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Microbial communities within oxygen minimum zones (OMZs) play crucial roles in

the marine biogeochemical cycling. Arabian Sea (AS) has one of the largest OMZs

among the global oceans, however, knowledge about themicrobial ecology of the

AS OMZ remained limited. In the present study, 44 water samples collected from

six stations across the AS, spanning from the deep chlorophyll maximum (DCM)

layer to 4000m depth were analyzed. High-throughput sequencing of 16S rRNA

genes revealed the structural diversity of bacterial and archaeal communities,

influenced primarily by depth and dissolved oxygen (DO) levels. Distinct

community compositions were observed across different oxygen gradients, with

shifts in the relative abundance of key taxa. Notably, Desulfosarcinaceae,

UBA10353, Nitrospina, SUP05, Sva0996_marine_group, Microtrichaceae, and

Nitrosopumilus emerged as bioindicator taxa in the AS hypoxic zones. Co-

occurrence network analysis identified SAR324, Alteromonadaceae, and

Sphingomonadaceae as keystone taxa. The spatial and depth-wise distribution

patterns revealed thatDesulfosarcinaceaewas predominantly found in the hypoxic

zones of the Arabian Sea, whereas UBA10353, Nitrospina, SUP05,Microtrichaceae

and SAR324 were ubiquitous across AS, Bay of Bengal (BOB), and Eastern Tropical

North Pacific (ETNP) OMZs, with OTU-level niche differentiation observed for the

latter two. Functional profiling using FAPROTAX predicted higher metabolic

potential for nitrogen and sulfur in the OMZ compared to other layers of the AS.

Our findings provide valuable insights into the distribution, structure, and diversity

of microbial communities in the AS OMZ, highlighting the ecological roles of key

taxa in hypoxic environments. The established sequence database offers a

foundation for further research into the complex interactions within these

microbial ecosystems.
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1 Introduction

The oceans boast a captivating ecosystem, replete with diverse

habitats like cold seeps, hydrothermal vents, and oxygen minimum

zones (OMZs) (Li et al., 2021b; Baumgartner et al., 2022; Chen et al.,

2022). The microbial community inhabiting each habitat play a

pivotal role in governing the oceans’ biogeochemical cycles, actively

engaging in nearly all oceanic biogeochemical processes.

Understanding the ecological roles and functions of marine

microbes requires thorough investigation of their biodiversity. Till

now, extensive research has been conducted on the microbial

diversity of the Indian Ocean. AS is a biologically productive

tropical basin in Indian Ocean, located between the Horn of

Africa and southern Asia, with the Gulf of Oman in the north

and the Red Sea through the Gulf of Aden in the west. The northern

border between Pakistan and Iran is a world-class transportation

hub. Covering an area of 3.86 million square kilometers, with a

maximum depth of 5203m and an average depth of 2734m

(Corfield et al., 2010).

Ocean models predict that the dissolved oxygen levels in the

global ocean will decline by 1% to 7% by 2100 due to a combination

of warming-induced decreases in oxygen solubility and reduced

deep-sea ventilation (Long et al., 2016). AS, Eastern Tropical North

Pacific (ETNP), Eastern Tropical South Pacific (ETSP), and Bay of

Bengal (BOB) form the major OMZs of the world ocean (Ulloa and

Pantoja, 2009). There are currently three definitions of ocean

hypoxia thresholds: hypoxia (< ∼ 63 µM), microbial hypoxia

(<∼ 20 µM) and functional anoxia (<∼ 0.05 µM), and hypoxia

zone throughout the water column is often detected at depths

between 200 meters and 1,000 meters (Paulmier and Diana, 2009;

Rixen et al., 2020). The total volume of waters characterized by

oxygen concentrations below 20 µM in the global ocean estimated

to be 15 × 1015 m3, among of which, the northern Indian Ocean

accounts for 21%, equivalent to 3.13 × 1015 m3. As a classic hypoxic

zone, Arabian Sea hosts the largest proportion of this oxygen-

deficient water body, accounting for approximately 2.5 × 1015 m3,

while only a small fraction is found in the Bay of Bengal (0.6 × 1015

m3) (Acharya and Panigrahi, 2016). Earlier reports suggested that

OMZ regions in the Northern Indian Ocean (AS and BOB

combined) made up more than 50% of the global OMZs (Helly

and Levin, 2004). The formation of OMZs in the Arabian Sea is

linked to inadequate ventilation from the ocean surface to the

interiors, along with elevated oxygen consumption due to intense

biological productivity. Coinciding with an active denitrification

zone, the AS_OMZ is among the largest anoxic regions in the

oceans, sometimes DO drops as low as 0.1mM (Gilles-Gonzalez,

2001; Stramma et al., 2008). Understanding the vital role of

microbial communities in the Arabian Sea is crucial for

unraveling the global biogeochemical and climatic processes

mediated by these microbes. Generally, most marine microbes are

uncultivable, and with the advent of molecular methods and high-

throughput sequencing, methodological advances are more

conducive to exploring the biodiversity and biogeography of

microorganisms in different sea (Kaeberlein et al., 2002; Puspita

et al., 2012; Jin et al., 2022).
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In OMZ, element cycling is primarily mediated by special

microorganisms. Recurrent reports have highlighted the

prevalence of Proteobacteria as the dominant phylum among the

microbial communities across the Indian Ocean. Other taxa at class

level including the Betaproteobacteria, Deltaproteobacteria,

Actinobacteria, Nitrospinia, Planctomycetacia, and SAR406 were

also reported, although their relative abundance varied along the

depths and locations sampled in the Indian Ocean OMZ (Bandekar

et al., 2018; Fernandes et al., 2020; Jin et al., 2022; Li et al., 2022;

Rangamaran et al., 2022). Although Proteobacteria predominates in

the water column, significant change in the composition of the

bacterial community was observed and varied with depth and DO

levels in the water and sediment samples in the Arabian Sea

(Rangamaran et al., 2022). Previous reports based on clone

libraries revealed the vertical partitioning of bacterial

communities between the surface and OMZ at the Arabian Sea

Time Series (ASTS) location, however no apparent seasonal

variation among OMZ bacterial communities (Bandekar et al.,

2016, 2018). By comparing the prokaryotic community

composition of the ASTS, India’s Idea 2 station (II2) in AS and

the BoB Time Series in the BOB, higher relative abundance of

bacteria involved in anammox was observed in ASTS and II2

stations (Fernandes et al., 2020). In a recent report, distinct

microbial community compositions of OZ and OMZ waters were

observed in 131 samples collected from the Andaman Sea and

eastern BoB epipelagic waters from 2 to 200 m, and important

bioindicator taxa across oxygen gradients were identified (Guo

et al., 2022). While several studies have documented the microbial

community composition within the Arabian Sea, the majority have

concentrated on particular locations or water layers (such as

epipelagic waters). A comparative analysis with other significant

oxygen minimum zones (OMZs) across the world’s oceans,

including the Bay of Bengal (BOB) and the Eastern Tropical

North Pacific (ETNP), remains largely absent. Consequently, a

thorough understanding of microbial diversity and distribution in

the OMZ regions of the Arabian Sea, particularly transitioning from

typical hypoxic to non-hypoxic zones, is yet to be fully elucidated.

With the rapid development of molecular methods, high-

throughput sequencing technologies have been widely applied in

the exploring of biodiversity of microorganisms using targeted

sequencing of conserved regions (e.g., 16S or 18S rRNA gene

sequencing) or shotgun metagenomics. There are currently some

challenges for interpretation of biological information in targeted

sequencing approach, due to the limitation such as the primer bias

or short sequence amplification. The high costs associated with deep

sequencing in shotgun metagenomics also limits full exploitation.

Although the information provided by amplicon sequencing of 16S

rRNA genes are not enough to interpret the ecological functions of

microbial community, it is still an effective and economic approach

to characterize the microbial diversity and structure in large

number of samples (Lynch and Neufeld, 2015; de Muinck et al.,

2017). The composition of environmental bacterial communities

are usually complex, so identifying crucial bioindicator taxa would

help to understand the community structure and functional

differences in specific habitats. In addition to identifying
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bioindicators, keystone taxa with high degree and tight centrality of

microbial interaction networks also play an important role in

driving the microbial community structure and maintaining the

network stability (Banerjee et al., 2018). Therefore, in order to

comprehensively understand the performance of prokaryotes

community and their ecological significance in the OMZ, it is

necessary to integrate the physicochemical properties, community

composition, biomarker taxa, and interaction networks.

In this study, we collected a total of 44 water samples from 6

stations across the typical hypoxic zones in northern Arabian Sea,

through transition zones, to the non-hypoxic zones in the southern

AS, covering depths from the deep chlorophyll maximum (DCM)

layer to 4000m near the bottom. This comprehensive sampling

spanned regions with different oxygen gradients to explore and

compare the spatial and vertical composition of bacterial and

archaeal communities. To achieve this, we employed Illumina

sequencing of the 16S rRNA genes from the collected samples.

Additionally, we downloaded and integrated publicly available

16S rRNA high-throughput sequencing data from the Bay of

Bengal and the eastern tropical North Pacific Ocean for a broader

analysis. We identified bioindicators and keystone taxa, analyzing

their spatial and depth-wise distribution patterns across the

Arabian Sea (AS), Bay of Bengal (Bob), and the eastern tropical

North Pacific (ETNP). Furthermore, we investigated the major

environmental factors influencing the prokaryotic community

structure and predicted potential functional profiles. The

sequence database established in this study will contribute to a

comprehensive understanding of the distribution and structure of

microbial communities and their key members within the AS

oxygen minimum zone (OMZ).
2 Materials and methods

2.1 Sample collection and methodology

Seawater samples were collected from 6 stations located the

Arabian Sea of northern Indian Ocean during China DY72 cruise

onboard the Research Vessel Shen Hai Yi Hao. These stations

(Latitude: 10.132553°N-17.326766°N, Longitude: 63.103385°E-

68.303971°E, water depth: 3550m-4458m) was sampled from 17th

May 2022 to 28th May 2022 (Spring intermonsoon), spanning the

north to the south of Arabian Sea. Stations of CTD03, CTD04 and

CTD05 located in the northern AS were defined as the core OMZ in

AS. Stations CTD02 and CTD06 located in the middle of AS were

defined as OMZ transition zones, while CTD08 in the southern AS

as a non-hypoxia zone. For most stations, the sampling depths

included deep chlorophyll maximum (DCM), oxygen minimum

zone (OMZ), 1000 m, 2000 m, and the bottom. In total, 44 samples

from 6 stations were collected from AS. These samples were divided

into 4 groups based on DO and depth, including euphotic zones

(AS_UP), OMZ (AS_OMZ), bathypelagic zone (AS_DOWN) and

CK (CTD08). DO levels below 20 mM are defined as the AS_OMZ

group. Although the DO values of CTD03-100 was 22.1188 µM, but

CTD03-100 was still categorized to AS_OMZ group. DO level

higher than 20 mM and depth over or equal to 100m is defined as
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the AS_UP group. Depth below or equal to 1000m is defined as the

AS_DOWN group. The detailed information of sampling sites and

depths were provided in Figure 1 and Supplementary Table 1.

Seawater samples were collected using a Conductivity-

Temperature-Depth (CTD) rosette system fitted with 24 Niskin

bottle sampler (Seabird Electronics, Washington, NY, United

States) mounted with an oxygen sensor (Crescentini et al., 2012).

Eight liters’ seawater were filtered through 0.22 mm sterivex filters

(Millipore, United States). The filter samples were immediately

frozen in liquid nitrogen and stored at −80°C until DNA extraction.

The nutrient parameters including silicate, phosphate, nitrate,

nitrite and ammonium were measured using Skalar Autoanalyser

(Skalar Analytical, Netherlands) following standard methods.
2.2 Total genomic DNA extraction and
quality inspection

Genomic DNA was isolated using DNeasy PowerSoil Pro Kit

following the manufacturer’s protocol (QIAGEN, Germany,

www.qiagen.com/insights). The concentration of the extracted

DNA was measured using a Qubit 3.0 Fluorometer (Life

Technologies, ThermoFisher Scientific, USA) and the Equalbit

1x dsDNA HS Assay Kit (Vazyme, China, www.vazyme.com).

Before sequencing, the quality and concentration of DNA were

determined again by 1.0% agarose gel electrophoresis and

NanoDrop® ND-2000 spectrophotometer (Thermo Scientific Co.,

Ltd., USA).
2.3 Amplification of 16S rRNA gene

The primer set 338F (5′-ACTCCTACGGGAGGCAGCAG-3′)
and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) was used to

amplify the V3-V4 region of bacterial 16S rRNA gene. The primer

set 524F10extF (5′- TGYCAGCCGCCGCGGTAA -3′) and

Arch958RmodR (5′- YCCGGCGTTGAVTCCAATT -3′) was

used for the amplify the V4-V5 region of archaeal 16S rRNA

gene (Claesson et al., 2009).

PCR reaction was carried out in a 20 mL reaction volume

containing DNA (10 ng), 0.8 mL each of primers (10 mM), 4 mL
5x FastPfu buffer, 0.4 mL FastPfu polymerase, BSA 0.2 mL and 250

mM dNTPs (TransGen, China, www.transgen.com/enzyme/226).

PCR cycling conditions maintained were as follows: initial

denaturation at 95°C for 3 min, followed by cycle denaturation at

95°C for 30 s, annealing at 55°C for 30 s, extension at 72°C for 45 s

for a total of 27 cycles and a final extension for 10 min at 72°C. For

archaeal 16S rRNA gene amplification, PCR cycling conditions

maintained 35 cycles.
2.4 Illumina sequencing and
bioinformatic analysis

Purified amplicons were pooled in equimolar amounts and

paired-end sequenced on an Illumina MiSeq PE300 platform/
frontiersin.org
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NovaSeq PE250 platform (Illumina, San Diego, USA) according to

the standard protocols by Majorbio Bio-Pharm Technology Co. Ltd.

(Shanghai, China).

Raw reads of AS in this study were processed using QIIME 2

pipeline. QIIME 2 was used to do downstream analysis of raw

sequence data generated by PE250 (Bokulich et al., 2018; Bolyen

et al., 2019). In brief, raw sequence data were demultiplexed using

the demux plugin, followed by primer trimming using the cutadapt

plugin. Subsequently, sequences underwent quality filtering,

denoising, merging, and chimera removal utilizing the DADA2

plugin (Martin, 2011; Callahan et al., 2016). Non-singleton

amplicon sequence variants (ASVs) were aligned using MAFFT

and then utilized to construct a phylogenetic tree with FastTree2

(Katoh et al., 2002; Price et al., 2009). The bacterial samples were

standardized to 12,481 sequences per sample, whereas the archaeal

samples were standardized to 7,537 sequences per sample. Alpha

diversity metrics, including Sobs (number of species observed),

Shannon (microbial diversity in the sample), and Coverage (species

coverage), and beta diversity metrics (Jaccard distance) were

calculated with Mothur v1.30.1 (Schloss et al., 2009). ASVs were

taxonomically classified using the classify-sklearn Naïve Bayes

taxonomy classifier against the SILVA Release 138 database,

encompassing both bacteria and archaea.

Publicly accessible 16S rRNA gene high-throughput sequencing

data were obtained from the National Center for Biotechnology

Information (NCBI) for the Bay of Bengal (Bob) and the eastern

tropical North Pacific Ocean (ETNP). This dataset encompassed 30

samples from the deep chlorophyll maximum (DCM) and oxygen

minimum zone (OMZ) layers of the Bay of Bengal, as well as 66

samples from the DCM, OMZ, and 2000m depth layers of the

ETNP (Gu et al., 2022; Li et al., 2022). To enhance our comparative

analysis, these datasets were integrated with the 16S rRNA gene

sequencing data collected from the Arabian Sea (AS) of this study.

Utilizing UPARSE 7.1, the sequences were clustered into

operational taxonomic units (OTUs) based on a 97% sequence

similarity threshold. For each OTU, the most representative

sequence in terms of abundance was chosen, following the

methodology established previously (Beman et al., 2021; Gu

et al., 2022).
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2.5 Diversity and statistical analyses

The similarity matrix was used to perform cluster analysis in

Primer 6 (PRIMER-E, Plymouth, UK) using a group-average

linking method and non-metric multidimensional scaling analysis

(NMDS). Screening of environmental parameters using Variance

inflation factor (VIF) analysis. Canonical correspondence analysis

(CCA) was performed using Past-3 software to assess the influence

of environmental parameters on bacterial and archaeal community

structure (https://folk.uio.no/ohammer/past/).

Previous research showed that Molecular Ecological Network

Analysis Pipeline (MENAP) can construct ecological association

networks named molecular ecological networks (MENs) through

Random Matrix Theory (RMT)-based methods to explore the

interactions between bacterial and archaeal communities (http://

ieg2.ou.edu/MENA) (Deng et al., 2012). In this study, we use the

network building process given by the NEMAP creator for analysis

and select “Regress Poisson distribution only” to ensure that the

type of network belongs to Poisson distribution. The parameters

used to construct the network were shown in Supplementary

Table 4. In this study, we choose the connectors (zi ≤ 2.5, Pi >

0.62) as the keystone in community (Deng et al., 2012; Berry and

Widder, 2014). We used the Kruskal-Wallis rank sum test, FDR

multiple testing correction, and the Tukey-kramer Post-hoc test

(0.95) to resolve differences between each group of species (Schloss

et al., 2009).

Prediction of metabolic pathways based on 16S rRNA amplicon

data was performed using FAPROTAX, FAPROTAX is a database

that maps prokaryotic taxa to metabolic or other ecologically

relevant functions based on representative literature in culture

(Deng et al., 2012; Louca et al., 2016).
2.6 Nucleotide accession numbers

The raw sequencing reads have been deposited in the NCBI

Sequence Read Archive (SRA) database under the accession

number PRJNA993832.
3 Results

3.1 Physico-chemical characteristics

Metabarcoding analysis of 44 water samples from 6 CTD

stations in Arabian Sea (AS) was carried out in the present study.

Samples were collected from subsurface to deep (bathypelagic)

water ranging from 62m to 4000m (Figure 1). All the 44 samples

could be divided into 4 groups including AS_UP, AS_OMZ and

AS_DOWN, as well as control group (CTD08), which were defined

by DO concentrations and depth. The physicochemical parameters

of the samples were presented in Supplementary Table 1 and

Supplementary Figure 1. In AS, the DO concentrations were

almost below the detection threshold in the OMZs ranging from

about 150m to 1200m in CTD03, CTD04 and CTD05 stations
FIGURE 1

The geographic locations of 6 sampling stations in AS. The black
solid circles represent the investigation stations in Indian Ocean.
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(Supplementary Figure 1). For CTD02 and CTD06 stations, the DO

values were also below 20mM in the OMZs from about 150m to

1000m. However, as a control group, CTD08 located far from the

mainland, and the DO values in this water columns were above 62

mM, significantly different from other stations.
3.2 Alpha diversity and beta diversity of
microbial communities

In this study, a total of 44 bacterial and 43 archaeal sequence

data sets were obtained, respectively. About 1.74 million bacterial

sequences and 2.14 million archaeal sequences were retrieved from

all the samples, resulting in a total of 11174 bacterial and 1628

archaeal ASVs. The alpha diversity of microbial communities in AS

was compared among 44 samples (Supplementary Figures 2, 3). The

coverage of microbial communities in each group was almost 1.000,

and the rarefaction curves were bent toward the saturation plateau,

indicating that the sampling sizes were sufficient to reflect the

microbial community diversity in the 44 samples (Supplementary

Figures 2, 3).

Alpha diversity analysis further showed that bacteria exhibited

the highest richness (Kruskal-Wallis rank sum test, Chao1: 123–

646), followed by archaea (Kruskal-Wallis rank sum test, Chao1: 6–

134). Bacteria still exhibited the highest diversity (Kruskal-Wallis

rank sum test, Shannon, 2.550842–5.18124), followed by archaea

(Kruskal-Wallis rank sum test, Shannon, 1.524161–3.996356)

(Supplementary Figure 3). The bacterial community diversity

showed no significant difference among AS_UP, AS_OMZ and

AS_DOWN (p=0.1408). For archaea, increased species richness

(p=0.02774) and diversity (p=0.001736) were observed in

AS_OMZ, compared to AS_UP and AS_DOWN communities

(Supplementary Figure 3).

Non-metric multidimensional scaling (NMDS) analysis was

also employed to decipher the community differences at ASV

level (Taguchi and Oono, 2005). As illustrated by NMDS for

bacteria, the microbial community from AS_UP group was

significantly separated from AS_OMZ group along the Y-axis

(Figure 2). The archaeal community was structured by DO and
Frontiers in Marine Science 05
depth, and clustered according to different groups (Figure 2). The

samples from the AS_UP, AS_OMZ and AS_DOWN clustered

individually, indicating the compositions of the archaeal

communities in these three groups are distinct (Figure 2).
3.3 Microbial community composition in
the water column of Arabian Sea

The composition of the microbial communities of in AS were

compared in 44 water samples of 6 stations. For the 3 groups

(AS_UP, AS_OMZ and AS_DOWN), 268 shared ASVs of bacteria

were identified belonging to 251 shared genera and in respect of the

archaea, 109 shared ASVs belonging to 15 shared genera of 6 phyla

were identified in 43 samples (Supplementary Figure 4).

Analysis of the bacterial community composition of the 44

samples revealed that Proteobacteria , Actinobacteriota ,

Bacteroidota, SAR406, Firmicutes, Chloreflexi, Cyanobacteria,

SAR324, Nitrospinota were dominant phyla across nearly all

samples, although their relative abundance varied among different

samples. Proteobacteria (accounting for 27.67%-94.94%) was the

most dominant phylum across all samples followed by

Actinobacteriota (0.69%-27.64%), Bacteroidota (0.89%-16.69%),

Cyanobacteria (0.1%-7.48%), and Marinimicrobia_SAR406 (0%-

23.84%) in AS (Figure 3).

At the class level, Alphaproteobacteria (9.23%-52.11%) and

Gammaproteobacteria (17.12%-80.05%) was the most dominant

classes in AS samples, and the relative abundance of

Gammaproteobacteria were higher than that of Alphaproteobacteria.

Other predominant class included Acidimicrobiia (0.2%-26.5%),

Bacteroidia (0.4%-16.7%), SAR406 (0%-23.8%), Actinobacteria (0%-

11.6%), Bacilli (0%-23.4%), Cyanobacteriia (0%-7.5%),Dehalococcoidia

(0%-9.3%) and SAR324 (0%-7.0%). The relative abundances of

Acidimicrobiia and SAR406 were highest in the OMZs, and lowest in

deep sea (AS_DOWN). Besides, Nitrospinia, Desulfobacteria and

Vicinamibacteria also exhibited highest relative abundance in the

OMZ communities. On the contrary, Cyanobacteriia was more

dominant in group AS_UP (2.32%-7.45%), but almost undetectable

in group AS_OMZ and AS_DOWN (Supplementary Figure 5).
BA

FIGURE 2

NMDS plot based on Bray-Curtis distance among AS_UP, AS_OMZ and AS_DOWN communities. (A) bacterial communities at ASV level (B) archaeal
communities at ASV level.
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At the family level, Alteromonadaceae and Sphingomonadaceae

were the most dominant family in AS followed by Rhodobacteraceae,

Saccharospirillaceae, Flavobacteriaceae, Thalassospiraceae,

Microtrichaceae, Moraxellaceae, SAR406_clade, Marinobacteraceae,

UBA10353 and Hyphomonadaceae. Alteromonadaceae family

dominated in most samples, and exhibited higher relative

abundances in AS_UP and AS_DOWN than AS_OMZ.

Sphingomonadaceae was also widely distributed in different depths

in AS and more abundant in deep sea below 1000 meters

(Supplementary Figure 6). Moraxellaceae appeared to increase in

abundance with decreasing DO concentrations in AS_OMZ and

AS_DOWN, when compared with AS_UP. Microtrichaceae tended

to distribute in AS_UP and AS_OMZ, and was most abundant in

OMZ communities. Besides, other dominant taxa included

UBA10353, Nitrospinaceae, Thioglobaceae, Desulfosarcinaceae

were also significantly enriched in AS-OMZ communities.

However, Cyanobiaceae, Actinomarinaceae, Legionellaceae,

NS9_marine_group, OCS116 and SAR86_clade seemed to mainly

distributed in AS_UP, but with low or undectable abundance in

AS_OMZ and AS_DOWN (Supplementary Figure 6).
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At the genus level, the top 10 abundant genera with high relative

abundance included Alteromonas, Acinetobacter, unclassified_f:

Alteromonadaceae, Thalassospira, Oleibacter, Sphingobium,

Sva0996_marine_group, SAR406_clade, Erythrobacter and

Marinobacter (Figure 4). Alteromonas dominated in most of the

samples in AS-UP. Acinetobacter and Thalassospira were mainly

distributed in OMZ and deep layer in AS. Interestingly, Oleibacter

showed high abundance in two samples (CTD05_125m,

CTD06_1000m). Sva0996_marine_group, belonging to

Acidimicrobiia class, increased relative abundance in AS OMZ

layer (Figure 4). Other predominant genus such as Sphingobium,

Erythrobacter and Marinobacter showed no significant differences

among the three genus in these groups.

Among the detected archaea, two classes Nitrososphaeria and

Thermoplasmata were found of wide distribution throughout the

water column, with the abundance accounting for over 90% in 43

samples. Nitrososphaeria have higher relative abundance below

the DCM layers, while Thermoplasmata was more abundant in the

AS_UP group (Supplementary Figure 7). At the family level, the three

most abundant taxa included Nitrosopumilaceae, norank_o_
FIGURE 4

Microbial community composition of AS at genus level.
FIGURE 3

Microbial community composition of AS at phylum level.
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Marine_Group_II and norank_c_Thermoplasmata in majority of the

communities, except for four samples CTD02-500, CTD02-3000,

CTD02-4000, CTD06-1500, which were dominated by

Nitrososphaeraceae family. At the genus level, Candidatus_

Nitrosopelagicus, norank_o_Marine_Group_II and Marine_Group_

III dominated in upper water layers above 125m, while

Nitrosopumilus, norank_o_Marine_Group_II, Marine_Group_III

dominated in deeper water layers (from 150m to bottom). As the

most abundant and prevalent taxa in the water column in AS,

Nitrosopumilaceae tended to have different ecotypes, among which

Candidatus_Nitrosopelagicus distributed in euphotic zones, while

Nitrosopumilus genus mainly dominated in meso- and bathy-

pelagic water.
3.4 Bioindicator taxa and their distribution
patterns in the hypoxic zones of
Arabian Sea

Each water layer in AS is distinct with respect to the physical

oceanographic features, facilitate or inhibit the growth of specific

microorganisms. Research on bioindicator taxa may help understand

the connection between microbes and specific habitats. In this study,

the microbial community composition was further compared to

determine the indicator taxa in the hypoxic zone of Arabian Sea.

Kruskal-Wallis H test was used to identify at least 30 bioindicator taxa

with significant distribution characteristics that could differentiate

AS_UP, AS_OMZ and AS_DOWN communities, as well as hypoxic
Frontiers in Marine Science 07
and non-hypoxic zones communities at the genus or family level

(Figure 5). Candidatus_Actinomarina, Prochlorococcus_MIT9313 and

unclassified_f_Cyanobiaceae were identified as bioindicator taxa in

AS_UP communities, which were exclusively distributed in euphotic

zones. Alteromonas was also one of the important indicator taxa and

its relative abundance was higher in the AS_UP when compared with

AS_OMZ and AS_DOWN group. Although low relative abundance,

SAR86_clade, NS2b_marine_group, NS5_marine_group,

NS9_marine_group and OCS116_clade were also determined as

indicator taxa in AS_UP communities, with significantly higher

abundance than in AS_OMZ and AS_DOWN communities.

The indicator taxa of the hypoxia zones in AS included

unclassified_f_Desulfosarcinaceae, norank_o_UBA10353, Nitrospina,

SUP05_cluster, Sva0996_marine_group and unclassified_f_

Microtrichaceae, which were significantly enriched and exhibited

highest relative abundance in AS_OMZ communities, when

compared with AS_UP and AS_DOWN communities. For

AS_DOWN, Novosphingobium, Salinicola, Oceanobacter were the

indicator taxa of the deep layers (Figure 5).

The spatial and depth-wise distribution patterns of important

bioindicator taxa in the hypoxia zones of AS were further analyzed

and compared with other OMZs including Bay of Bengal (Bob) and

eastern tropical North Pacific Ocean (ETNP) at ASV or OTU levels

(Figure 6; Supplementary Figure 8). As one of the most important

taxa, Desulfosarcinaceae was almost exclusively predominant in the

OMZs in CTD03, CTD04, CTD05 and CTD06 stations of AS.

However, it was absent in CTD02 and CTD08 stations, as well as in

Bob and ETNP OMZs (Figure 6; Supplementary Figure 8). Only
FIGURE 5

The 30 bioindicator taxa that significantly differentiate AS_UP, AS_OMZ and AS_DOWN communities in AS. *: P ≤ 0.05, **:P ≤ 0.01, ***:P ≤ 0.001.
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three ASVs were assigned to Desulfosarcinaceae in AS, which

belonging to Desulfobacterales of Desulfobacterota phylum, with

the most abundant ASV890 belonging to one unclassified taxa, and

the other two affiliated with SEEP-SRB1. Similar distribution

pattern was observed for another important indicator taxa

UBA10353, which was phylogenetically closely related to

Arenicellaceae family of Gammaproteobacteria. UBA10353 was

also significantly enriched in the OMZ communities in AS. For

this taxa, ASV879, ASV678 and ASV666 were the most abundant

ASVs, accounting for more than 90%, and were mainly distributed

in the hypoxic zone of CTD03, CTD04, CTD05 and CTD06 stations

but absent in CTD02 and CTD08. They seemed to increase their

relative abundance toward anoxic conditions in AS. Besides, these

ASVs (corresponding to OTU11318, OTU11316, OTU11385) were

found to be unique to AS OMZ communities when compared with

Bob and ETNP OMZs (Figure 6; Supplementary Figure 8).

Moreover, Nitrospina was also identified as important

bioindicator taxa in OMZs, and predominantly distributed in

hypoxic zones of AS. ASVs affiliated with Nitrospina mainly

represented by ASV1121 and ASV632. They were almost

exclusively dominated in the OMZ communities of CTD03,

CTD04, CTD05 and CTD06 except for CTD02 and CTD08, and

also enriched in Bob OMZs and ETNP OMZs (as represented by

OTU11457 and OTU5252) (Figure 6; Supplementary Figure 8).

Likewise, SUP05 group were also significantly enriched in the

OMZs of AS except for CTD02 and CTD08 stations, and were

identified as important bioindicator taxa. The dominant ASVs

represented by ASV635 and ASV4913 were phylogenetically

related to Thioglobus genus. This taxa were ubiquitous and

abundant not only in AS OMZs but also in Bob and
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ETNP OMZs (as represented by OTU4763) (Figure 6;

Supplementary Figure 8).

With regard toMicrotrichaceae, it was predominant not only in

the OMZs of AS but also in AS_UP. ASVs affiliated with

Microtrichaceae formed at least two phylogenetic clades, one

belonging to Sva0996_marine_group, and the other belonging to

unclassified_f_Microtrichaceae (as represented by ASV625), among

which the latter tended to dominated in the mesopelagic water

(Figure 6; Supplementary Figure 8). Besides, at least two ecotypes of

Sva0996_marine_group were present in AS, one dominated in

euphotic zone (as represented by ASV1180 and ASV1189) and

the other prevailed in OMZ zones (as represented by ASV638 and

ASV959). Similar distribution pattern was also observed in Bob and

ETNP OMZs (Figure 6; Supplementary Figure 8).
3.5 Environmental parameters affecting the
structure of microbial communities

Prior to Canonical Correspondence Analysis (CCA) to examine

the influence of environmental parameters on bacterial and

archaeal community structure, Variance Inflation Factor was used

to screen the environmental parameters analysis to ensure the

accuracy of the CCA analysis (remove Salinity, Silicate, Phosphate

and Temperature) (O’brien, 2007).

The results showed that environmental parameters including

DO, depth, NO3
-, and NO2

- exhibited significant influences on

bacterial and archaeal communities. DO, depth, and nitrate were

the most significant environmental factors. For bacterial

communities in AS, the first two ordination axes of CCA
FIGURE 6

Heatmap displaying the distribution and log-transformed relative abundance of major ASVs.
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accounted for 8.44% of the explained total variance in ASV level

(Figure 7, Supplementary Table 2). CCA indicated that among the

five different parameters, DO seemed to separate the bacterial

communities into ‘oxygen content’ and OMZ communities

(Figure 7). For archaeal community in AS, the first two

ordination axes of CCA accounted for 16.06% and 6.85% of the

explained total variance in ASV level. Similar to bacterial, archaeal

samples in AS_OMZ was negatively correlated with DO. The

archaeal communities in group AS_DOWN was strongly

influenced by depth. Besides, NO2
- and NH4

+ had a small impact

on the archaeal community (Figure 7).

Spearman correlation heatmap showed the correlation between

the bacteria families and environmental parameters (Supplementary

Figure 9, Supplementary Table 3). In AS, there was no significant

correlation between Altermonadaceae and any environmental

parameters. As another important taxon, Sphingomonadaceae,

exhibited a significant positive correlation with depth and NO3
- in

AS. Interestingly, Microtrichaceae were affected by almost all

environmental parameters in AS (except for NO3
-) (Supplementary

Figure 9). In AS, there was no significant correlation of

Nitrosopumilaceae with any environmental parameters. However,

Marine Group II was significantly positively correlated with DO

(Supplementary Figure 10, Supplementary Table 3).
3.6 Co-occurrence patterns of microbial
community and functional prediction

Keystone taxa not only maintained the structures and functions

of microbial community, but also considerably influence community

networks (Berry and Widder, 2014). A co-occurrence network was

generated to explore interactions among bacterial and archaeal

communities and identify keystone taxa in this study

(Supplementary Figure 11, Supplementary Table 4). In the

network, each node represents an ASV, with the size of each node

proportional to the number of its associations (degree). Connections

between nodes represent strong and significant correlations of

abundance (|r| > 0.7, p < 0.01). In this study, we choose the

connectors (zi ≤ 2.5, Pi > 0.62) as the keystone in community. As a
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result, ASV84 (Marinobacteraceae), ASV237 (Pseudomonadaceae),

ASV264 (Mycobacteriaceae), ASV28 (SAR324_clade), ASV182

(Flavobacteriaceae), ASV16 (Sphingomonadaceae), ASV95

(Rhizobiaceae) and ASV234 (Alteromonadaceae) were identified as

keystone of bacterial ASVs. ASV154 (Nitrosopumilaceae) and

ASV156 (f_norank_o_norank_c_Thermoplasmata) were identified

as keystone of archaeal ASVs.

Through Functional Annotation of Prokaryotic Taxa

(FAPROTAX) analysis, various functional process was predicted.

Chemoheterotrophy was the most active metabolic process in

different water layers in AS, while Photoautotrophy and

Photoheterotrophy processes were very active in the up layer and

weakened with the increase of water depth. Strong Nitrate_reduction

was observed in AS. The potential for denitrification, nitrification,

aerobic nitrite oxidation, dark sulfide/sulfur compounds oxidation

were predicted and more abundant in the OMZs in AS

(Supplementary Figure 12, Supplementary Table 5).
4 Discussion

The OMZs in the ocean have been expanding and intensifying in

recent decades. Microbial communities play a crucial role in the

formation and function of OMZ, mediating the global

biogeochemical and climatic process (Rixen et al., 2020). The present

study aimed at elucidating the microbial composition and diversity

across different oxygen gradient in the water column of the Arabian

Sea, and determination of key bioindicator taxa in the hypoxia zones

through 16S rRNA gene high-throughput sequencing.
4.1 Differences in physicochemical
parameters and their effect on the
prokaryotic community

It is reported that the formation and maintenance of AS OMZ

was due to intense seasonal surface blooms, coupled with a land-

locked northern boundary and limited northern ventilation

(Vallivattathillam et al., 2023). Using switchable trace oxygen
BA

FIGURE 7

Canonical Correspondence Analysis ordination diagram of bacterial and archaeal communities. (A) bacterial at ASV level in AS (B) archaeal at ASV
level in AS.
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(STOX) amperometric microsensors, researchers have identified

essentially oxygen-free waters in the nitrite-rich regions of the

Arabian Sea, particularly in the Omani Shelf (Jensen et al., 2011).

In this study, the variation observed in DO levels along the depth of

water column among the sampled locations (except for CTD08) are

consistent with results previously described in Arabian Sea OMZs,

where the DCM and near bottom depths are well-oxygenated, and

the DO values in OMZs are below the defined threshold (<20 mM)

(Beal et al., 2013). The thickest OMZs in this study were observed in

stations CTD03, CTD04 and CTD05 located in the northern

Arabian Sea, ranging from about 100m to 1500m. They were

recognized as the core OMZ zone here, with the DO values

almost undetectable from about 150m to 1200m. In the OMZ

transition zone, for CTD02 and CTD06 stations, their DO values

were also below 20 mM in the OMZs from about 150m to 1000m. In

contrast, high DO values (above 62 mM) were observed in the water

column of CTD08 station located in the southern AS far from the

mainland, which might be due to the relatively limited impact of

terrestrial organic matter input, indirectly leading to less intense

microbial oxygen consumption activity in OMZ (Fernandez-Alamo

and Färber-Lorda, 2006). Hence, CTD08 station was considered as

non-hypoxic zone, and used as a control group in this study. In AS,

no significant difference of the salinity was observed in the

horizontal direction of the water column. However, the salinity

gradually decreases with increasing water depth, consistent with

previous research (Supplementary Figure 1) (Al-Said et al., 2018;

Bandekar et al., 2018). The nitrate concentrations were low in

DCM layer in this study across the sampled locations, however,

they were higher in the OMZs and deep layers. The low surface

nitrate concentrations might be due to high primary productivity in

AS (Kumar et al., 2001). Nitrite accumulation was observed not

only in the surface layers (DCM) but also in the mid and deeper

depths in most locations, which might drive nitrification process.

High nitrite concentration accompanied with low DO such as at

300m of CTD03 station, was profit for biological processes

denitrification, and implied intense denitrification process (Ulloa

et al., 2012).

The structure of microbial communities is often influenced by

variable ocean environmental conditions with geographical

isolation and environmental parameters (Yan et al., 2018).

Variations in environmental conditions and competition across

the oxygen gradient might account for the difference observed

between surface and OMZ bacterial communities (Long et al.,

2021). The analysis of relationships between environmental

factors with microbial community revealed that dissolved oxygen

(DO), depth, nitrate (NO3
-), and nitrite (NO2

-) were the significant

environment factors in this study, which might co-shape microbial

communities. DO has been detected as a crucial factor to

significantly structure and differentiate the microbial community

composition in the oxygenated upper waters and hypoxic OMZs in

AS. Similarly, DO was also considered as the important driver

responsible for the changes in microbial communities in the

hypoxic zone in Gulf of Mexico and the eastern tropical North

Pacific Ocean (ETNP) (Beman et al., 2013). Other environmental

parameters including depth and nitrate exerted significant impacts

on the structure of bacterial and archaeal communities in AS.
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4.2 Bacterial community composition and
important taxa – key members in OMZ

The alpha diversity index results revealed the highest archaeal

richness and diversity in the AS_OMZ and AS_UP communities

compared to the AS_DOWN community (Supplementary

Figure 3). While the AS_OMZ appeared to have greater bacterial

diversity, no significant difference in richness was found between it

and the AS_DOWN. This is consistent with previous findings in the

epipelagic waters of the Andaman and the eastern Bay of Bengal

(Supplementary Figure 3) (Guo et al., 2022). NMDS analysis

revealed that bacterial community of AS_OMZ was significantly

different from AS_UP group, while AS_DOWN community seemed

to overlap with AS_OMZ and AS_UP. Though AS_DOWN

samples were geographically adjacent to the AS_OMZ, the DO

levels were closer to AS_UP layers, which might lead to mixed

characteristics in bacterial community composition between

AS_UP and AS_DOWN. For archaea, the beta diversity analysis

showed a clear difference between samples from AS_UP, AS_OMZ

and AS_DOWN, confirming dissimilar archaeal community

structure in the different depths.

Bacterial community in all samples in this study was found to be

dominated by Proteobacteria, Actinobacteria, Bacterioda,

SAR406_clade, Firmicutes, Chloreflexi, Cyanobacteria, SAR324

and Nitrospinota, similar to others found in various pelagic OMZ

(Sun et al., 2021; Gu et al., 2022). Gammaproteobacteria and

Alphaproteobacteria dominated through the water column in AS.

The dominance of these phylotypes has been well documented in a

variety of pelagic marine zones including the ETSP-OMZ,

Northwest Mediterranean Sea, Tropical Western Pacific Ocean

and Southern AS (Fuchs et al., 2005; Stevens and Ulloa, 2008;

Crespo et al., 2013; Ganesh et al., 2013; Sun et al., 2021). The

Bacteroidetes was known to be associated with phytoplankton and

abundant at surface waters (Fandino et al., 2001). However,

Bacterioda abundance did not significantly decrease with depth in

the OMZ of AS in this study.

Alteromonadaceae was one of the most dominant representative

of Gammaproteobacteria in AS, and exhibited high relative

abundances in the whole water column in AS. However,

Alteromonadaceae was previously reported to dominate in the

deeper water in ETSP (Stevens and Ulloa, 2008). In this study,

ASVs affiliated with the family Alteromonadaceae were primarily

phylogenetically related to Alteromonas macleodii and Alteromonas

lipolytica, with both species being widely distributed throughout the

water column in AS. No obvious niche partition was observed for

Alteromonas in this study. OTU2530 affiliated with Alteromonas

macleodii predominated not only in the UP, OMZ and DOWN of

AS, but also in the water column of Bob and ETNP (Figure 4),

irrespective of water depth. Previous reports in OMZ suggest that

Alteromonas participate in complex carbon metabolism pathways

and co-exist with other key microbial players in the carbon cycle,

such as Marinobacter and Prochlorococcus (Gao et al., 2017; Koch

et al., 2020; Frühe et al., 2021; Henrıq́uez-Castillo et al., 2022).

Alteromonas_macleodii has been intensively studied and well-

known to niche specialization. The surface ecotype of

Alteromonas_macleodii was found to be globally abundant and
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recognized for its capability to degrade sugars and amino acids and

colonize particulate organic matter with much slower sinking rates.

In contrast, the deep ecotype displayed a higher potential of

degrading recalcitrant compounds and colonizing relatively large

particles that sink rapidly to meso and bathy pelagic depths (Ivars-

Martinez et al., 2008). Ecologically they are often associated to

nutrient-rich environments such as particulate material, marine

snow, or marine animals, accompanied with complex metabolic

potential which strongly supports the ability to survive in various

environments. Although Alteromonadaceae constituted a minor

proportion of the metagenomic data, they significantly

contributed to gene transcription across various marine

environments, from mesotrophic coastal California waters to the

oligotrophic subtropical North Pacific, highlighting their crucial

role in sustaining ecosystem functions (Sherwood et al., 2015). The

dominance of Alteromonas may partly attributed to the abundance

of sinking particulate matter in the northern AS (P Vijayan

et al., 2023).

Sphingomonadaceae, Thalassospiraceae and Rhodobacteraceae

of Alphaproteobacteria were also significantly contributing to

microbial communities, which were mainly represented by genera

of Sphingomonas, Thalassospira and Ruegeria, respectively.

Sphingomonadaceae are prevalent in various environments and

metabolically versatile, which could utilize a wide range of

organic compounds as well as many types of refractory

contaminants, such as Bisphenol A (BPA) and aromatic

hydrocarbon compounds (Kertesz and Kawasaki, 2010; Göker

et al., 2017; Oh and Choi, 2019). Previous reports in OMZ

suggest that high abundance of Sphingomonadaceae may be

driven by high concentrations of phosphate and ammonia (Liu

et al., 2015). Rhodobacteraceae is considered as one of the most

abundant groups of bacteria in marine ecosystem, comprising

photoheterotrophic and chemoheterotrophic species. The diverse

metabolic capabilities of Rhodobacteraceae, including the utilization

of organic compounds, sulfur oxidation, carbon monoxide

oxidation, and dimethylsulfoniopropionate (DMSP) degradation,

enable them to thrive in a wide range of environments (Brinkhoff

et al., 2008; Elifantz et al., 2013; Pujalte et al., 2014). In addition, the

ability of Rhodobacteriaceae (Sagittula genus) from the OMZ region

to fix N2 has been demonstrated (Martıńez-Pérez et al., 2018).

Several important taxa were determined as indicator taxa of the

OMZs in AS in this study including unclassified_f_Desulfosarcinaceae,

UBA10353, SUP05_cluster, Nitrospina, Sva0996_marine_group,

unclassified_f_Microtrichaceae. Among these, relatively high

abundances of UBA10353, SUP05, Nitrospina have also been

detected in other OMZs, including Gulf of Alaska, ETSP and ETNP

(Beman and Carolan, 2013; Muck et al., 2019; Sun et al., 2019).

Desulfosarcinaceae, belonging to Desulfobacterales of the class

Desulfobacteria, was determined as an abundant member and key

indicator taxa in hypoxic zones of AS. The spatial and depth-wise

distribution patterns indicated that Desulfosarcinaceae was unique to

AS communities, which almost exclusively inhabited in the OMZs of

AS (CTD03, CTD04, CTD05, CTD06), however absent in CTD02 and

CTD08 stations as well as in Bob and ETNP OMZs communities

(Figure 6; Supplementary Figure 8). ASVs (OTUs) affiliated with

Desulfosarcinaceae were closely related with SEEP-SRB1. It was
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reported that the family Desulfosarcinaceae including genera such as

Desulfosarcina, Desulfatitalea, SEEP-SRB1, and Sva0081 sediment

group, were sulfate-reducing bacteria (SRB). Members of this group

have been identified as strict anaerobes, exhibiting both respiratory and

fermentative metabolic pathways. They have been found in anoxic

brackish water environments as well as marine habitats, including

water-flooded oil fields (Galushko and Rozanova, 1991; Watanabe

et al., 2017). Previous evidences also suggested that Desulfobacterales

were important H2-scavengers in marine sediments as well as in

microbial mat community, and also played important roles in

nitrogen cycling of mangrove ecosystem (Burow et al., 2014; Dyksma

et al., 2017; Nie et al., 2021). Metabolic pathway prediction based on

publicly available genomes of Desulfosarcinaceae also indicated the

genetic potential of chemolithotrophy viaWood–Ljungdahl pathway as

well as nitrogen fixation in this study. The dominant presence of

Desulfosarcinaceae suggested the crucial roles involved in the carbon,

nitrogen, sulfur and hydrogen cycles in OMZs of AS. The ecological

functions and in situ activities of Desulfosarcinaceae in the hypoxic

zone of AS will be further explored based on metagenomics and

metatranscriptomes data.

UBA10353 was another abundant taxa and predominated in the

OMZ core in AS, which was phylogenetically closely related to

Arenicellales order of Gammaproteobacteria (Martıńez-Pérez et al.,

2022). A similar distribution pattern of this group has also been

found in OMZs, including the deeper layers of the western

Mediterranean Sea, the OMZ core of Tropical Mexican Pacific,

the OMZ and OLZ of the Andaman Sea and eastern BoB epipelagic

waters (Pajares et al., 2020; Martıńez-Pérez et al., 2022). The spatial

distribution patterns analysis based on AS, Bob and ETNP data

showed that the dominant taxa of UBA10353 shifted between

different sea areas (Figure 6; Supplementary Figure 8). For

example, OTU11318, OTU11316 and OTU11385 seemed to be

exclusively distributed in the hypoxic zone of AS except for CTD02

and CTD08, and they were absent in Bob and ETNP OMZ

communities. OTU5267, OTU2157 and OTU4614 dominated in

the OMZ and deep communities of ETNP, but showed low relative

abundance in AS and Bob OMZ communities. UBA10353 was

speculated to have the potential of mixtrophy lifestyle encoding the

genes for the Calvin-Benson-Bassham cycle and heterotrophic

metabolism (Martıńez-Pérez et al., 2022). However, knowledge

about the ecology, genetics, and functions of UBA10353 are

still limited.

Nitrospina and SUP05 groups were also significantly enriched in

the OMZs of AS in this study and were identified as important

bioindicator taxa. In this study, the dominant taxa of Nitrospina, as

represented by OTU11457 and OTU5252, were enriched not only in

the AS OMZ, but also in Bob OMZ and ETNP OMZ communities

(Figure 6; Supplementary Figure 8). Surprisingly, this taxa was also

detected in the communities from ETNP 2000m. Nitrospina bacteria

were recognized as aerobic nitrite oxidizers, playing a crucial role in

nitrification processes in the BSI (Red Sea) and in the OMZ (ETSP)

habitats (Ngugi et al., 2016). The differences observed by previous

studies between novel Nitrospina OMZ MAGs from cultured

representatives and all MAGs from non-OMZ environments

suggest niche differentiation of Nitrospina in the ocean (Sun et al.,

2019). Similar distribution pattern was also observed for SUP05
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group. In AS, BOB and ENTP OMZs, SUP05 was mainly dominated

by OTU4763, and showed no obvious ecotype differentiation between

different sea areas (Figure 6; Supplementary Figure 8). SUP05 are

known chemolithoautotrophs and have the potential for carbon

fixation and sulfur oxidation (Mattes et al., 2020). Members of

these groups are globally distributed in OMZs, such as in OMZs of

the Arabian Sea, ETSP, ETNP, and BoB, which might contribute to

the carbon, nitrogen and sulfur cycles in the OMZ (Bryant et al., 2012;

Ulloa et al., 2012; Bandekar et al., 2018). Microtrichaceae were

abundant not only in the OMZs of AS but also in the upper water

column (AS_UP). Similar distribution pattern was also observed in

Bob and ETNP (Figure 6; Supplementary Figure 8). Most of the ASVs

affiliated with Microtrichaceae formed at least two clades, one

belonged to Sva0996_marine_group, which was reported that

proliferated on the fouling-release surface, one belonged to

unclassified_f_Microtrichaceae. Besides, Sva0996_marine_group

exhibited the potential for niche partitioning, one ecotype seemed

to colonize in the OMZs and the other preferred to inhabit in the

euphotic zones in AS (Papadatou et al., 2021; Guo et al., 2022). In this

study, the surface ecotype was represented by ASV1195 and

ASV1180, and the deep ecotype was represented by ASV625,

ASV638 and ASV959 (Figure 6; Supplementary Figure 8).

Microtrichaceae has been enriched in the oxygen limited zones

communities in Mexican Pacific upwelling, which have been

reported to be involved in nitrification-anammox systems and

demonstrate the capability to hydrolyze and metabolize complex

organic matter (Wang et al., 2020; Li et al., 2021a; Guo et al., 2022;

Pajares et al., 2023).

The SAR324 group is known to inhabit a wide range of

environments and is particularly abundant in OMZs and deeper

depths, including deep-sea hydrothermal vents (Malfertheiner et al.,

2022). Although the relative abundance of SAR324 did not

significantly differ in the water column of AS in this study, a

distinct depth distribution pattern was observed. Specifically,

ASV1818 was detected above 200m, ASV1202 and ASV384 were

found specifically above the OMZ, ASV422 was exclusively present

within the OMZ, and ASV28 was identified from the OMZ to deeper

depths (Figure 6; Supplementary Figure 8). However, higher relative

abundance of SAR324 were detected in ETNP compared with AS and

Bob. In addition, the niche specialization of SAR324 in ETNP were

more obvious. For example, OTU2233 dominated in the surface

waters, while OTU2280 prevailed in the OMZ and deep layers.

SAR324_clade, newly proposed as its own candidate phylum, is

globally relevant in the ocean aphotic zone and prevail throughout

the water column from surface waters to the abyss, with abundance

maxima correlating with low-oxygen concentrations (Wright et al.,

1997; DeLong et al., 2006; Wright et al., 2012; Dick et al., 2013;

Hawley et al., 2014; Thrash et al., 2017; Aldunate et al., 2018;

Rajpathak et al., 2018; Malfertheiner et al., 2022). SAR324 possesses

versatile and extensive metabolic repertoire, encompassing both

heterotrophic and autotrophic pathways, and exhibited distinct

depth and temporal distributions that clearly differentiated ecotypes

(Boeuf et al., 2021; Malfertheiner et al., 2022). SAR324_clade was

identified as keystone taxa that maintained the structures and

functions of microbial community in AS, similar to that in

Andaman Sea and eastern BoB (Guo et al., 2022).
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Cyanobacteria, Candidatus_Actinomarina, SAR86_clade,

NS2b_marine_group, NS5_marine_group, NS9_marine_group

and OCS116_clade were also determined as bioindicator taxa in

AS_UP communities, with significantly higher abundance than in

AS_OMZ and AS_DOWN communities. The most abundant ASVs

of Cyanobacter ia in th i s s tudy were a ffi l i a ted wi th

Prochlorococcus_MIT9313 and unclassified_f_Cyanobiaceae in AS.

Prochlorococcus is primarily abundant in warm oligotrophic waters,

particularly in the subtropical gyres of the Indian and western

Pacific Ocean (Flombaum et al., 2013). As indicator taxa of AS_UP,

Candidatus_Actinomarina was reported as a subclass of exclusively

marine Actinobacteria with small cells and genomes (Ghai et al.,

2013). SAR86 is an abundant and ubiquitous heterotroph in the

surface ocean. In previous researches, at least 5 subgroups of SAR86

were identified based on pan-genome analysis, each of which

exhibits distinct geographic distribution patterns correlated with

specific environmental parameters (Sabehi et al., 2004; Levin and

Angert, 2015; Hoarfrost et al., 2019; López-Pérez et al., 2020).
4.3 Archaeal community composition with
depth distribution patterns

Archaea are now recognized to be as crucial as bacteria in

driving the biogeochemical cycles within the global ocean (Herndl

et al., 2005; Knittel et al., 2005; Leininger et al., 2006; Lipp et al.,

2008). The occurrence of archaeal groups in the Eastern Tropical

South Pacific OMZ, as well as in northern Chile and other oxygen-

deficient ecosystems, indicates the active involvement of archaea

within these OMZ environments (Woebken et al., 2007; Quinones

et al., 2009; Belmar et al., 2011; Stewart et al., 2012). In contrast to

the bacterial domain, less was known about archaeal community

structure and diversity in the OMZ of AS, although previous studies

had reported on ammonia-oxidizing archaea in AS (Pitcher et al.,

2011; Peng et al., 2013).

In this study, depth-dependent distribution patterns were observed

within the archaeal community. Crenarchaeota and Thermoplasmatota

dominated throughout the water column in AS. Not only abundant in

the euphotic zone, the relative abundance of Crenarchaeota tended to

increase with depth and also dominated the OMZ and bathypelagic

archaeal communities, similar to previous results observed in other

marine environment such as in Gulf of Alaska and the Altantic Ocean

(Shiozaki et al., 2016; Sintes et al., 2016; Muck et al., 2019; Abdulaziz

et al., 2020). ASVs of Crenarchaeota were mostly phylogenetically

affiliated with Candidatus_Nitrosopelagicus and Nitrosopumilus of

Nitrosopumilaceae family, among which Candidatus_Nitrosopelagicus

almost exclusively inhabited in the euphotic zones in AS, while

Nitrosopumilus prevailed in the OMZs and deeper layers (Rinke

et al., 2013; Sow et al., 2022).

Thermoplasmatota (formerly Marine_Group_II) predominated

not only in the water column in AS of this study, but also in ETSP,

Atlantic Ocean (Pereira et al., 2019). Marine Group II exhibited higher

relative abundance in the euphotic zone than the deeper water samples

in AS, which was consistent with the common understanding that

MGII reside mostly in the surface ocean, Marine Group II showed

unique patterns of organic carbon degradation and their energy
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requirements may be augmented by light in the photic zone (Zhang

et al., 2015). Besides, Marine Group II was also abundant in deep-sea

waters in this study of AS. Although Marine Group II exhibited high

relative abundance throughout the water column of AS, the taxonomic

composition of Marine Group II differed in the surface and deep water

samples. It has been previously found that Marine Group II lived

heterotrophically and displayed great seasonal and spatial variation and

phylogenetic diversity (Zhang et al., 2015). Marine Group III (MGIII)

were initially described by Fuhrman and Davis from deep marine

plankton samples and generally regarded as low-abundance members

of deep mesopelagic and bathypelagic communities (Fuhrman and

Davis, 1997; Haro-Moreno et al., 2017). Only a few studies report the

presence of MG-III in the photic zone. In this study, MG-III was found

throughout the water column in AS, not only in the OMZ and

bathypelagic layers, but also in the euphotic zones. However, their

physiology and ecological roles in oceanic environments remain poorly

understood. Crenarchaeota and Thermoplasmatota exhibit specific

dominant taxa in different water layers, indicating niche

differentiation, metabolic or functional diversity of closely related

taxa at the genus or ASV levels, these findings are in line with earlier

research results (Rinke et al., 2018; Sow et al., 2022).
4.4 Function prediction from FAPROTAX

FAPROTAX has been extensively utilized for the microbial

functional annotation of the biogeochemical process (Louca et al.,

2016). The microbial functional prediction based on the taxonomic

information of the 16S rDNA gene revealed a significant variation of

carbon, nitrogen and sulfur metabolism potential across different

oxygen gradients in the Arabian Sea. Photoautotrophy and

photoheterotrophy processes were more active in the up layer and

weakened with the increase of water depth. The potential for

denitrification, nitrification, aerobic nitrite oxidation, nitrogen

respiration, nitrate respiration, dark sulfide/sulfur compounds

oxidation were more abundant in the OMZs in AS. However,

functions including hydrocarbon degradation and aromatic

compound degradation seemed to exhibit higher predicted

abundances in deeper layers. Similar results were previously

observed in the Andaman Sea and eastern BoB (Guo et al., 2022).

Nitrogen cycling are intensively active in anoxic water such as OMZs,

wherein denitrification and anammox have been recognized as the

major process associated with nitrogen loss in the Arabian Sea (Ward

et al., 2009; Jensen et al., 2011). Despite oxygen concentrations within

the samples from the OMZ of this study being below 20mM, the

predicted abundance of denitrification genes was notably lower than

that of nitrification genes. This suggests that nitrification might be a

predominant nitrogen cycling process in the OMZ of the AS. High

abundance of ammonia oxidation genes abundance could be

attributed to the significant presence of Nitrosopumilaceae, while

aerobic nitrite oxidation genes in AS OMZ samples could well be

associated with the abundant presence of Nitrospina. Sulfur cycling

are also important for biogeochemical process in OMZs (Wright

et al., 2012; Long et al., 2021). Sulfur metabolism functions such as

dark sulfide/sulfur compounds oxidation were predicted to be more

active in the OMZ of AS than in the oxygenic water samples. Sulfur
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cycle associated bacterial taxa might contributed by SUP05, SAR324,

SAR406, Desulfovibrionales and so on in the OMZ of AS, which also

potentially coupled nitrogen and carbon cycling (Bertagnolli et al.,

2017; Callbeck et al., 2018; Boeuf et al., 2021). Although potential

microbial populations involved in carbon, nitrogen and sulfur

metabolism were predicted here, however, their actual activities in

situ were unclear. Functional profiling of AS samples should be

interpreted with caution, as they rely on predictive models derived

from 16S rRNA sequence data. Further investigation based on

metagenome and metatranscriptome data is required to understand

the ecological roles of the dominant microbes present in the OMZ

regions of AS.
5 Conclusion

In conclusion, this study has shed light on the complex prokaryotic

community structures within the Arabian Sea’s oxygen minimum

zones (OMZs). Our comprehensive analysis of 44 water samples

across various depths and oxygen gradients in the Arabian Sea has

revealed a significant correlation between microbial community

composition and environmental parameters, particularly dissolved

oxygen (DO) and depth. Bacterial communities demonstrated

greater richness and diversity compared to archaeal communities

throughout the water column in the Arabian Sea. The composition

of these microbial communities shifted markedly across the

different oxygen gradients and depths. Notably, key bioindicator taxa

such as Desulfosarcinaceae, UBA10353, Nitrospina, SUP05,

Sva0996_marine_group, and Microtrichaceae were prominent in the

core of the OMZ. Additionally, SAR324, Alteromonadaceae, and

Sphingomonadaceae were recognized for their pivotal roles as

keystone taxa. These taxa exhibited distinct spatial and depth-wise

distribution patterns across AS, Bob and ETNP. Notably,

Desulfosarcinaceae displayed an exclusive distribution within the

hypoxic zones of the Arabian Sea, suggesting a specialized adaptation

to anoxic niches. In contrast, UBA10353, Nitrospina, SUP05,

Microtrichaceae, and SAR324 exhibited a cosmopolitan distribution,

indicating their ubiquity and potential adaptability across different

OMZs. The functional profiling of microbial communities, as predicted

by FAPROTAX, indicated an enhanced potential for denitrification,

nitrification, and sulfur oxidation in the OMZ. However, the actual in

situ activities of these microbes remain to be elucidated through future

metagenomic and metatranscriptomic studies. Collectively, our

findings significantly contribute to the understanding of the

distribution, structure, and diversity of microbial communities in the

Arabian Sea’s OMZ. This knowledge is crucial for predicting the

ecological roles and responses of these communities to changing

oceanographic conditions and informs further research into the

complex microbial ecology and function within OMZs.
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