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Learning degradation-aware
visual prompt for maritime image
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weather conditions
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Design, Yantai Institute of Science and Technology, Yantai, China, 3School of Electromechanical and
Automotive Engineering, Yantai University, Yantai, China
Adverse weather conditions such as rain and haze often lead to a degradation in

the quality of maritime images, which is crucial for activities like navigation,

fishing, and search and rescue. Therefore, it is of great interest to develop an

effective algorithm to recover high-quality maritime images under adverse

weather conditions. This paper proposes a prompt-based learning method

with degradation perception for maritime image restoration, which contains

two key components: a restoration module and a promptingmodule. The former

is employed for image restoration, whereas the latter encodes weather-related

degradation-specific information to modulate the restoration module,

enhancing the recovery process for improved results. Inspired by the recent

trend of prompt learning in artificial intelligence, this paper adopts soft-prompt

technology to generate learnable visual prompt parameters for better perceiving

the degradation-conditioned cues. Extensive experimental results on several

benchmarks show that our approach achieves superior restoration performance

in maritime image dehazing and deraining tasks.
KEYWORDS

maritime image, image restoration, image deraining, image dehazing, prompt learning,
deep learning, visual transformer
1 Introduction

Adverse weather conditions, including rain and haze, frequently occur in our everyday

environment. These conditions result in diminished visual quality in captured images and

significantly affect the effectiveness of numerous maritime vision systems, such as

autonomous ships for ocean observation (Zheng et al., 2024). In maritime navigation

and transportation, correctly identifying and interpreting environmental information from

images is vital for safety. Figure 1 shows the physical imaging process of different adverse

weather conditions. Thus, image processing under adverse weather conditions contributes
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to enhancing the safety of maritime traffic and navigation by

reducing accidents and collisions (Lu et al., 2021).

To solve image restoration under adverse weather conditions,

early algorithms are predominantly based on traditional prior

models. In the context of image dehazing, one common approach

was the atmospheric scattering model (He et al., 2010), which

assumed that haze in an image could be represented as a result of

light scattering due to atmospheric particles (Li et al., 2018a). These

algorithms typically aim to estimate and remove the haze from

images, enhancing visibility. On the other hand, for image

deraining, a prevalent technique was the linear superposition

model. This model assumed that the observed image under rainy

conditions could be expressed as a linear combination of the clean

background scene and the rain streaks (Chen et al., 2023b). These

early deraining algorithms focus on separating the rain streaks from

the desired scene, thus improving the clarity of the image. However,

these early prior-based algorithms struggled to adapt to complex

and rapidly changing scenes, as they relied heavily on predefined

models that could not effectively account for the wide range of

scenarios encountered in real-world environments.

With the rise of big data and artificial intelligence, a plethora of

image restoration methods based on deep learning have emerged.

These techniques aim to learn the mapping relationship between

degraded images and their corresponding clear counterparts.

Convolutional Neural Networks (CNNs) have emerged as a

powerful tool for image restoration due to their inherent ability to

capture and learn complex hierarchical features from data. We have

witnessed the rapid advancement of CNNs in image dehazing and

deraining (Li et al., 2020; Zhou et al., 2021; Chen et al., 2022).

However, due to the inherent characteristics of convolution

operations, specifically the use of local receptive fields and the

independence of input content, CNNs struggle to effectively model

spatially-long feature dependencies of images (Chen et al., 2023c).

Later, Transformer-based models (Vaswani et al., 2017)

originally bring significant breakthroughs to the natural language

processing (NLP) field. The vision Transformer (ViT), as a new

network backbone, has been widely applied to various tasks. It has

also been utilized in image restoration tasks Zamir et al. (2022) and

has achieved better performance compared to CNNs due to its

ability to model non-local features effectively. Albeit these

approaches have achieved commendable restoration performance

in the given weather situation, they often exhibit suboptimal results

when applied to maritime images.

The reason behind this can be summarized as follows:

(1) Maritime images are often captured over large bodies of

water, which introduces additional complexities due to the

presence of reflective surfaces, varying water conditions, and

dynamic backgrounds. These factors can exacerbate the impact of

weather-related degradation. (2) Weather conditions at sea can

change rapidly, with haze and rain appearing and dissipating

quickly. This dynamic nature poses challenges for image

restoration, as algorithms must adapt to evolving weather

conditions. Thus, effective image restoration techniques tailored

to the unique characteristics of maritime environments are essential

for ensuring safe and efficient maritime activities (Zheng

et al., 2020).
Frontiers in Marine Science 02
This raises a question: how to better help image restoration in

adapting to the complex and ever-changing maritime scenes under

adverse weather conditions? Recent trends of prompt learning

(Wang et al., 2022) in artificial intelligence, may offer a potential

solution. Prompt learning empowers deep models to adapt swiftly

to complex and dynamically changing environments. It allows for

the creation of tailored prompts that can capture the intricacies of

specific situations, ensuring the model’s responsiveness to various

challenges. Therefore, this motivates us to introduce prompt

learning to better encode degradation features of different weather

conditions. This paper proposes a prompt-based learning method

with degradation perception for maritime image restoration. The

proposed method comprises two essential components: a

restoration module and a prompting module. The restoration

module is employed for image restoration, while the prompting

module encodes weather-related degradation-specific information

to modulate the restoration module. Specifically, the main

contributions of this paper are as follows:
• This paper presents a new solution for image restoration in

adverse weather conditions for maritime images. By

incorporating prompt learning into the Transformer-

based restoration network, it enhance the adaptability of

deep networks to various weather degradation characteristics,

enabling our model to adaptively learn more useful features

to facilitate better restoration.

• This paper employs a prompt creation block to generate a

set of learnable parameters by implicitly predicting

degradation-conditioned soft prompts. In addition, this

paper further introduces a prompt fusion block to guide

the restoration process by interacting with the

network backbone.

• Quantitative and qualitative experiments demonstrate that

our proposed method achieves favorable performance on

multiple benchmark datasets, and can better reconstruct

clear images and restore image details compared to

previous methods.
2 Related work

In this section, this paper presents a review of recent work

related to maritime image restoration and prompt learning.
2.1 Maritime image restoration

To deal with the uncertain task of maritime image restoration,

considerable efforts have been made. Existing approaches can be

categorized into strategies based on priors and learning-based

strategies. Hu et al (Hu et al., 2019). proposed a haze removal

method based on illumination decomposition. This method

decomposes the hazy image into a haze layer by separating the

glow layer. It estimates the transmission rate using haze-line prior,

thereby restoring the haze-free image. Luo et al (Lu et al., 2021).
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proposed a novel CNN-based visibility dehazing framework aimed

at enhancing the visual quality of images captured by maritime

cameras under hazy conditions. This framework comprises two

subnetworks: the coarse feature extraction module and the fine

feature fusion module. Hu et al. (Hu et al., 2021) proposed a deep

learning-based variational optimization method for reconstructing

haze-free images from observed hazy images. This method fully

leverages a unified denoising framework and strong deep learning

representation capabilities. Guo et al. (Guo et al., 2021) designed a

heterogeneous twin birth haze removal network, HTDNet, to

enhance maritime surveillance capabilities in haze environments.

The network consists of a twin feature extraction module for

learning coarse haze features and a feature fusion module for

integration and enhancement.

Van et al. (Van Nguyen et al., 2021) proposed a haze removal

algorithm for maritime environment images based on texture and

structure priors in illumination decomposition. This method

utilizes a haze removal algorithm to eliminate the haze

component from the glow-free layer and employs illumination

compensation to restore natural illumination in the glow layer.

Yang et al. (Yang et al., 2022) proposed a multi-head pyramid large

kernel encoder-decoder network (LKEDN-MHP) for denoising

tasks in maritime images. This method utilizes the transmission

map extracted from the guidance image as an additional input to

improve the network performance. Liu et al. (Liu et al., 2022)

proposed a CNN-based dual-channel two-stage image dehazing

network, which utilizes an attention mechanism to achieve adaptive

fusion of multi-channel features. Hu et al. (Hu et al., 2022) proposed

a maritime video dehazing algorithm based on spatiotemporal

information fusion and improved dark channel prior. This

method utilizes an enhanced dark channel prior model to restore

each frame image, thereby achieving video dehazing.

Recently, Huang et al. (Huang et al., 2023) proposed an

improved convex optimization model based on an atmospheric

scattering model to achieve image dehazing. This method integrates

simplified atmospheric light value estimation and the V channel in

the HSV color space to obtain more local information. He et al. (He

and Ji, 2023) improved MID-GAN is capable of training with non-

paired adversarial learning. It consists of a CycleGAN cycle

framework with two constraint branches. And it introduced an

effective attentionrecursive feature extraction module to gradually

extract haze components in an unsupervised manner. Chen et al.

(Chen et al., 2022) introduced a contrastive learning mechanism

based on the CycleGAN framework to improve dehazing

performance. However, due to the limited performance of the

aforementioned methods in the task of maritime image

restoration and the relative saturation of model capabilities, there

is a need to explore an effective approach to address these issues.
2.2 Prompt learning

Prompt learning was initially introduced in the field of natural

language processing (NLP) and has proven to be highly effective, it
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has been applied to various vision-related tasks. Prompt learning is

divided into two different methods: hard prompts and soft prompts.

Hard prompts refer to explicit and predefined instructions given to

the model during training. These prompts provide specific

information and guide the model to produce the desired output.

Soft prompts are more flexible and adaptive. They are not explicitly

defined but rather generate prompt information based on input

data or learn from the training process. Soft prompts allow the

model to dynamically adjust its behavior based on input and

context, enabling it to capture more specific and nuanced

contextual information.

Recently, Zhou et al. (Zhou et al., 2022) demonstrated that a

simple design based on conditional prompt learning performs

exceptionally well in various problem scenarios, including

generalization from base classes to novel classes, cross-dataset

prompt transfer, and domain generalization. Potlapalli et al.

(Potlapalli et al., 2023) demonstrated the effectiveness of their

designed prompt block in integrated image restoration by

integrating it into state-of-the-art restoration models. The prompt

block can interact with input features, dynamically adjust

representations, and adapt the restoration process to the relevant

degradation. Li et al. (Li et al., 2023b) proposed a novel prompt-in-

prompt learning for universal image restoration. The method

involves simultaneous learning of high-level degradation-aware

prompts and low-level basic restoration prompts to generate

effective universal restoration prompts. By utilizing a selective

promptfeature interaction module to modulate features most

relevant to the degradation. Ai et al. (Ai et al., 2023) proposed a

multi-modal prompt learning method called MPerceiver, which

includes cross-modal adapters and image restoration adapters to

learn holistic and multiscale detail representations. The adaptability

of text and visual prompts is dynamically adjusted based on

degradation prediction, enabling effective adaptation to various

unknown degradations. Kong et al. (Kong et al., 2024) proposed

sequential learning strategy and prompt learning strategy,

respectively. These two strategies are effective for both CNN and

Transformer backbones, and they can complement each other to

learn effective image representations.

Inspired by these methods, this paper proposes a prompt-based

learning approach to guide the maritime image restoration process,

facilitating the integration and communication of information.
3 Proposed method

In this section, this paper first describes the overall pipeline of

the model. Then, this paper provides details of the restoration

module and prompting module, which serve as the fundamental

building blocks of the approach. The restoration module mainly

comprises two key elements: multi-head self-attention (MHSA) and

dual gated feed-forward network (DGFN). The prompting module

mainly consists of two key elements: prompt creation block (PCB)

and prompt fusion block (PFB).
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3.1 Overall pipeline

The overall pipeline of the proposed model, as illustrated in the

Figure 2, is based on a hierarchical encoder-decoder framework

(Chen et al., 2023a). Given a maritime degraded image Irain ∈
RH×W×3, where H × W denotes the spatial resolution of the feature

maps, and C represents the channels, this paper performs feature

projection embedding using a 3 × 3 convolution. On the network

backbone, this paper stacks 4 levels of hierarchical encoder-

decoders, where the encoder-decoder serves as the restoration

module of the model, extracting rich spatially variant degradation

distribution features. To extract multiscale representations from

degradation information, each level of the restoration module

covers its specific spatial resolution and channel dimensions.

Beginning with high-resolution input, the restoration module

aims to progressively decrease spatial resolution while enhancing

channel capacity, resulting in a low-resolution latent representation

F ∈ RH/8×W/8×8C. During the stage of high-resolution image

restoration, this paper incorporates a prompting module into the

framework to generate prompts and enrich input features for

dynamically guiding the restoration process of the restoration

module. This paper also introduces skip connections (Li et al.,

2023a) to bridge consecutive intermediate features, ensuring stable

training. Next, this paper provides a detailed description of the
Frontiers in Marine Science 04
proposed restoration module, prompting module, and their core

building blocks.
3.2 Restoration module

This paper develops a restoration module as a feature extraction

unit, which can be used to encode degradation information to

recover output clean restored images. Formally, given the input

features of the (l − 1)-th block Xl−1, the encoding of the restoration

module process can be represented as Equations (1, 2):

X
0
l = Xl−1 +MHSA(LN(Xl−1)), (1)

Xl = X
0
l + DGFN(LN(X

0
l )), (2)

where LN denotes the layer normalization, X
0
l and Xl represent

the outputs of MHSA and DGFN, which are described below.

3.2.1 Multi-head self-attention
In reviewing the standard self-attention mechanism in

Transformers (Zamir et al., 2022), given queries Q, keys K, and

values V, the output of dot-product attention is typically

represented as Equation (3):
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FIGURE 1

The physical imaging process of different adverse weather conditions.
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Attention0 = Softmax
Q⊤K
a

� �
· V , (3)

where a is a learnable parameter; Q, K, and V represent the

matrix forms of Q, K, and V, respectively. It is noted that

computing self-attention using the Softmax function may lead

to unstable gradients due to the presence of exponential

functions, which could also limit the network’s ability for

nonlinear fitting. This work replaces it with the ReLU

activation function, which can alleviate the issues of gradient

vanishing or exploding, and aid in learning better feature

representations. Specifically, this work starts by aggregating

pixel-level cross-channel context through the application of a

1 × 1 convolution. Subsequently, a 3 × 3 depthwise convolution is

applied to encode channel-wise context. This work employs bias-

free convolution layers in the network. Next, it reshapes

the projections of queries and keys to allow their dot

product interaction to generate a transposed attention map of

size RĈ�Ĉ , rather than a massive regular attention map of size
Frontiers in Marine Science 05
RĤ Ŵ�Ĥ Ŵ . Then, the attention map is further interacted with

the reshaped projections of values to complete the self-

attention computation. Overall, the MHSA process is defined as

Equations (4, 5):

Attention = ReLU
Q⊤K
a

� �
· V , (4)

X̂ = Conv
1�1

(Attention(Q,K ,V)) + X, (5)

where X and X̂ are the input and output feature maps, Conv1×1
(·) denotes 1 × 1 convolution.

3.2.2 Dual gated feed-forward network
To enhance the enrichment of contextual information, this

paper introduces a dual gated feed-forward network that operates

on each pixel. It incorporates two branches based on a gating

mechanism. They initially undergo feature Y transformation by

using 1 × 1 convolutions, followed by 3 × 3 depth-wise convolutions
FIGURE 2

The overall architecture of the proposed network.
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to encode information from spatially adjacent pixel positions,

facilitating the learning of local image details for effective

restoration. One branch extends the feature channels, while the

other branch, activated with GELU non-linearity, reduces the

channels back to the original input dimensionality, enabling the

discovery of non-linear contextual information in hidden layers.

The DGFN is formulated as Equations (6, 7):

Gated = GELU(Conv3�3(Conv1�1(X)))⊙Conv3�3(Conv1�1(Y)),

(6)

Ŷ = Conv1�1(Gated(Y)) + Y , (7)

where Ŷ , Conv3×3(·), ⊙ denote outputs, 3 × 3 depthwise

convolution and element-wise multiplication, respectively.

Overall, compared to MHSA, DGFN plays a distinctly different

role by governing the flow of information across various levels in

our pipeline, thereby enabling each level to focus on fine details

complementary to other levels.
3.3 Prompting module

Different from (Zhou et al., 2023) that models global features,

this paper further proposes a prompting module designed to

perceive features of interfering information in degraded images

and dynamically generate valuable prompts to guide high-quality

maritime image restoration. Given the input features F, the

prompting module first employs PCB to generate prompts for the

distribution of degraded features. Subsequently, PFB collaboratively

fuses the input features F with the generated prompt information to

obtain the output features Fb. The overall procedure of prompting

module is defined as Equation (8):

F̂ = PFB(PCB(F, Fpc), F), (8)

where Fpc represents the learnable prompt components,

the prompt creation block and prompt fusion block are

described below.

3.3.1 Prompt creation block
The PCB dynamically captures the distribution characteristics

in degraded maritime images. This capability enhances the

provision of useful prompt information for the restoration

process. Here, this paper employs a soft prompt (Potlapalli et al.,

2023) to generate a set of learnable parameters, which encode

distinctive deteriorative features related to various weather

conditions. For input features F, the network first applies global

average pooling, followed by a 1 × 1 convolution to obtain a

compact feature vector. Subsequently, a Softmax function is

applied to derive the prompt weights W ∈ RN, where the value of

N is determined by the prompt length. In soft prompt learning, the

length of the prompt determines the amount of information and

guidance provided to the model. In fact, it’s essential to strike a

balance between the impact of prompt length, choosing an

appropriate length that balances information, guidance, and

diversity of generation to achieve satisfactory results. This paper
Frontiers in Marine Science 06
will analyzes its impact in Section 4.4.2. Next, the weights are

adjusted within the prompting components using a linear

combination. Finally, a 3 × 3 convolution is applied to obtain the

conditional prompt P. The overall procedure of PCB is defined as

Equations (9, 10):

Wi = Softmax(Conv1�1(GAP(F))), (9)

P = Conv3�3(Linear(Wi · Fpc)), (10)

where GAP(·), Linear(·) denote the global average pooling and

linear combination, respectively.

3.3.2 Prompt fusion block
To facilitate more effective interaction between the prompt

information and input features for better guidance in the

restoration process, this paper designs a PFB. In this module, the

input features F are concatenated with the degradation distribution

prompt P along the channel dimension. Subsequently, the

concatenated information is further processed by the restoration

module to generate the transformation of the input features. Finally,

through operations of 1 × 1 convolution and 3 × 3 convolution, the

features are smoothed and mapped to the output features F̂ . The

overall procedure of PFB is defined as Equation (11):

F̂ = Conv3�3(Conv1�1(RM(C(F · P)))), (11)

where RM(·) and C(·) denote the process of involving

restoration module and concatenation, respectively.
3.4 Loss function

To supervise the training progress of our network, this paper

employs the L1 pixel loss function. The final output is the restored

image Irec. It is obtained by adding the residual image Ires to the

input degraded image Ideg, where Ires ∈ RH×W×3. During training,

the network minimizes the loss function ,which is defined as

Equation (12):

Lpixel = Irec − Igt
�� ��

1, (12)

where Igt represents the ground truth image, and ∥ · ∥1 denotes
the L1-norm.
4 Experiments

In this section, this paper evaluates our method on benchmarks

for image dehazing and image deraining tasks. The main

experiments are conducted using PyTorch and trained on 4

TESLA V100 GPUs.
4.1 Experimental settings

Following (Zamir et al., 2022), our method employs a 4-level

encoder-decoder framework. From level-1 to level-4, the number of
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restoration module is [4,6,6,8], attention heads are [1,2,4,8], and

number of channels is [48,96,192,384]. The prompt length in the

prompting module is 5. The batch size and patch size are configured

as 16 and 128, respectively. Our model is trained using the AdamW

optimizer for a total of 300,000 iterations with cosine annealing

scheme (Loshchilov and Hutter, 2016) to gradually decrease the

initial learning rate from 3×10−4 to 1×10−6. Specifically, the learning

rate is initially set at 3×10−4 for the 92,000 iterations and

subsequently reduced to 1 × 10−6 over the next 208,000 iterations.
4.2 Experimental results on
image dehazing

To evaluate the dehazing performance of the method, this paper

trains on the RESIDE SOTS-Outdoor (Li et al., 2018a), but since

this dataset lacks maritime scenes, this paper conducts testing on

real maritime hazy images. It should be noted that there are no

ground truth images for real maritime hazy images. Here, this paper

compares our method with 6 popular image dehazing algorithms,

including DCP (He et al., 2010), DehazeNet (Cai et al., 2016),

AODNet (Li et al., 2017), GridDehazeNet Liu et al. (2019), MSBDN

(Dong et al., 2020), and DeHamer (Guo et al., 2022). For fair

comparison, all comparison algorithms use consistent pre-trained

weights trained on the training set. In the case of hazy maritime

images without ground truth data, this paper employs non-

reference metrics such as NIQE (Naturalness Image Quality

Evaluator) (Mittal et al., 2012b) and BRISQUE (Blind/

Referenceless Image Spatial Quality Evaluator) (Mittal et al.,

2012a). When the NIQE or BRISQUE scores are lower, it means

that the image is considered to have higher quality in terms of

naturalness (for NIQE) or overall spatial quality (for BRISQUE).

As presented in Table 1, our proposed method achieves notably

lower NIQE and BRISQUE scores, indicating that it produces high-

quality outputs characterized by clearer content and superior

perceptual quality when compared to other models in maritime

scenarios. This underscores the effectiveness of our model in

enhancing image quality within maritime contexts. To provide

compelling evidence, this paper illustrates a visual quality

comparison between two samples generated by recent methods in

Figure 3. It is observed that the performance of DCP (He et al.,

2010) is suboptimal, particularly in the sky region, where

undesirable halo effects occur. DehazeNet (Cai et al., 2016) and

AODNet (Li et al., 2017), are found to exhibit insufficient learning

capabilities, resulting in their inability to effectively remove haze

from images. The limitations in their learning capabilities become

particularly evident when dealing with challenging and complex

hazy scenes, such as those with dense fog or severe haze. The
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dehazing results obtained from GridDehazeNet Liu et al. (2019),

MSBDN (Dong et al., 2020), and DeHamer (Guo et al., 2022) still

exhibit residual haze, indicating limitations in the generalization of

their algorithms to maritime images. These residual haziness issues

suggest that their models may struggle to effectively adapt to the

unique challenges posed by maritime scenarios. In contrast, our

method demonstrates the capability to recover significantly clearer

images, particularly in the sailboat regions. This suggests that the

introduction of prompt learning cues can substantially improve the

adaptation of dehazing algorithms to more challenging maritime

images. The enhanced performance underscores the effectiveness of

incorporating prompt learning, which enables better haze removal

and results in visually superior outcomes in maritime scenes.
4.3 Experimental results on
image deraining

To evaluate the deraining performance of the method, this

paper carries out comprehensive experiments using the Rain13K

dataset (Jiang et al., 2020), comprising 13,700 pairs of clean and

rainy images. To evaluate our approach, this paper employs 4

benchmarks [Test100 (Zhang et al., 2019), Rain100H (Yang et al.,

2017), Rain100L (Yang et al., 2017), and Test2800 (Fu et al., 2017b)]

for testing purposes. Here, this paper compares our method with 9

popular image deraining algorithms, including DerainNet (Fu et al.,

2017a), SEMI (Wei et al., 2019), DIDMDN (Zhang and Patel, 2018),

UMRL (Yasarla and Patel, 2019), RESCAN (Li et al., 2018b),

PReNet (Ren et al., 2019), MSPFN (Jiang et al., 2020), MPRNet

(Zamir et al., 2021), and IDT (Xiao et al., 2022). Here, this paper

uses full-reference image evaluation metrics, as there are ground

truth images available. This paper quantitatively assesses our results

by computing both PSNR (Peak Signal-to-Noise Ratio) and SSIM

(Structural Similarity Index) scores (Wang et al., 2004), specifically

using the Y channel within the YCbCr color space. This allows us to

make objective comparisons, focusing on luminance information,

which is crucial for evaluating image quality accurately. These

metrics provide valuable insights into the fidelity and structural

similarity between the deraining images and their corresponding

ground truth references.

Table 2 presents the quantitative results of various algorithms

for image deraining. In comparison to the recent IDT method (Xiao

et al., 2022), our approach demonstrates an average improvement of

1dB across the four datasets. This significant enhancement

highlights our method’s ability to adapt more effectively to

diverse rainy conditions. Our results suggest that our approach

outperforms existing methods by providing superior deraining

performance across a range of challenging rain scenarios.
TABLE 1 Quantitative comparisons of different methods on hazy maritime images.

Method DCP DehazeNet AODNet GridDehazeNet FFA Net DeHamer Ours

NIQE 3.464 3.466 3.433 3.504 3.530 3.483 3.015

BRISQUE 22.149 25.884 25.006 24.113 24.847 25.054 22.028
frontie
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Figures 4 and 5 show the visual results on the Rain100H and

Test100 datasets. Observing these visual results, it becomes evident

that DerainNet (Fu et al., 2017a), SEMI (Wei et al., 2019), and

DIDMDN (Zhang and Patel, 2018) struggle to effectively remove

heavy rain artifacts. UMRL (Yasarla and Patel, 2019), RESCAN (Li

et al., 2018b), and PReNet (Ren et al., 2019) still leave residual rain

streaks in their recovery results. MSPFN (Jiang et al., 2020),

MPRNet (Zamir et al., 2021), and IDT (Xiao et al., 2022) exhibit
Frontiers in Marine Science 08
shortcomings in preserving local image details, especially in regions

such as the ship’s hull. In contrast, our approach stands out due to

its incorporation of prompt learning, enabling adaptive feature

extraction. As a result, it excels in eliminating rain streaks while

effectively retaining intricate image structures. This demonstrates

the robustness and effectiveness of our method in addressing the

challenges posed by rainy conditions and preserving fine-grained

image details.
Input DCP DehazeNet AODNetInput DCP DehazeNet AODNet

GridDehazeNet MSBDN DeHamer Ours

FIGURE 3

Image dehazing comparisons for different methods on hazy maritime images.
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TABLE 2 Quantitative comparisons of different methods on the Rain13K dataset.

Datasets
Method

Test100 Rain100H Rain100L Test2800 Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DerainNet 22.77 0.810 14.92 0.592 27.03 0.884 24.31 0.861 22.26 0.787

SEMI 22.35 0.788 16.56 0.486 25.03 0.842 24.43 0.782 22.09 0.725

DIDMDN 22.56 0.818 17.35 0.524 25.23 0.741 28.13 0.867 23.32 0.738

UMRL 24.41 0.829 26.01 0.832 29.18 0.923 29.97 0.905 27.39 0.872

RESCAN 25.00 0.835 26.36 0.786 29.80 0.881 31.29 0.904 28.11 0.852

PReNet 24.81 0.851 26.77 0.858 32.44 0.950 31.75 0.916 28.94 0.894

MSPFN 27.50 0.876 28.66 0.860 32.40 0.933 32.82 0.930 30.35 0.900

MPRNet 30.27 0.897 30.41 0.890 36.40 0.965 33.64 0.938 32.68 0.923

IDT 29.69 0.905 29.95 0.898 37.01 0.971 33.38 0.937 32.51 0.928

Ours 31.08 0.907 30.85 0.900 38.30 0.974 34.02 0.941 33.56 0.930
F
rontiers in Marine
 Science
 09
 fr
Bold indicates the best results.
Input DerainNet SEMI DIDMDN UMRL RESCANInput DerainNet SEMI DIDMDN UMRL RESCAN

PReNet MSPFN MPRNet IDT Ours GTPReNet MSPFN MPRNet IDT Ours GT

FIGURE 4

Image deraining comparisons for different methods on the Rain100H dataset.
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4.4 Ablation experiment and analysis

To further analysis the effectiveness of our proposed method,

this paper conducts additional ablation experiments. This paper

focuses on evaluating the performance of our approach in the image

deraining task, specifically examining the effectiveness of prompting

modules and the effect of prompt length in prompting modules.
Frontiers in Marine Science 10
4.4.1 Effectiveness of prompting modules
In this experiment, this paper aims to gauge the contributions of

the prompting modules within our methodology. This paper

designs three distinct model variants to comprehensively analyze

the impact of prompting modules on our approach. These variants

encompass models with or without prompting modules, models

with or without PFB, and models with prompting modules placed at
PReNet MSPFN MPRNet IDT Ours GTPReNet MSPFN MPRNet IDT Ours GT

Input DerainNet SEMI DIDMDN UMRL RESCANInput DerainNet SEMI DIDMDN UMRL RESCAN

FIGURE 5

Image deraining comparisons for different methods on the Test100 dataset.
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different positions within the network architecture. The quantitative

results for these various model variants are documented in Table 3,

shedding light on their respective contributions to the image

restoration task.

Starting with Model (a), the performance starkly deteriorates in

the absence of prompting modules. This striking decline

underscores the pivotal role that prompting modules play in the

image restoration process. They serve as critical components in

guiding the model’s understanding of the task and assisting it in

achieving high-quality restoration results. Comparing Model (b)

and Model (c), it becomes evident that the absence of PFB in the
Frontiers in Marine Science 11
prompting modules results in a disconnect between the guidance

provided by the prompts and the features processed in the main

restoration modules. This lack of synchronization hinders the

model’s ability to effectively utilize the provided prompts,

consequently restricting its overall performance. Further

comparison between Model (c) and Model (d) reveals the

advantage of introducing prompting modules during the network

decoding phase. This strategic placement allows the model to better

harness the clear image features, facilitating improved performance

and yielding the best network performance among the variants.

4.4.2 Effect of prompt length in
prompting modules

To delve deeper into the impact of prompts in our prompting

modules, this paper conducts experiments to investigate the effect of

prompt length. This paper varies the length of prompts while

keeping other parameters constant and examined how it

influenced the model’s performance. Table 4 presents the

quantitative results. Our findings reveal that prompt length plays

a crucial role in image restoration process. Specifically, shorter

prompts tend to yield faster convergence and better overall results,

while longer prompts sometimes lead to overfitting or increased

computational complexity. This analysis allows us to optimize the

prompt length within our prompting modules to achieve the best

balance between performance and efficiency. Finally, this paper

determines that a prompt length of 5 is the most suitable

configuration for our model.
4.5 User study

This paper conducts a user study to assess the outcomes of

various image restoration techniques. These studies are based on

restoring real foggy maritime images. A portion of the participants

invited to our user study are professionals engaged in maritime
TABLE 3 Ablation experimental result on the effectiveness of
prompting modules.

Model

Prompting module
Resto-
ration
module

PSNR/
SSIMPCB PFB

Positi-
on

(a) × × – ✓

33.15/
0.924

(b)
✓

× Enc. ✓
33.39/
0.927

(c)
✓

✓ Enc. ✓

33.48/
0.929

(d)
✓

✓ Dec. ✓
33.56/
0.930
Bold indicates the best results.
TABLE 4 Ablation experimental result on the effect of prompt length in
prompting modules.

Length 3 4 5 6 7

PSNR/
SSIM

33.41/
0.928

33.49/
0.929

33.56/
0.930

33.52/
0.930

33.44/
0.927
Bold indicates the best results.
FIGURE 6

Averaged selection percentage of user study.
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activities to ensure the professionalism of our work. Additionally, in

order to enhance the universality of our work, this paper has also

invited non-maritime professionals to participate in our user study.

Participants are presented with a set of images and asked to select

the one with the best visual clarity. To maintain fairness, the

methods remain anonymous, and the images within each set are

randomly ordered. This paper distributes the questionnaire widely

to online users and collect responses. Finally, this paper receives

responses from 46 human evaluators. Figure 6 depicts the average

selection percentage for each method. Based on the majority of

human evaluators’ feedback, our method consistently outperforms

the others.
4.6 Limitations

While our proposed method introduces prompt learning

to enhance restoration performance under adverse weather

conditions, it comes with relatively high parameter count and

computational complexity. The comparison results are presented

in the Table 5, compared to other methods, our approach has a

higher parameter count. As a result, significant computational

resources are also required, which to some extent limits the

applicability of the model. In order to enable our method to be

more rapidly and conveniently applied in maritime operations, this

paper plans to address this issue through strategies such as model

compression and pruning, aiming to make the model more suitable

for maritime vision applications.
5 Conclusions

This paper has proposed a prompting image restoration

approach by learning degradation-aware visual prompt for

maritime surveillance. Our proposed approach possesses the

capability to interact with input features, allowing for dynamic

adjustments in weather-related representations. This adaptability

ensures that the restoration process is tailored to the specific

degradation being addressed. This paper has validated the

effectiveness of our method on extensive experimental datasets,

enhancing its restoration performance in various weather

conditions, including rain removal and haze removal in maritime

images. In future work, this paper plans to explore leveraging text
Frontiers in Marine Science 12
models such as CLIP as alternative prompts to further guide the

image restoration process.
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TABLE 5 Comparison of model efficiency.

Uformer Restormer IDT DRSformer Ours

Paramaters (M) 50.8 26.1 16.4 33.7 35.6

Flops (G) 45.9 174.7 61.9 242.9 43.2
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