is mostly based on the slope and energy

of the tonal bands of the calls. The highest energy bands are the

greatest contributors to the call identification for red hind call RH1,

Nassau grouper call FN1 and yellowfin grouper call YF1 according to

Grad-CAM. However, this metric shows significant overlap between

the three species frequency bands. Instead, the LIME and Occlusion

sensitivity metrics indicate different parts of each of the calls that do

not overlap suggesting that key time-frequency features exist and
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enable the distinction between calls. The time-frequency features of

the black grouper tonal call are distinct from the other three species

according to Grad-CAM, LIME and Occlusion Sensitivity metrics.

The same interpretability measures were also applied to the

distinction between call types for red hind grouper (Figure 11) and

yellow fin grouper (Figure 12). The Grad-CAM metric for red hind

grouper suggests that the spectral features selected by the sub-model

are the maximum energy of the spectral band in the RH1 calls and

the time-varying pulses in the time frequency representation of the

RH2 calls. For the yellowfin grouper sub-model, the spectral

features of interest are a specific frequency range in the

maximum slope region of the tonal call for call type YF1 and the

extent the peak energy band of the pulse train sound, YF2.
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4.2 Evaluation of FADAR

We first present the evaluation of FADARmain model, a MMDL

algorithm for grouper CAS detection and classification (see Section

3.2). The results are shown in Table 3 and consist of the average over

all the test data for each class. FADAR sensitivity is greater than 0.91

for all classes, the lowest score being for yellowfin grouper. Specificity

is however greater than 0.98 for all classes, the lowest score being for

black grouper. And accuracy is greater than 0.94, the lowest score

being for yellowfin grouper. Considering all classes together, the

sensitivity, specificity and accuracy of FADAR main model are above

0.97 for the testing dataset used in this study that includes a diversity

of recording platforms, gain, sampling frequency, location and
FIGURE 10

Spectral regions and features of interest identified by Gradient-weighted Class Activation Mapping (Grad-CAM - second column), Local Interpretable
Model-agnostic Explanations (LIME- third column), and occlusion sensitivity (fourth column) interpretability measures in the call spectrograms (first
column; the spectrograms were calculated with a FFT size of 4096 points) of red hind (first row, EGUT), Nassau (second row, ESTRI), yellowfin (third
row, MVEN) and black grouper (fourth row, MBON).
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depths. All three measures are the highest for boat sound

and squirrelfish.

The ROC curves for each of the classes, corresponding to the

results of FADAR classification expressed in terms of Accuracy in

Table 3 are shown in Figure 13. The ROC curves suggest a high

probability of TP and low probability of FP for all six classes, which

also confirms that using accuracy as a performance measure of

FADAR is appropriate.

FADAR’s main model was also evaluated to account for the

effect of region (Table 4) and depth (Table 5). For the effect of

region we chose to compare three geographically distinct regions

such as the western Caribbean FSA in the Cayman Islands, the

Western shelf of Puerto Rico and the southern shelf of St. Thomas

in the central Caribbean region, and the Florida Keys in the Gulf of

Mexico. The regional comparison reveals few differences across

region for all classes. Squirrelfish sound classification shows a slight

decrease in accuracy (<0.9) due to a decrease in sensitivity at ALS.

Different instruments were also used, namely Soundtrap recorders

in the Cayman Islands and the Florida Keys, and Loggerhead DSG

recorders at ALS and RHB. The results show no significant

differences according to the instrument. Because most grouper

spawning aggregation sites are located near the shelf edge, the
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depth variation between sites is minimal regardless of the species,

although on the western shelf of Puerto Rico the FSA at BDS is

located at 50 m depth. Therefore we compared the results of

FADAR on recordings at BDS, ALS and ASL Deep, which is 4 m

deeper than ALS and made by the wave glider, between 10 and 20 m

below the surface. Table 5 shows no significant differences

between depths.

The same analysis was conducted to evaluate the skills of the

sub-models on call type classification for each species concerned.

The results are shown in Table 6 for red hind grouper calls, Table 7

for Nassau grouper calls and Table 8 for yellow fin grouper calls.

The red-hind grouper sub-model sensitivity and accuracy is slightly

improved over FADAR main model and is above 0.93 for all three

measures. Nassau grouper sub-model exhibits lower skills at

classifying the call types than the main model does at identifying

any Nassau calls. However all three measures remain above 0.9.

Finally, the yellow fin grouper sub-model showed improved

sensitivity over the main model. Classification skills were much

improved in terms of all three metrics for the YF1 call especially.

Specificity and accuracy of the classification of YF2 calls were lower

than in the main FADAR model. Overall, the sub-models exhibit

higher sensitivity for tonal-like calls such as RH1, N1, and YF1.
FIGURE 11

Spectral regions and features of interest identified by Gradient-weighted Class Activation Mapping (Grad-CAM - second column) interpretability
measure in the red hind grouper (EGUT) call type RH1 (first row) and call type RH2 (second row) spectrograms. The spectrograms were calculated
with a FFT size of 4096 points.
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A second evaluation of FADAR was conducted on datasets and

data not used in the previous testing steps. It consisted of an unbiased

evaluation of the algorithm by testing FADAR on an equal number of

samples (600) for each species, ensuring balanced representation

across locations including Cayman Islands, St. Thomas (Grammanik

Bank), St Croix (Lang Bank), and the Florida Keys. Notably,

particular attention is directed towards mitigating potential sources

of acoustic interference, particularly at locations such as the Cayman

Islands, Puerto Rico and the Virgin Islands, where background noise

originating from other fish sounds and vessel activity, as well as the
FIGURE 12

Spectral regions and features of interest identified by Gradient-weighted Class Activation Mapping (Grad-CAM - second column) interpretability
measure in the yellow fin grouper (MVEN) call type YF1 (first row) and call type YF2 (second row) spectrograms. The spectrograms were calculated
with a FFT size of 4096 points.
TABLE 3 Evaluation metric values of the main FADAR model.

Species Sensitivity Specificity Accuracy

Red hind 0.91226 0.99811 0.94737

Nassau 0.982 0.9959 0.97601

Yellow fin 0.9114 0.99665 0.9421

Black 0.99266 0.98885 0.95163

Boat sound 1 0.9994 0.99748

Squirrel fish 1 0.99934 0.99741

Total 0.9769 0.9968 0.9754
F
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FIGURE 13

Performance of FADAR’s multi-model deep learning (MMDL) is
illustrated as ROC curves for each classes.
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TABLE 4 Performance metrics for different acoustic datasets across three distinct regions: the Florida Keys (Gulf of Mexico), the Cayman Islands (Western Caribbean), Abrir la Sierra (ALS) and Red Hind Bank
(RHB) in the northern central Caribbean.

EGUT MBON Squirrelfish Vessel

Sens Spec Acc Acc Sens Spec Acc Sens Spec Acc Sens Spec Acc

0.92818 0.99728 0.92818 0.93485 0.94959 0.99921 0.94959 0.99795 0.95703 0.99795 0.96181 0.99827 0.96181

0.93046 0.99709 0.93046 0.96882 0.94263 0.99262 0.94263 0.98727 0.96892 0.98727 0.96364 0.9987 0.96364

0.924 0.997 0.924 0.9385 0.976 0.999 0.976 0.884 0.999 0.884 0.997 0.939 0.997

0.946 0.998 0.946 0.938 0.948 0.999 0.948 0.954 0.998 0.954 0.998 0.961 0.998

) and, accuracy (Acc) are provided wh EN for M. venenosa, MBON for M. bonaci. This comprehensive dataset encompasses recordings capturing variations in

rent acoustic datasets across d depth, Abrir la Sierra (ALS) Deep at 28 m, ALS at 24 m, and the Wave Glider PAM is towed
e.

ESTR MBON Squirrelfish Vessel

Acc Sens Spec Sens Spec Acc Sens Spec Acc Sens Spec Acc

0.952 0.912 0.999 0.972 0.999 0.972 0.933 0.999 0.933 0.998 0.94 0.998

0.924 0.929 0.999 0.976 0.999 0.976 0.884 0.999 0.884 0.997 0.939 0.997

0.938 0.960 0.997 0.976 0.998 0.976 0.942 0.995 0.942 0.990 0.956 0.990

0.927 0.952 0.988 – – – 0.961 0.992 0.961 0.971 0.953 0.971

) and, accuracy (Acc) are provided wh EN for M. venenosa, MBON for M. bonaci. This comprehensive dataset encompasses recordings capturing variations in
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Location

Metric

Florida Keys

Cayman Islands

ALS

RHB

For each class, sensitivity (Sens), specificity (Spe
species behavior and environmental acoustics.

TABLE 5 Performance metrics for diffe
between 10 and 20 m below the surfac

Location EGUT

Metric Sens Spec

BDS 0.952 0.999

ALS-Deep 0.924 0.997

ALS 0.938 0.996

Wave Glider 0.927 0.992

For each class, sensitivity (Sens), specificity (Spe
species behavior and environmental acoustics.
c

c

ESTRI MVEN

Sens Spec Acc Sens Spec

.95777 0.99662 0.95777 0.93485 0.9976

.94251 0.99743 0.94251 0.96882 0.9983

0.929 0.999 0.929 0.938 0.999

0.927 0.999 0.927 0.938 0.998

e EGUT stands for E. guttatus, ESTRI for E. striatus, MV

pth: Bajo de Sico (BDS) FSA is located at 50 m

I MVEN

Acc Sens Spec Acc

0.912 0.954 0.999 0.954

0.929 0.938 0.999 0.938

0.960 0.9223 0.996 0.922

0.952 – – –

e EGUT stands for E. guttatus, ESTRI for E. striatus, MV
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coexistence of marine mammals with overlapping frequency ranges,

present significant challenges to call type and species classification.

These systematic evaluations, encapsulated in the sensitivity,

specificity, and accuracy measures, allow for a rigorous

examination of FADAR’s performance in species detection while

considering the influence of environmental factors across diverse

marine ecosystems. The results are shown in Table 9 and confirm the

robustness of FADAR classification skills across locations for all

classes. The sensitivity lowest score (0.897) is obtained for the

Cayman Islands squirrelfish sound although the accuracy remains

above 0.9. For all the other species and locations including the

Cayman Islands the sensitivity, specificity, and accuracy scores are

above 0.9. Again, this unbiased analysis suggest that location, which

encompasses three Caribbean regions, the Florida Keys in the Gulf of

Mexico, Grammanik and Lang Bank in the Northern central

Caribbean and the Cayman Islands in the western Caribbean is not

a factor in the accuracy of FADAR, nor is the instrument type.

Loggerhead Instruments DSGs were used in the northern central

Caribbean and Soundtrap recorders in the Cayman Island and the

Florida Keys.
5 FADAR application input and
output structure

A Windows app, known as FADAR, was created to provide an

efficient solution for classifying and categorizing different types of

grouper fish sounds using the proposed algorithms. FADAR windows

app is a Matlab™ Runtime app that is run without installing

Matlab™. Two choices are available to install FADAR: either a

standalone executable that does not require Matlab™ Runtime

libraries or an app installer that includes Matlab™ Runtime

libraries that will create the executable. With our user-friendly

application, individuals can easily upload either a single sound file

or an entire directory containing multiple sound files. The app offers
TABLE 7 Evaluation metric values of the Nassau grouper sub-model.

Method Sensitivity Specificity Accuracy

N1 0.914 0.905 0.9063

N2 0.908 0.917 0.912
F
rontiers in Marine S
cience
TABLE 6 Evaluation metric values of the red hind grouper sub-model.

Method Sensitivity Specificity Accuracy

RH1 0.953 0.955 0.951

RH2 0.936 0.933 0.934
TABLE 8 Results of the Yellowfin grouper sub-model.

Method Sensitivity Specificity Accuracy

YF1 0.992 0.992 0.991

YF2 0.932 0.93 0.93
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four primary classification options: first, ‘Classify Grouper’ which

offers a broad identification of the input sounds as grouper species or

vessel or squirrelfish; second, ‘Classify Specific Grouper Types’ that

allows users to select exact grouper sound categories such as ‘RedHind

Call Types,’ ‘Nassau Call Types,’ or ‘Yellowfin Call Types.’ To further

improve user experience, FADAR provides versatile output formats.

Users have the option to view classification results as in-app tables,

allowing for quick and easy reference. For those who require external

analysis or wish to share the data, the app can export classification

outcomes as CSV (Comma-Separated Values) files, compatible with

spreadsheet software like Microsoft Excel. Additionally, the

application is equipped to generate video files displaying

spectrograms annotated with the species name, offering a visual

representation of the sound classifications for verification purposes.

Finally, the app can also create folders of the 2s spectrograms in the 0–

500 Hz range for each class, of all the calls detected for further

verification. FADAR is also an efficient algorithm that can classify ten

thousand 20-s files in 2.5 hours on a GPU powered laptop.

FADAR app can be downloaded at the following link: https://

github.com/Aliklawat/-Fish-Acoustic-Detection-Algorithm-

Research. Two files are present in the folder, namely FADAR

executable and a zipped app installer. Requirements to operate

FADAR are 64-bit processor and a minimum sampling rate of 10

kHz for the data. It is recommended to download the app installer,

unzip and run it. It will provided instruction during the installation

process ofMatlab™ Runtime and FADAR. Once installed, FADAR

is ready to operate by a simple click on the FADAR icon. All of the

installation steps and operation guidance are provided on the

Github page. In summary, our Windows app “FADAR”,

streamlines the process of identifying and categorizing grouper

fish sounds, catering to both general classification and specific call

type recognition needs. Whether users are a marine biologist,

researcher, or enthusiast seeking to understand and differentiate

various grouper fish sounds, FADAR application serves as a

valuable and user-friendly tool to meet their requirements.

FADAR has been shared with multiple groups, including Florida

Fish and Wildlife Commission, NOAA (Taylor et al., 2020), the

NGO COBI in Mexico, and the Grouper Moon Project at Scripps

Institution of Oceanography (van Horn et al., 2024). Training

sessions were also setup for our potential users. COBI in Mexico

has trained fishermen and fisheries managers to use the FADAR for

Nassau grouper spawning aggregation monitoring.
6 Discussion

Machine learning methods have become effective tools for

classification of often-extremely large passive acoustic datasets with

a focus on marine mammals (Frasier, 2021; White et al., 2022).

Existing work increasingly employs spectrogram representations of

sound across a limited frequency range, which is selected according to

the species (or signal) of interest. Using the full frequency band that

include the signal of sources of interest, would indeed hinder the

performance for the classification process because the ratio between

pixels containing the signal to be classified would be quite low

compared to an image with limited bandwidth as suggested by
Frontiers in Marine Science 18
White et al. (2022). FADAR is the first machine learning package

developed specifically for fish calls identification within a specific

frequency range (0 -500 Hz) that encompasses all of the known

species’ calls targeted in this study. We proposed an approach for

classifying grouper sound calls in FSA sites using the concept of DL.

We used the concept of ensemble DL for the main model to classify

six different sounds, five fishes and one anthropogenic, heard in FSAs.

Additionally, we proposed three submodels to classify each species

call types. Furthermore, FADAR provides an integrated system

consisting of DL models for both feature extraction and

classification of fish species using their sounds.

For the detection and classification of marine mammals signals,

CNNs have become the most common architectures Belghith et al.

(2018); White et al. (2022). This work builds upon the evaluation of

various architectures for each species that were presented in a series

of studies such as CNN and LSTM (Ibrahim et al., 2018b), transfer

learning with CNN (Ibrahim et al., 2020), stack auto encoders

(Ibrahim et al., 2019), and multimodel DL (Ibrahim, 2019; Ibrahim

et al., 2021), which have paved the way for the FADAR algorithm

presented herein. These studies provided the baseline to identify the

best methods for the different applications, especially the call type

classification. They also showed that the performance of the

different architectures was species dependent. So FADAR is the

results of what gave the best results for all species calls overall and

for species specific call types. Another selection of architectures

would certainly work as well.

Our results demonstrate the ability of a CNN to extract higher level

components of the soundscape for an assessment of the species present,

beneficial to marine management, policy and stakeholders. However,

as shown in White et al. (2022), a single CNN model appears to be

unsuitable for all bioacoustic research needs. At the species level,

understanding species acoustic behavior in the spawning aggregation

context requires not only models which incorporate soundscape

elements but also, in tandem, complex species call type-level

classifiers to meet the desired research needs. In Woodward et al.

(2023), the authors show that the acoustic propagation characteristics

between RH1 and RH2 are different, becausemostly RH2 call type were

recorded the near the surface, despite both call types being present at

depth at the same source level. Using both tonal and impulsive call

types of grouper calls allows for a more refined determination of their

spawning behavior (territory defense, mate attraction, call to migrate to

the aggregation site) over single call type approaches. Male red hind

form territories with harems of one or more females during spawning

aggregations (Shapiro et al., 1993) that may be associated with

variations in combinations or structure of call types associated with

sex-specific interactions. The methodology described here could be

applied to other soniferous species with similar complex repertoires as

the grouper species analyzed in this study.

Many FSAs are multi-species hot spots where several grouper

species can be found (Wilson et al., 2020; Woodward et al., 2023).

They are noisy environments where geophony, anthropophony, and

biophony overlap and hinder the transmission, detection, and

discrimination of species specific sounds. Understanding how fish

and other marine animals adapt their communication strategy while

sharing the acoustic space (both in frequency and space) can offer

insight into the differences among species sounds (Wilson et al.,
frontiersin.org
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2020). To assess the possibility of acoustic partitioning between the

four grouper species that FADAR can detect and classify, Wilson

et al. (2020) analyzed their spectral and temporal features and their

individual sound segments in their study. They measured the

following acoustic features for a subset of high signal to noise ratio

calls and their segments: duration, peak frequency, 3 dB bandwidth,

received level, and (if applicable) inter-pulse period (IPP). The

spectral and temporal characteristics of calls themselves were

partitioned. And they investigated the use of the acoustic features

of calls and segments for discriminating between species and call

types using a random forest of multiple classification and regression

trees (Breiman et al., 1984; Breiman, 2001). Their analysis revealed

that IPP and duration were the most important predictors for

random forests, influencing both call and segment classification

more strongly than spectral features. In the study herein, the

grouper calls are detected and classified based on the spectrogram

images. Hence, the detection and discrimination of the grouper calls

by FADAR is done through the time-frequency features contained in

the images. While the Grad-CAM measure showed overlapping

features among the tonal calls of red hind, Nassau and yellowfin

groupers, more discriminating features were revealed by the LIME

and Occlusion Sensitivity measures. Features such as the slope of the

energy bands of lesser energy, proximity of the bands to each other

were identified. This type of spectrogram feature separation also

extends in the classification of call types.

Work that incorporates multi-sound sources has become

important to investigate variations in ambient sound characteristics

and monitor biodiversity to infer ecological information. There are a

variety of tools and studies on multi-sound classification in terrestrial

systems such as BirdNET (Kahl et al., 2021) and others (Potamitis,

2014; Denton et al., 2021; Ghani et al., 2023). In the marine

environment Belghith et al. (2018) demonstrate how custom CNNs

can discriminate between baleen whale calls, odontocete echolocation

clicks and anthropogenic noise sources, achieving overall accuracy

scores of 66.4% with a site-specific training set. In White et al. (2022)

they implement, on small training sets, a transfer learning of a high

performing architecture combined with multi-channel spectrograms

as input for the detection of multi-sound sources. They report a

higher accuracy with an overall macro-average of 94% on the test set.

Using ROC curves alongside confusion matrices to measure per-class

performance they assess the effect of regional soundscape variation

on performance metrics for specific sound types. A signal

classification pipeline involving supervised and unsupervised

learning was used by Frasier (2021) to identify and classify seven

classes including five distinct cetacean sounds. This framework

enables expert oversight to label signals of interest, some of which

are known, and others which are not yet well characterized or

matched to a known source. The intent of this framework is,

however, to provide a viable solution for efficiently generating the

large, representative training sets needed for applications of DL in

passive acoustics. Accuracy scores were also high, above 98% on their

balanced evaluation dataset of one thousand samples. Accuracy was

much lower on their unbalanced, manually labeled independent

dataset. Mahale et al. (2023) employed unsupervised classification

through a hybrid technique comprising principal component analysis

and K-means clustering for data features of four fish sound types.
Frontiers in Marine Science 19
They were able to classify the chorus of four fish species with

accuracies varying between 76.81% and 100.00%, and they

classified vessel sound with 100% accuracy. However, comparison

between studies is not straightforward due to differing test metrics

and training sets which cannot be compared (Hildebrand et al., 2022).

In the study herein, sensitivity and specificity scores remain

consistent between the unbalanced and balanced testing dataset for

each class. An approach similar to Frasier (2021) was used to detect

fish chorus in a large acoustic database of 5.3 years of raw acoustic

data by Kim et al. (2023). First a clustering method was used to create

distinct classes of chorus and noise. Then a deep neural network was

trained to distinguish between noise and chorus classes as aggregated

by the unsupervised clustering process. The neural network classified

chorus and noise on testing data with an overall 94.6% accuracy, in

which signal intensity impacted classification accuracy. This type of

approach alleviates the tedious labeling tasks of the dataset and could

be considered as new development for FADAR in order to increase

the number of sound sources that can be detected. However it would

not allow for the detection algorithm refinement that might be

necessary as previously shown for call types of the same species

that present separate spectral features as shown by the red hind

grouper calls for example. Supervised clustering though, could be used

to account for slight changes in fish sounds due to environmental

changes such as temperature increase, by manually adjusting the

labeling of the clusters. A review of the most recent fish sounds

detection and classification methods is provided in Barroso et al.

(2023). The main challenge remain the identification of the sound

sources, which can be achieved through supervised or unsupervised

clustering methods (Huang et al., 2023; Mahale et al., 2023). Then a

conventional machine learning algorithm based on feature extraction

(Mcloughlin et al., 2019) or a DL (Mishachandar and Vairamuthu,

2021) is applied to the classes of the clustering analysis.

One could assume that the datasets used in this study, hence the

performance of FADAR is biased toward the seasonal timing of the

FSAs. Therefore, the ambient noise and sounds sources other than the

fish calls remain relatively similar across recording periods, although

there is some environmental variability associated with the

interannual variability. However, the soundscape can be significantly

different between locations, hence masking of fish calls by ambient

noise or other biophony. In their study of marine soundscapes in the

Lesser Antilles, Heenehan et al. (2019) found that they were

significantly different between the northern Antilles, the Windward

and the Leeward Islands. The northern and Windward Islands

soundscape was dominated by ship traffic and Humpback whale

song that occurred on 49–93% of recording days. In the Leeward

Islands, diurnal vessel patterns were observed with few to no vessels

present during night time hours, possibly reflecting the activity of

recreational craft and fishing vessels. Indeed the recordings from

Puerto Rico and Virgin Islands contain a significant proportion of

Humpback whale calls (Figure 14) that are in the same frequency band

as the grouper calls (0–500Hz), which can affect the detection of the

calls (Mooney et al., 2020). As shown in Wilson et al. (2020), Little

Cayman is not affected by vessel noise or marine mammal sounds like

its eastern counterparts. Thus, our training data through its diverse

location with unique soundscapes, its diversity of recorders, gain

settings and hydrophone sensitivities encompasses the diversity of
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the ambient conditions in the Caribbean region, hence of data quality,

including low and high signal detectability. The results of the

assessment of the model’s ability to generalize to unseen data across

temporal and spatial scales within the region illustrate the reliability of

the model output for other Caribbean regions and the resilience of

FADAR DL architecture to noisy conditions as shown by Mooney

et al. (2020).

Despite the great potential shown by FADAR on the curated

and diverse dataset used in this study, there remain some challenges

that FADAR is not designed to cope with. Recording errors in the

recorders associated for example with an electric noise in the

hydrophone can significantly modify the image of the sound in

the spectrogram making it unrecognizable by the classifier. This

type of error is not uncommon and was present in two of the data

records from the Cayman Islands. Their impact on FADAR’s

accuracy is discussed in van Horn et al. (2024). Therefore

significant changes in the characteristics of the calls could

significantly affect the performance of FADAR. Of the four

grouper species classified by FADAR, red hind is the only known

species to form choruses, which occur when multiple calls overlap

to the point that they become indistinguishable in a spectrogram.

FADAR failed to detect choruses of red hind at the peak of their

spawning activity in the dataset used in this study (Appeldoorn-

Sanders et al., 2023). To accurately assess spawning dynamics based

on call types production and to better take advantage of FADAR it is

necessary to also understand the phenomenology of the call types

sound production, their relative evolution, and their role in the

mating dynamics. The next improvement to FADAR would thus be

the identification of fish choruses as done in Kim et al. (2023).
7 Conclusion

This conservation informatics approach combined with large

datasets, will allow researchers and managers throughout the

tropical western Atlantic to generate high-resolution time series of

each species’ reproductive activity at multiple aggregation sites

simultaneously, and thus produce metrics for species presence/

absence and relative abundance in a fishery-independent monitoring

context. Collectively, these data and machine learning performance
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metrics allow for studies of reproductive phenology throughout the

region, and it is now possible to analyze recordings to characterize

region-wide patterns in reproduction, as well as identify location-

specific call patterns (i.e. dialects) in support of defining FSA specific

protection measures that suite each site Sadovy de Mitcheson et al.

(2020). Creating a region-wide professional network, coupled with our

recent machine learning advances, will allow us to collaborate across

borders and leverage the strength of a multitude of individual datasets.

FADAR has been made available to fisheries and MPA managers as

well as conservation practitioners throughout the region.
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Reglero, P., Balbıń, R., Abascal, F. J., Medina, A., Alvarez-Berastegui, D., Rasmuson,
L., et al. (2018). Pelagic habitat and offspring survival in the eastern stock of Atlantic
bluefin tuna. ICES J. Mar. Sci. 76, 549–558. doi: 10.1093/icesjms/fsy135

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “why should i trust you?”
explaining the predictions of any classifier,” in Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining, San
Francisco, USA. 1135–1144.

Ricci, S. W., Bohnenstiehl, D. R., Eggleston, D. B., Kellogg, M. L., and Lyon, R. P.
(2017). Oyster toadfish (opsanus tau) boatwhistle call detection and patterns within a
large-scale oyster restoration site. PloS One 12, 1–18. doi : 10.1371/
journal.pone.0182757

Rice, A. N., Farina, S. C., Makowski, A. J., Kaatz, I. M., Lobel, P. S., Bemis, W. E., et al.
(2022). Evolutionary patterns in sound production across fishes. Ichthyol. Herpetol.
110, 1–12. doi: 10.1643/i2020172

Rountree, R. A., Gilmore, R. G., Goudey, C. A., Hawkins, A. D., Luczkovich, J. J.,
and Mann, D. A. (2006). Listening to fish: applications of passive acoustics to
fisheries science. Fisheries 31, 433–446. doi: 10.1577/1548-8446(2006)31[433:LTF]
2.0.CO;2

Rowell, T. J., Appelldoorn, R., Rivera, J. A., Mann, D. A., Kellison, T., Nemeth, M.,
et al. (2011). Use of passive acoustics to map grouper spawning aggregations, with
emphasis on red hind, Epinephelus Guttatus, off western Puerto Rico. Proc. Gulf.
Caribb. Fish Inst. 63, 139–142.

Rowell, T. J., Schärer, M. T., and Appeldoorn, R. S. (2018). Description of a new
sound produced by nassau grouper at spawning aggregation sites. Gulf Caribbean Res.
29, GCFI22–GCFI26. doi: 10.18785/gcr.2901.12

Rudin, C., and Radin, J. (2019). Why are we using black box models in AI when we
don’t need to? A lesson from an explainable AI competition. Harvard Data Sci Rev. 1
(2). doi: 10.1162/99608f92.5a8a3a3d

Sadovy, Y. (1997). The case of the disappearing grouper: Epinephelus striatus (pisces:
Serranidae). J. Fish Biol. 46, 961–976.

Sadovy, D. M. Y., Cornish, A., Domeier, M., Colin, P. L., Russell, M., and Lindeman,
K. C. (2008). A global baseline for spawning aggregations of reef fishes. Conserv. Biol.
22, 1233–1244. doi: 10.1111/j.1523-1739.2008.01020.x

Sadovy de Mitcheson, Y., Prada, M., Azueta, J., and Lindeman, K. (2020). Regional
fish spawning aggregation fishery management plan Vol. 96 (Hato Rey, Puerto Rico:
Report to the Caribbean Fishery Management Council).

Sala, E., Ballesteros, E., and Starr, R. M. (2001). Rapid decline of nassau grouper
spawning aggregations in Belize: fishery management and conservation needs. Fisheries
26, 23–30. doi: 10.1577/1548-8446(2001)026<0023:RDONGS>2.0.CO;2

Sattar, F., Cullis-Suzuki, S., and Jin, F. (2016a). Acoustic analysis of big ocean data to
monitor fish sounds. Ecol. Inf. 34, 102–107. doi: 10.1016/j.ecoinf.2016.05.002

Sattar, F., Cullis-Suzuki, S., and Jin, F. (2016b). Identification of fish vocalizations
from ocean acoustic data. Appl. Acoustics 110, 248–255. doi: 10.1016/
j.apacoust.2016.03.025
Frontiers in Marine Science 23
Schärer, M. T., Nemeth, M. I., Mann, D., Locascio, J., Appeldoorn, R. S., and Rowell,
T. J. (2012a). Sound production and reproductive behavior of yellowfin grouper,
Mycteroperca Venenosa (Serranidae) at a spawning aggregation. Copeia, 1, 135–144.
doi: 10.1643/CE-10-151

Schärer, M. T., Nemeth, M. I., Rowell, T. J., and Appeldoorn, R. S. (2014). Sounds
associated with the reproductive behavior of the black grouper (Mycteroperca Bonaci).
Mar. Biol. 161, 141–147. doi: 10.1007/s00227-013-2324-3

Schärer, M. T., Rowell, T. J., Nemeth, M. I., and Appeldoorn, R. S. (2012b). Sound
production associated with reproductive behavior of nassau grouper Epinephelus
Striatus at spawning aggregations. Endangered Species Res. 19, 29–38. doi: 10.3354/
esr00457

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D.
(2019). Grad-cam: Visual explanations from deep networks via gradient-based
localization. Int. J. Comput. Vision 128, 336–359. doi: 10.1007/s11263-019-01228-7

Shapiro, D. Y., Sadovy, Y., andMcGehee, M. A. (1993). Size, composition, and spatial
structure of the annual spawning aggregation of the red hind, Epinephelus Guttatus
(Pisces: Serranidae). Copeia 1993, 399–406. doi: 10.2307/1447138

Shiu, Y., Palmer, K., Roch, M. A., Fleishman, E., Liu, X., Nosal, E.-M., et al. (2020).
Deep neural networks for automated detection of marine mammal species. Sci. Rep. 10,
1–12. doi: 10.1038/s41598-020-57549-y

Shorten, C., and Khoshgoftaar, T. M. (2019). A survey on image data augmentation
for deep learning. J. big Data 6, 1–48. doi: 10.1186/s40537-019-0197-0

Siddagangaiah, S., Chen, C.-F., Hu, W.-C., and Pieretti, N. (2019). A complexity-
entropy based approach for the detection of fish choruses. Entropy 21, 97. doi: 10.3390/
e21100977

Silva, D. F., De Souza, V. M., Batista, G. E., Keogh, E., and Ellis, D. P. (2013).
“Applying machine learning and audio analysis techniques to insect recognition in
intelligent traps,” in 2013 12th International conference on machine learning and
applications, Vol. 1. 99–104 (Miami, FL, USA: IEEE).

Smith, C. L. (1972). A spawning aggregation of nassau grouper, epinephelus striatus
(bloch). Trans. Am. Fisheries Soc. 101, 257–261. doi: 10.1577/1548-8659(1972)
101<257:ASAONG>2.0.CO;2

Tan, M., and Le, Q. V. (2020). Efficientnet: Rethinking model scaling for convolutional
neural networks. arXiv cs.LG 1905.11946. doi: 10.48550/arXiv.1905.11946

Tavolga, W. N., Popper, A. N., and Fay, R. R. (2012). Hearing and sound
communication in fishes (New York: Springer Science & Business Media).

Taylor, J., Karnauskas, M., Chérubin, L. M., Schärer-Umpierre, M., Michaels, W. L.,
Caillouet, R., et al. (2020). Emerging science and technology to improve monitoring and
assessments of fish spawning aggregations. Report from the 2019 Gulf and Caribbean
Fisheries Institute Workshop (NOAA Tech. Memo. NMFS-F/SPO-207), 74.

Urazghildiiev, I. R., and Van Parijs, S. M. (2016). Automatic grunt detector and
recognizer for Atlantic cod (Gadus morhua). J. Acoustical Soc. America 139, 2532–2540.
doi: 10.1121/1.4948569

vanHorn, C. J., Ibrahim, A. K., Candelmo, S. A. ,. A., Heppell, McCoy, C. R.M., Pattengill-
Semmens, C. V., Waterhouse, L., et al. (2024). Hydrophone placement yields high variability
in detection of epinephelus striatus calls at a spawning site. In revision Ecol. Appl.

Vasconcelos, R. O., Fonseca, P. J., Amorim, M. C. P., and Ladich, F. (2011).
Representation of complex vocalizations in the lusitanian toadfish auditory system:
evidence offine temporal, frequency and amplitude discrimination. Proc. R. Soc. B: Biol.
Sci. 278, 826–834. doi: 10.1098/rspb.2010.1376

Vickers, W., Milner, B., Risch, D., and Lee, R. (2021). Robust north atlantic right
whale detection using deep learning models for denoising. J. Acoustical Soc. America
149, 3797–3812. doi: 10.1121/10.0005128

Vieira, M., Fonseca, P. J., Amorim, M. C. P., and Teixeira, C. J. C. (2015). Call
recognition and individual identification of fish vocalizations based on automatic
speech recognition: An example with the lusitanian toadfish. J. Acoustical Soc. America
138, 3941–3950. doi: 10.1121/1.4936858

Wall, C. C., Mann, D. A., Lembke, C., Taylor, C., He, R., and Kellison, T. (2017).
Mapping the soundscape off the southeastern usa by using passive acoustic glider
technology. Mar. Coast. Fisheries 9, 23–37. doi: 10.1080/19425120.2016.1255685

Walters, S., Lowerre-Barbieri, S., Bickford, J., and Mann, D. (2009). Using a passive
acoustic survey to identify spotted seatrout spawning sites and associated habitat in
tampa bay, florida. Trans. Am. Fisheries Soc. 138, 88–98. doi: 10.1577/T07-106.1

White, E. L., White, P. R., Bull, J. M., Risch, D., Beck, S., and Edwards, E. W. J. (2022).
More than a whistle: Automated detection of marine sound sources with a
convolutional neural network. Front. Mar. Sci. 9. doi: 10.3389/fmars.2022.879145

Wiggins, S. M., Roch, M. A., and Hildebrand, J. A. (2010). Triton software package:
Analyzing large passive acoustic monitoring data sets using matlab. J. Acoustical Soc.
America 128, 2299–2299. doi: 10.1121/1.3508074

Wilson, K., Semmens, B., Pattengill-Semmens, C., McCoy, C., and Sirović, A. (2020).
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