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Marine microplastic pollution just as ocean acidification and greenhouse effect

has attracted much environmental concern and become a hot research subject

for marine researchers globally. The abundances, distribution, and characteristics

of microplastics in surface seawater and sediments from Dapeng Cove were

investigated in this study. The results indicated that the abundance of

microplastics was 1333 ± 773 items/m3 in surface seawater and 1381 ± 1021

items/kg in sediments, showing a mediummicroplastic pollution level compared

with other sea areas. Fibers were the prevailing shapes of microplastics in both

surface seawater and sediments, representing 65.4% and 52.1% of the total

microplastic numbers, respectively. Moreover, small microplastics (<1mm) in

surface seawater and sediments accounted for 69.6% and 62.2%, respectively.

According to the identification by Fourier Transform Infraredmicroscope (micro-

FTIR), the main composition of microplastics in surface seawater and sediments

was polyethylene (PE) or polypropylene (PP). It is necessary to enhance the

regulation of current plastic products used in aquaculture, reduce the production

and release of microplastics during the mariculture process, and develop

alternatives to plastic fishing gear. The results of this study suggested that

long-term mariculture development had caused the accumulation of a large

amount of microplastics in water and sediments in Dapeng Cove. We

constructed the first basic data of microplastics pollution about Dapeng Cove.

This study will serve as a reference for further studies of the distribution and

migration of microplastics in mariculture zones.
KEYWORDS

Microplastic, abundance, mariculture, Fourier Transform Infrared microscope (micro-
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1 Introduction

Plastics have changed the human lifestyle and they have been

increasingly used as the consequence of their low cost and wide

adaptability. The global production of plastic is growing

exponentially, resulting in plastic continuing to enter the

environment (Chen et al., 2022). In 2021, the global production

of plastic has reached 390.7 million tons (Plastics Europe, 2022). It

was predicted that by 2025, the quantity of plastic waste will rise to

about 250 million metric tons (Focardi et al., 2022). About10% of

plastic produced entered the oceans and constituted 80-85% of

marine litter (Auta et al., 2017). Eriksen et al. reported an estimate

of more than 5.25 trillion plastic pieces weighing over 250,000 tons

afloat at sea worldwide (Eriksen et al., 2014). More than 90% of

these plastic pieces may suspend in the water column, remain in

coastal areas, or eventually settle and accumulate in marine

sediments (Harris et al., 2021).

The chemical properties of most plastics are inert and resistant

to degradation, but these plastics would gradually break down into

smaller particles through chemical oxidation, biological corrosion,

and mechanical action such waves and wind. These larger plastics

break down into tiny pieces considered as microplastics (with a size

between 5 mm and 1mm in any of their dimensions) and/or

nanoplastics (with a size lower than 1mm in any of their

dimensions) (Lai et al., 2021). According to their sources,

microplastics can be classified into primary and secondary classes

(Kasmuri et al., 2022). For example, personal care products

including resin pellets and exfoliators are primary microplastics

(mPs) (Pourebrahimi and Pirooz, 2023). Synthetic clothing and car

tires can also generate primary microplastics during use (Coyle

et al., 2020). Macroplastics exposed to harsh environmental

conditions (e.g., sunshine, high temperature, wind, sea waves,

etc.) can evolve into secondary microplastics because of the

breakdown and disintegration (Reddy and Nair, 2022).

Disposable plastic bags are a significant source of secondary

microplastics for their degradation resistance when exposed to

seawater and sunlight (Abreu and Pedrotti, 2019). Packaging

wastes, fishing ropes and netting and disposable consumer items

are other important sources. Microplastics pose a worldwide

problem since they are ubiquitous as stable contaminants in

terrestrial and marine environments. The marine environment

including seafloor, deep water and shorelines is the most frequent

location where microplastics end up (Sarma et al., 2022). The

microplastics are present from polar regions to the equator, from

offshore to deep ocean (Coyle et al., 2020; Pourebrahimi and Pirooz,

2023), and are distributed in seawater (Yan et al., 2019; Huang et al.,

2024; Mia et al., 2024), sediments (Gupta et al., 2024; Huang et al.,

2024; Ou et al., 2024; Zhu et al., 2018), and marine organisms (Teng

et al., 2019; Sun et al., 2024). The major sources of ocean

microplastics are the break or decomposition of marine plastic

waste, import of river-based and land-based waste, plastic waste

from marine tourism and shipping, devices of fishing and

aquaculture, atmospheric deposition and other sources (Dong

et al., 2021). The weather conditions, such as wind and rain, can

affect the microplastics abundances in ocean environments. During

rain, the microplastics in the land can be transported into ocean via
Frontiers in Marine Science 02
surface runoffs (Ma et al., 2020). Wind is another important means of

transporting microplastics (Chen et al., 2018). Researchers have

reported that typhoons increased the average concentrations of

microplastics in seawater and sediments by approximately 40%,

and the shapes, colors and types of microplastics were also changed

(Wang et al., 2019).

Microplastics are readily ingested by marine organisms because

of their small size. Ingestion of microplastics by marine organisms

could block their digestive tract or feeding organs, which leads to a

high satiety level and reduces feeding efficiency, and further slows

growth and decreases reproductive capacity, and even causes fatality

of these marine organisms. The toxicity of ingested microplastics

could be increased by adsorbing hydrophobic organic additives and

heavy metal contaminants. In addition, the transfer and

accumulation of microplastics could occur through the food

chain, which further affects the marine ecosystem dynamics

(Chen et al., 2021). The food chain can be severely disturbed

when microplastics are ingested by smaller marine species (e.g.,

zooplanktons), then pass on to secondary consumers (e.g., large

fishes) and ultimately tertiary consumers (e.g., humans) (Al Mamun

et al., 2023). Therefore, the consumption of aquatic products is the

main source of human exposure to microplastics (Zhou et al., 2024).

Undoubtedly, the intensification of microplastic pollution in

aquaculture environments have been a significant problem, as it

causes food safety, the ecology risks and affects the sustainable

development of fisheries.

Aquaculture products are an important source of high quality

protein for humans (Wu et al., 2022). In the aquaculture process,

plastics are used extensively, such as fishing nets, fishing lines, cages

and ropes (Zhang et al., 2021). When they are used and discarded,

these devices can release microplastics into surrounding

environments. In addition, aquaculture generally involves various

of human activities, which bring large amounts of microplastic

pollution. It shows that the concentration of microplastics in

aquaculture environments is generally higher than in surrounding

environments (Chen et al., 2018). Mariculture played an important

role in contributing to sedimentary microplastics of Sanggou Bay,

approximately 57.72% of microplastics in surface sediments derived

from mariculture plastic facilities (Sui et al., 2020). Chen et al.

investigated the abundance and distribution of microplastics in

Xiangshan Bay and the results indicated that mariculture-derived

microplastics made up 55.7% in seawater and 36.8% in sediments of

the total microplastic numbers, respectively (Chen et al., 2018).

These geographical and hydrological characteristics make Dapeng

Cove a favorable area for mariculture activities, which is a Class II

mariculture area in the offshore of Guangdong Province. There are

about 3,300 culture cages for fish farming in Dapeng Cove with an

approximate area of 40 hm2, mainly for bream, bass, pomfret, and

grouper farming, with production of approximately 350 tons/year;

the area of raft cultures for oyster farming in Dapeng Cove is about

100 hm2, majorly for Pacific oyster farming with production of

about 1100 tons/year (Tian et al., 2012). However, studies on the

microplastic pollution in Dapeng Cove are still limited. The

objectives of this study are to investigate the abundance, spatial

distribution, and properties of microplastics in surface seawater and

sediments around Dapeng Cove; and to explore the sources and
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factors affecting the microplastic pollution related to mariculture.

Our results can provide important information to support

mariculture management strategies and promote the sustainable

and healthy development of mariculture.
2 Materials and methods

2.1 Study area description

As shown in Figure 1, the total area and average depth of

Dapeng Cove is approximately 14 km2 and 7 m, respectively.

Dapeng Cove is a semi-enclosed epicontinental sea on the

southwest side of Daya Bay. The sampling events in Dapeng Cove

were conducted in August 2017 (Figure 2). Surface seawater

samples and sediment samples were collected from 16 sampled

sites in Dapeng Cove. Meanwhile, according to the function of the

sample collection sites, the sources of collected samples could be

divided into cage farming area (S2), oyster farming area (S3, S3a),

and fish farming area (Yu01, Yu02, Yu03), etc.
2.2 Sampling and processing of water
samples and sediment

20 L of the surface seawater sample was collected from Dapeng

Cove. Water samples were collected in three replicates at a depth of

approximately 0.5 m-1m below the surface by 2.5 liter water

sampler. The water samples were first filtered by a stainless steel

sieve of 5mm in diameter and then passed through 32µm (500

mesh) in diameter, the samples on the 32µm sieve were washed with

isopropanol (50%) into a 100mL brown glass bottle (Zhu et al.,

2018; Feng et al., 2023). The water sampler and sieve were pre-
Frontiers in Marine Science 03
rinsed with distilled water and cleaning solution and rinsed three to

four times with sample water before filling.

A total of 48 sediment samples were collected from 16 sampling

sites, using A Van Veen grab (HYDRO-BIOS, Germany).After

sampling, the top 0–2 cm of approximately 500 g weight of

surface sediment was taken using a stainless-steel spatula.

Samples were of uniform size and were stored in fresh, sealable

plastic bags (Gupta et al., 2024; Mia et al., 2024).
2.3 Isolation of microplastics from
surface seawater

Then, 20 mL of the above filtrate was transferred into a 100 mL

high beaker, which was subjected to be added a mixture of 30%

H2O2 and 65% HNO3 in a 1:3 v/v ratio to digest until the digestion

solution became clear (Al Nahian et al., 2023). Finally, saturated

sodium chloride solution was added into the above clear solution,

which was allowed to stand overnight. And then, the collected

suspension was filtered using a vacuum filtration, washed by

ultrapure water, and the cellulose acetate membranes (pore size:

0.45 µm) were collected. It was later stored for microscopic analysis

using a microscope (Olympus BX-51, Japan).The microplastic

samples from the filters were placed in sterile, dry Petri plates

with lids and stored at room temperature (25°C) in a desiccator

(Nawar et al., 2023).
2.4 Isolation of microplastics
from sediments

Firstly, the sediment samples were placed in a drying oven at

70°C until the samples had dried out. An aliquot of 25 g dry
FIGURE 1

Sampling sites in Dapeng Cove.
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sediments were weighed out and put into 250 mL NaCl solution

(1.6 g/cm3) with continuously stirring for 2 h, aiming at extracting

the relatively light plastic particles from sediment (Zhu et al.,

2018; Rakib et al., 2021). After aging for 6 h, the supernatant was

poured into a 30 µm sieve. The residue in the sieve was transferred

into a pre-cleaned glass beaker, which was subjected to wet

peroxide oxidation using 30% H2O2 in the presence of a 0.05 M

Fe(II) solution to digest organic matter (Zobkov and Esiukova,

2017). The beaker was then heated on a hot plate or water bath

( 75°C) to ensure complete digestion of organic matter. Finally, the

microplastic particles were extracted from the above mixture

using a saturated NaCl solution (1.2 g/cm3) for density

separation (Nawar et al., 2023). The obtained microplastics were

observed using a microscope (Olympus BX-51, Japan).
2.5 Fourier Transform Infrared microscope
and electron microscopic
morphological analyses

For precise and detailed visual inspection, an Olympus BX-51

microscope was used for in-depth color and morphological analysis

of the extracted microplastic samples. This step was crucial for the

initial characterization of the samples. The composition of

suspected plastics was identified by Fourier Transform Infrared

microscope (micro-FTIR; Thermo Fisher Nicolet iN10, USA). The

FTIR spectrum of each plastic item was recorded between 4000 and

650 cm−1 at a resolution of 8 cm−1 using a collection time of 3 s and

with 16 co-scans. Each spectrum was compared with the OMNIC

standard spectral library. When the matching degree is higher than

70%, suspected particles can be identified as microplastics. The

actual number of microplastics was recalculated based on the

micro-FTIR analysis (Sui et al., 2020).
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2.6 Pollution control and quality assurance

In this study, meticulous and comprehensive quality control

procedures were employed for the collection and laboratory analysis

of samples. Standard protocols were strictly adhered to throughout

the experimental process. Stringent measures were implemented to

prevent contamination during sample collection, transportation,

and processing, ensuring the purity and accuracy of the samples.

Specifically, cotton laboratory apron jackets and nitrile gloves were

carefully chosen during sample collection to minimize the potential

for external microplastic contamination, thereby preserving the

originality and integrity of the samples. All equipment utilized

was thoroughly rinsed with Milli-Q water three times. The density

separation solution (NaCl) was first filtered through a nitrocellulose

filter (0.45mm) before use. Under investigation, if any of the fibers

were detected in the sample filter papers, they were carefully

excluded from the final count of MPs data at each location. Each

sample was securely wrapped in aluminum foil when no analyzed.

The microscope was covered with a cloth when not in use and

wiped with a paper towel containing isopropyl alcohol to minimize

airborne contamination risks. Additionally, periodic verification

and calibration of the microscope ensured optimal equipment

performance consistency. This ultimately guaranteed accurate and

reliable results for sediment sample collection and analysis (Rathore

et al., 2023).
2.7 Statistical analysis

The statistical analyses were conducted using Excel

(Microsoft Corporation, 2015) and SPSS software (IBM Corp.,

2020). The abundance of MPs in sediments was precisely

quantified and normalized, and finally presented as items/kg to
FIGURE 2

The microplastic abundances in seawater from Dapeng Cove.
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ensure the comparability and consistency of the data. Meanwhile, in

order to fully characterize the distribution of MPs, we calculated

descriptive statistics including maximum, mean and standard

deviation, which enable us to deeply understand the distribution

pattern of MPs in sediments and their degree of variability.
3 Results and discussion

3.1 Microplastic abundances in
Dapeng Cove

3.1.1 Microplastic abundances in seawater
The experimental data were data which have subtracted the

control group data. The abundance of microplastic in surface

seawater was 431~2858 items/m3 and the mean abundance was

1333 ± 773 items/m3 in Dapeng Cove. The microplastics exhibited

the highest abundance in the oyster farming area (S3) and the

lowest abundance at the mouth of Dapeng Cove Bay (S1) (Figure 2).

The spatial variance of microplastic abundance in the seawater was

high from Dapeng Cove: the mean abundance of microplastics in

the oyster farming area (S3, S3a) was 2284 ± 680 items/m3; the

mean abundance of microplastics in the fish farming area (Yu01,

Yu02, Yu03) was 1659 ± 431items/m3; the mean abundance of

microplastics in the cage farming area (S2) was 2526 ± 239

items/m3; the mean abundance of microplastics in surface

seawater of other sampled sites was 925 ± 435 items/m3. The

results in literature indicated that mariculture-derived

microplastics is the main source, accounting for 55.7% of the

total microplastics in seawater of Xiangshan Bay (Chen et al., 2018).

The microplastic abundances of three mariculture areas in

Dapeng Cove were higher than those of other sampled sites, which

possessed a similar distribution of microplastics with the mariculture

area in Xiangshan Bay (Chen et al., 2018). The high microplastic

abundance of mariculture areas in Dapeng Cove could be associated

with two aspects: (i) Dapeng Cove is characterized by different

mariculture ways such as raft cultures and cage cultures. These

mariculture facilities could form thousands of fine-grain

microplastics under the action of waves, wind, and light, etc.,

which could become an important source of local microplastic

pollution; (ii) studies have revealed that surface currents and wind

waves are the major driving forces in the transport of marine

microplastics (Iwasaki et al., 2017). There is no large river inflow

along Dapeng Cove, which is relatively closed. Therefore, the

microplastics from other sources are relatively limited.

Since there is no specific standard for microplastic collection,

the values of the obtained microplastic abundance could be quite

different and the microplastic abundance obtained using trawl is

lower than that obtained using a water collector (Table 1). The

microplastic abundance using a 12-V DC Teflon pump was 16.67–

611.11 items/m3 in Beibu Gulf, while the microplastic abundance

through trawl was 0.1-5.6 items/m3 and 0.1-4.6 items/m3 (Zhang

et al., 2020). Even if the same sampling method was used, the values

of microplastic abundance could vary greatly because of the

different pore sizes of the filter. The microplastic abundance was
Frontiers in Marine Science 05
0.1-5.6 items/m3 and 0.1-4.6 items/m3 using 75 mm plankton nets

and 300 mm plankton nets for sample collection in Beibu Gulf,

respectively (Zhang et al., 2020).

Compared with the microplastic abundances of surface seawaters

in other mariculture areas, the microplastic abundance in Dapeng

Cove was lower than that of 8902 items/m3 in Pearl River and 4500 ±

100 items/m3 in Maowei sea, China (Wang et al., 2019; Yan et al.,

2019; Zhu et al., 2019), but it was higher than that of 3.1-3.5 items/m3

in Jiangsu coastal area, 0.1 ± 4.6 items/m3 in Beibu Gulf, and 4.4 -10.8

items/m3 in Yangtze River Delta, China (Zhang et al., 2020; Xu et al.,

2023; Yu et al., 2023). Compared with the seawaters where

microplastics were studied by trawl, the microplastic abundance in

this study was much higher than that of 0.14 ± 0.12 items/m3 in

Hangzhou Bay (Wang et al., 2020), 11.98 items/m3 in the coastal

region of the South Yellow Sea, China (Sun et al., 2024), and 8.9 ± 4.7

items/m3 in Xiangshan Bay (Chen et al., 2018).

3.1.2 Microplastic abundances in sediments
In addition to being transported to the open sea, microplastics

could enter and accumulate in the sediment of a bay. Previous

studies have demonstrated that marine sediment was a major sink

for marine microplastics and has been widely used as an

environmental medium for investigating microplastic pollution

(Yang and Ma, 2023). The mean microplastic abundance in

sediments was 1381 ± 945items/kg in Dapeng Cove. DP02

exhibited the lowest abundance of 340 ± 48 items/kg, whereas

Yu01 in the fish farming area showed the highest abundance of 3000

± 287 items/kg (Figure 3). Microplastic abundance in sediments

showed an obvious spatial variation: the mean microplastic

abundance in sediments was 1120 ± 148 items/kg in the oyster

farming area (S3); the mean microplastic abundance in the

sediments was 2795 ± 196 items/kg in the fish farming area

(Yu01, Yu02, and Yu03); the mean microplastic abundance in the

sediments was 2875 ± 269 items/kg in the cage farming area (S4);

the mean microplastic abundance in the sediments was 697 ± 236

items/kg in other areas. The spatial distribution of microplastic

abundance in sediments was similar to the trend observed in surface

seawater samples, in which the microplastic abundance was higher

in the mariculture areas. The results of this study suggested that

long-termmariculture development has caused the accumulation of

a large amount of microplastics in sediments of Dapeng Cove. This

was mainly due to the widespread use of fishing nets, foam buoys,

cage etc. These broken aquaculture installations produced fiber and

foam microplastics (Nunes et al., 2023). The microplastics could

deposit in the sediment through sedimentation caused by high

density, waves, tides, and microbial colonization. In comparison

with the microplastic abundances reported in literature (Table 2),

the mean abundance in sediments of Dapeng Cove would be a

medium microplastic pollution level.
3.2 Microplastic shapes in Dapeng Cove

The shapes of microplastics collected in Dapeng Cove could be

mainly classed into fibers, films, and particles (Figure 4). However,
frontiersin.org
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different shapes of microplastics have different proportions

(Figure 5). The fibers in surface seawater samples in this study

were the dominant shape of microplastics, which accounted for

65.4%, whereas particles and films accounted for 21.4% and 13.2%

of microplastics, respectively.
Frontiers in Marine Science 06
Fibers in DP01 had the highest proportion of 90.0%, particles in

S3a had the highest proportion of 51.5%, and films in DW02 had the

highest proportion of 36.4%. Fibrous microplastic was dominant for

crab, prawn, fish in aquaculture ponds near the Yangtze Estuary,

accounting for 40.9% in water (Huang et al., 2024). Chen et al.
FIGURE 3

The microplastic abundances in sediments from Dapeng Cove.
TABLE 1 A summary of microplastic abundances in surface seawater of various ocean environments worldwide.

Location Abundance (items/m3) Sample type Net (mm) Reference

The aquaculture ponds near the Yangtze Estuary 36.25 ± 6.79 A water sampler 0.45 Huang et al., 2024

Bengal Bay 106.14 ± 22.57 A 2-liter containers 0.45 Mia et al., 2024

The tropical aquaculture area in Hainan, China 523 A seawater sampler 48 Lin et al., 2022

Jiangsu coastal area 3.1-3.5 Pump 200 Xu et al., 2023

Sanggou Bay,China 63.6 ± 37.4 A bucket 50 Wang et al., 2019

Beibu Gulf 16.67-611.11 A 12-V DC Teflon pump 25 Zhang et al., 2020

Yangtze River Delta 4.4 -10.8 A 2.5L water sample bottle 0.8 Yu et al., 2023

North Yellow Sea 545 ± 282 Niskin bottles 30 Zhu et al., 2018

Pearl River,China 8902 5 L water sampler 50 Yan et al., 2019

Maowei sea, China 4500 ± 100 5 L water sampler 20 Zhu et al., 2019

The coastal region of the South Yellow Sea, China 1.36-51.68 Trawl 303 Sun et al., 2024

The pearl-farming lagoons of French Polynesia 14-716 A planktonic net surfacewater 40 Gardon et al., 2021

The pearl-farming lagoons of French Polynesia 0.2-8 A manta trawl watercolumn 335 Gardon et al., 2021

Xiangshan Bay, China 8.9 ± 4.7 Trawl 333 Chen et al., 2018

RudongOffshore Wind Farm, Yellow Sea 0.33 ± 0.28 Trawl 333 Wang et al., 2018

Bohai Sea, China 0.33 ± 0.34 Trawl 330 Zhang et al., 2017

Hangzhou Bay 0.14 ± 0.12 Trawl 330 Wang et al., 2020

Beibu Gulf 0.1-5.6 Trawl 75 Zhang et al., 2020

Beibu Gulf 0.1-4.6 Trawl 300 Zhang et al., 2020
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reported that the proportion of synthetic cellulose fibers accounted

for 41.5% ± 17.3% (n = 18) of microplastics in Xiangshan Bay (Chen

et al., 2018). Fibers made up more than 65% of the microplastics in

Maowei Sea (Zhu et al., 2019) and accounted for up to 66.77% of

microplastics in Yangtze River Delta (Yu et al., 2023). However, the

proportions of microplastics in surface seawater in Pearl River

Estuary (Yan et al., 2019) and the Bohai Sea (Zhang et al., 2017)

were < 10% and 3%, respectively. The main materials used to build

fishing nets and ropes are large polyethylene (PE) (low-density PE),

polyamide (PA) (nylon), and polypropylene (PP) monofilament

(Bertelsen and Ottosen, 2022), which have a larger diameter (> 20

mm) than that of the textile fibers from wastewater system (Yu et al.,

2014). Fishing net and ropes made from these materials would shed a

large amount of fibers (Wright et al., 2021), which would lead to an

increase in the microplastic concentration of mariculture areas.

Fibers were the predominant shape of microplastics in sediments,

which accounted for 52.1%, whereas the proportion of particles and

films accounted for 35.2% and 12.8%, respectively (Figure 6).

Similarly, fibrous microplastic was also dominant in aquaculture

ponds near the Yangtze Estuary, accounting for 58.6% insediment

(Huang et al., 2024).The proportion of fibers in sediments of

Xiangshan Bay (Wu et al., 2020), Inner Sea of Chiloé, Chile

(Jorquera et al., 2022) and Qingdao Beach (Gao et al., 2021) was

94.66%, 88% and >90%, respectively. Fibers in S1 had the highest

proportion of 91.2%, particles in DW1 had the highest proportion of

51.1%, and films in DW2 had the highest proportion of 21.6%. The

distribution of different shapes of microplastics in sediments has a
Frontiers in Marine Science 07
similar trend with that in surface seawater, in which fibers were the

most, with both proportions of more than 50%, followed by particles,

and then films. The proportion offibers in sediments was higher than

that in surface seawater, which was consistent with the results of Pearl

River where the proportion of fibers decreased from 80.9% in surface

seawater to 54.7% in sediments, while the proportion of particles was

higher in sediments than that in surface seawater. This is related to

the fact that the density of particles is higher than that offibers, which

is more easily settled as sediment. The lower surface area to volume

ratio of the particle fragments could make them sink and settle on the

river bed (Wang et al., 2017). On the contrary, the surface area to

volume ratio of the fibers is much higher than that of particle

fragments with similar sizes, which makes microplastics with linear

shapes suspended in the water column.

The contribution from mariculture facilities to marine

microplastics in the proportion of plastics could reach as high as

78.1% (Zhu et al., 2019). Fibers were mainly caused by the breaking

of net cages, fishing nets, and fishing lines. Dapeng Cove had

frequent anthropogenic activities such as farming and fishing, in

which net cages, fishing nets, and fishing lines, would be broken into

fine fibrous residues due to long-term environmental effects,

resulting in microplastic pollution in coastal areas. Broken plastic

bags were also one of the sources of films (Wright et al., 2021). A

large amount of non-degradable plastic bags that were discarded

into the environment would be present in the environment for a

long time. The waste plastic particles produced by coastal industrial

and agricultural activities, which would enter Dapeng Cove through

the river transport, making this sea area be contaminated by film-

like microplastics.
3.3 Microplastic sizes in Dapeng Cove

The different particle sizes of microplastics in surface seawater

with the proportions of the total microplastic numbers were < 1 mm

(69.6%), 1~2 mm (18.6%), 2~3 mm (7.9%), 3~4 mm (2.5%), and

4~5 mm (1.4%), respectively (Figure 7). The particle size of less than

1 mm accounted for half of microplastics, which was similar to the

previous reports (Zhu et al., 2018). The different particle sizes of

microplastics in sediments with the proportions of the microplastic

total numbers were < 1 mm (65.2%), 1~2 mm (19.8%), 2~3 mm

(6.9%), 3~4 mm (4.1%), and 4~5 mm (3.9%),respectively (Figure 8).

The proportion of microplastics with particle sizes less than 1 mm

was higher than 58% of Yangtze Estuary (Li et al., 2022) and 80% of

Qingdao Beach (Gao et al., 2021). With the increase of the particle

size, the amount of microplastics in surface seawater and sediments

showed a decreasing trend. Generally, large plastics would gradually

be broken down into smaller pieces in the marine environments

through mechanical action, photooxidation, and biodegradation

(Reddy and Nair, 2022). Therefore, the quantities of small plastic

debris would increase geometrically as their size decreased (Isobe,

2016). It has been documented that the toxicity of microplastic

particles is size dependent, with smaller particles being more toxic

than larger particles to marine organisms (Thacharodi et al., 2024).
TABLE 2 The microplastic abundances in sediments of different
ocean environments.

Location
Abundance
(items/kg)

Reference

Bengal Bay 305 ± 37.16 Mia et al., 2024

Shenzhen Bay 211-4140 Ou et al., 2024

The aquaculture ponds
near the Yangtze Estuary

271.65 ± 164.83 Huang
et al., 2024

The aquaculture pond
in the Yangtze River Delta

286-543 Yu et al., 2023

Qingduizi Bay, China 49.2 ± 35.9 Chen et al., 2022

Dongshan Bay, China 31-971 Pan et al., 2023

Xiangshan Bay 1739 ± 2153 Chen et al., 2018

Sanggou Bay 2178± 369 Sui et al., 2020

Inner Sea of Chiloé, Chile 72.2 ± 32.4 Jorquera
et al., 2022

Beibu Gulf, China 4765 ± 116 Liu et al., 2023

Fish farms in
Mediterranean, Spain

0-213 Krüger
et al., 2020

Artificial reefs in Ma’an
Archipelago, China

30.0 ± 0.0-80.0 ± 14.1 Zhang
et al., 2020
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FIGURE 5

The proportion of different microplastic shapes in surface seawater from Dapeng Cove.
FIGURE 4

Photographs of representative microplastics collected from Dapeng Cove: (A–C) fibers; (D, E) films; (F, G): particles.
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Von Moos et al. reported that the microplastics ranging 0~80

µm were ingested and taken up into cells in the lysosomal system of

the blue mussel (Mytilus edulis L) in several hours (Von Moos et al.,

2012). Van Cauwenberghe et al. reported that the digestive glands of

mussels (Mytilus edulis) accumulated more polyvinyl chloride

(PVC) with the particle size of 0.8~0.96 µm than those with the

small particle size of 0.6 µm, with exposure of seawater with PVC of

0.1~1.0 µm (Van Cauwenberghe and Janssen, 2014). Hence, it is

more important in future research to assess the risks posed by ever-

increasing numbers of small microplastics in the marine system.
3.4 Microplastic compositions in
Dapeng Cove

To analyze the composition of the microplastics in Dapeng

Cove, 100 microplastic particles were randomly selected from

surface seawater and sediments, respectively, and they were
Frontiers in Marine Science 09
identified using Fourier Transform Infrared microscope (micro-

FTIR) and compared with the spectral library of this instrument

software. Composition analysis of surface seawaters showed that the

main categories of polymer plastics were polyethylene (PE),

polypropylene (PP), polystyrene (PS), and polyethylene

terephthalate (PET), which accounted for 40.6%, 31.5%, 10.7%,

and 6.9%, respectively, of the total microplastics (Figure 9). In

addition, nylon accounted for 3.5% of randomly selected

microplastic particles and about 6.8% could not be identified as

common synthetic polymers. Composition analysis of sediments

demonstrated that the main categories of polymer plastics were

polypropylene (PP), polyethylene (PE), polystyrene (PS), and nylon,

which accounted for 39.1%, 27.8%, 12.5%, and 13.2%, respectively,

of the total microplastics (Figure 9). Additionally, the proportion of

the other categories of synthetic polymers accounted for 7.4%.

The total ratio of PP and PE in surface seawater was 72.1%,

whereas this ratio in sediment was 66.9%. PE is commonly used in

agricultural films, food packaging films, and plastic bottles, and the
FIGURE 7

Size distribution of microplastics in surface seawater from Dapeng Cove.
FIGURE 6

The proportion of different microplastic shapes in sediments from Dapeng Cove.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1382249
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xu et al. 10.3389/fmars.2024.1382249
most common is plastic bags; whereas PP is used to manufacture

plastic containers and food packaging bags. With a density lower

than water, PE and PP could also be transported by current and

deposited on all over the ocean (Wang et al., 2022). PE has high

impact resistance and abrasion resistance (Li et al., 2024). The

floats, nets, and silk threads made by PE have been widely used in

mariculture and marine production, and thus their fibers and debris

are most likely to enter the mariculture area. PE has a higher impact

strength and higher tensile strength but lower working temperature

than PP. A disadvantage of PP is poor UV resistance and poor

oxidative resistance (Andrady, 2017). Therefore, PP ages faster in

the ocean environment and easily breaks down into smaller

particles. It could be possible that, although the majority of

studies have found more PE plastics than PP plastics, there may

be unidentified PP plastic waste with smaller diameters in marine

environment. In this regard, Dapeng Cove may have more PP, and

for microplastics smaller than 1 mm, the amount of PP is more than

PE (Zhang et al., 2017). Nylon is another kind of synthetic plastic,

which is used to make fishing gears, clothing, and other materials

because of its high strength. PS and PET are widely used in the

production of disposable foam lunch boxes, mineral water bottles,

and other materials. These plastic products are abundant in daily
Frontiers in Marine Science 10
life, readily enter the ocean, decompose to form microplastics, and

they further threaten the survival and environmental safety of

marine organisms.
4 Conclusion

Microplastics were detected in all water and sediment samples

from Dapeng Cove. What’s more, in the surface water and

sediments, the abundances of microplastics were a medium

microplastic pollution level compared with other sea areas.

Among them, the amount of small-sized fibers microplastics

(<1mm) was the dominant species among them. Polyethylene

(PE) or polypropylene (PP) was the main composition of

microplastics in seawater and sediments. The microplastics

stemmed from long-term and high-density mariculture not only

could be accumulated in water and sediment, but also could be

concentrated by marine organism which raise potential risks of

cultured seafood and human health. Therefore, it is necessary to

further study the microplastics in cultured seafood and effective

measures should be undertaken to reduce the amount of plastics

used in mariculture.
FIGURE 9

The composition of microplastics in surface seawater and sediments from Dapeng Cove.
FIGURE 8

Size distribution of microplastics in sediments from Dapeng Cove.
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