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Solid-state fermentation
converts rice bran into a high-
protein feed ingredient for
Penaeus monodon
Fredson H. Huervana*, Rex Ferdinand M. Traifalgar
and Cleresa S. Dionela

Institute of Aquaculture, College of Fisheries and Ocean Sciences, University of the Philippines
Visayas, Miagao, Iloilo, Philippines
Fermented rice bran (FRB) was evaluated as an alternative protein source to

soybean meal (SM) in practical diets for juvenile black tiger shrimp, Penaeus

monodon. This feed ingredient was tested in a feeding trial to replace soybean

meal in P. monodon diets at 0% (T0), 12.5% (T12.5), 25% (T25), 37.5% (T37.5), and

50% (T50). Five iso-nitrogenous and iso-caloric experimental diets containing

44% crude protein were fed to groups of juvenile shrimp (0.47 ± 0.002 g)

randomly assigned to twenty 60-l rectangular tanks equipped with a recirculating

seawater system. Each dietary treatment was run in 4 replicates, and the feeding

trial lasted 50 days. Results show significant improvement in weight gain, specific

growth rate, and protein efficiency ratio in treatment T12.5 and T25. Treatments

with higher levels of SM replacement with FRB exhibited similar growth indices to

those of the control group. Polynomial regression analysis indicates that the

optimum replacement of soybean meal with FRB for optimum growth is 21.08%.

The apparent dry matter and protein digestibility coefficients of FRB are 83.05 ±

0.02% and 87.20 ± 0.30%, respectively. There were no significant differences in

the whole-body composition (dry matter, protein, lipid, ash) among treatments

of shrimp fed with FRB replacement. The data suggest that FRB replacement of

dietary soybean meal is feasible at 50% without affecting the growth

performance but may promote growth at 21.08% replacement of P. monodon.
KEYWORDS

solid-state fermentation, alternative protein source, Penaeus monodon, rice bran,
Trichoderma harzianum, soybean meal
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1 Introduction

The global aquaculture production of giant black tiger shrimp

(Penaeus monodon) in 2021 was 695,674 metric tons, valued at $ 5.9

billion, with more than 99% of production coming from Asian

countries (FAOSTAT, 2024). The intensive farming of P. monodon

in Asia has experienced sluggish growth at an annual rate of 0.9% in

the past ten years (FAOSTAT, 2024). Similar to other Asian

countries, the production of shrimp in the Philippines is

declining, with an annual growth rate of -4.8% (PSA, 2024).

Aside from diseases, the major constraint of shrimp aquaculture

is feed cost. Feed ingredients used in commercial giant black tiger

shrimp diets in many developing countries in Asia are

mostly imported.

Among the imported feed ingredients, soybean meal (SBM) is

the most important feed-protein source used in shrimp feeds

(Brown et al., 2008). However, livestock and aquaculture

industries compete in the use of SBM, and this has resulted in an

increase in prices and erratic supply (Traifalgar et al., 2019). Since

shrimp feed accounts for more than 50% of production cost (Hung

and Quy, 2013), there is currently great interest in reducing feed

costs using locally available feed ingredients such as rice bran.

One locally available feed ingredient is rice bran, which is cheap

and available in large quantities. This material is produced as a by-

product of the rice milling process and is mainly used as an energy

source in animal feed (Phongthai et al., 2017). The Philippines is the

7th largest rice producer in the world and contributes 2.5% of global

rice production (World Agricultural Production, 2024). Since rice

bran accounts for about 8 to 11% of the grain, approximately 87

million metric tons are produced annually and could be a cheaper

source of feed protein in shrimp diets (FAO, 2023). However, rice

products are not normally used in shrimp feeds because they are

similarly priced with wheat products but have no feed-binding

properties (Akiyama et al., 1992). The limitation of its use is also

attributed to its high fiber content (12.4-27.8%), low protein (7.8%),

and the presence of anti-nutritional factors (Luh, 1991; Tillman

et al., 2005; Hertrampf, 2006).

The fungus Trichoderma is renowned for its ability to colonize

diverse ecological niches, including soil, roots, and leaves, and is

particularly noted for its secretion of substantial quantities of

cellulases. This fungus has been documented to be a fast colonizer

of cellulosic substrates and does not produce aflatoxins (Ahmed

et al., 2009; Bulgari et al., 2023). Furthermore, it is known that this

fungus can grow and utilize cellulosic rice stalks and rice milling by-

products as substrates and convert them into fungal biomass.

Additionally, Trichoderma harzianum has been previously

reported to be used in the fermentation of rice by-products, such

as rice husk and rice polishing (Ahmed et al., 2017; Sala et al., 2019).

Several studies have been conducted to improve the quality of

rice bran and increase its utilization as a feed ingredient (Schmidt

and Furlong, 2012; Kang et al., 2015; Supriyati et al., 2015; Hong

et al., 2016). Among this technique is biomass transformation

through solid-state fermentation (SSF). Fermentation of rice bran

increases its nutrient availability through changes arising from

microorganisms’ metabolic activity (da Silveirai and Furlong,
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2007; Jang and Yang, 2008), increases protein and soluble sugars,

and reduces complex carbohydrates (Iyayi and Aderolu, 2004).

However, to this date, there are no published reports on the use

of fermented rice bran (FRB) in shrimp feeds, and information

regarding feed value and biological testing in aquatic animals is

limited. In the present study, we evaluated the feed value of SSF rice

bran as a replacement for soybean meal in the diet of juvenile

P. monodon.
2 Materials and method

2.1 Rice bran fermentation

2.1.1 Microbial inoculum
Fungus T. harzianum was sourced from the Bureau of Soils and

Water Management, Department of Agriculture Regional Field

Office 6, Iloilo City, Philippines. The fungus was inoculated on

Petri dishes containing potato dextrose agar medium (PDA),

incubated at 30°C for seven days, and stored at four °C. Spores

were collected aseptically, and the count was determined by serial

dilution followed by the spread plating method. Spore count was

expressed as colony-forming units (CFU) per milliliter.

2.1.2 Fermentation
Freshly milled rice bran was obtained from the Iloilo Rice

Processing Complex in Pototan, Iloilo, Philippines. Broken rice

and rice hull were separated from the bran using a 0.4 mm sieve and

were kept at -20 ˚C until use. Rice bran was subjected to a solid-state

fermentation system as previously described (Schmidt and Furlong,

2012). Trays (15 cm x 10 cm x 3.5 cm) containing 2 cm layers of rice

bran portions (sterilized at 121°C for 15 min) were moistened with

nutrient solution (0.8 g/l ammonium chloride). T. harzianum

spores were added to an initial concentration of 3 x 10 6 spores/g

of bran. Sterile distilled water was added to the medium to adjust

the humidity to 50%. The trays were placed in a fermentation

chamber composed of a plastic-coated insulated rectangular metal

box with a dimension of 1.0 x 0.5 x 1.5 m with a temperature of 30

˚C and relative humidity of 60%. After 96 hours of incubation, the

fermented biomass was sterilized, oven-dried at 60°C, ground,

sieved in 0.20 mm, and stored at -20°C.
2.2 Animals and experimental design

The experiment was conducted at the hatchery complex of the

Institute of Aquaculture (IA), College of Fisheries and Ocean

Sciences (CFOS), University of the Philippines Visayas (UPV) in

Miagao, Iloilo, Philippines. Good quality and disease-free P.

monodon post larvae (PL 15) were obtained from a private

hatchery in Guimbal, Iloilo, Philippines. Samples were submitted

to the Fish Health Section of the Southeast Asian Fisheries

Development Center (SEAFDEC) Aquaculture Department for

PCR analysis. The post larvae were acclimated and stocked in a

50-ton canvass pond for 30 days with a stocking density of 100
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pieces/m3. Prior to stocking, tilapia “green water” was inoculated

from the adjacent tank, and aeration was provided. Shrimp were fed

with live artemia for seven days and a commercial diet at a feeding

rate of 25% of total body weight three times per day. Feeding trays

were used to monitor the growth and health of shrimp. A

commercial probiotic, BZT ® Aquaculture (Lactobacillus

plantarum, Bacillus subtilis, Bacillus licheniformis , and

Saccharomyces cerevisiae), was applied once a week at one ppm to

control ammonia, nitrate, and nitrite levels. No water exchange was

done during the nursery phase. Water parameters were monitored

regularly, and optimum levels were maintained. At the end of the

nursery phase, juveniles were collected using a scoop net and

transferred to the experimental set-up.

The juveniles (0.47 ± 0.002 g) were randomly distributed into

twenty (20) units of 60-L plastic tanks with fifteen shrimp per tank

and were acclimated for seven days. This set-up comprised five

dietary treatments in four replicates arranged in a complete

randomized design (CRD). Three artificial shelters fabricated
Frontiers in Marine Science 03
using plastic sticks were placed in each tank to reduce

cannibalism. The set-up ran on a recirculating system, and

aeration was provided. Water temperature, salinity, dissolved

oxygen (DO), and pH were monitored daily. Ammonia, nitrite,

and nitrate were monitored two times per week using test kits (API

Saltwater Master Test Kit, MARS Fishcare, USA). All of these water

quality parameters were maintained at the optimum levels

throughout the experimental period.
2.3 Experimental diet and feeding

Five isonitrogenous diets (44% protein and 12.4% lipid) were

formulated by replacing 0,12.5, 25, 37.5, and 50% of soybean meal

weight with FRB in the P. monodon diet. The composition of the

experimental diets is shown in Table 1. Diet’s proximate

composition analysis was determined following the official

methods stipulated in AOAC (1990).
TABLE 1 Feed formulation (%) and proximate composition (% dry weight) of different experimental diets.

Ingredients
Experimental diets

T0 T12.5 T25 T37.5 T50

Soybean meal a 45.0 39.4 33.7 28.1 22.5

FRB 0.0 5.6 11.3 16.9 22.5

Fish meal b 10.0 10.0 10.0 10.0 10.0

Shrimp meal c 10.0 10.0 10.0 10.0 10.0

Corn starch 12.0 10.0 8.0 6.0 4.0

Pro-en Kd 8.0 10.0 12.0 14.0 16.0

Glutene 5.0 5.0 5.0 5.0 5.0

Fish oilf 5.0 5.0 5.0 5.0 5.0

Lecithing 1.0 1.0 1.0 1.0 1.0

Vitamin mixh 2.0 2.0 2.0 2.0 2.0

Mineral mixi 2.0 2.0 2.0 2.0 2.0

Total 100.0 100.0 100.0 100.0 100.0

Proximate composition (% dry weight)

Dry Matter 87.7 89.1 87.9 87.1 88.4

Crude Protein 44.3 44.9 44.3 43.5 43.8

Crude Lipid 12.3 12.4 12.5 12.5 12.4

Crude Fiber 2.8 2.9 2.9 3.0 3.1

Ash 9.1 8.9 8.6 9.0 9.3

NFE 19.2 20.0 19.6 19.1 19.8

Carbohydrate 22.0 22.9 22.5 22.1 22.9

Gross Energy (kcal/kg) 4338 4346 4348 4350 4355
aDehulled, defatted soybean meal, b70% Danish Fish Meal, cAcetes sp., dProtein enriched sweet potato, eCorn Gluten, fCod liver oil, g70% Lecithin-Soy, hVitamin premix contributed the following
per kg of feed: Β-carotene, 36 mg/kg; cholecalciferol, 3 mg/kg; thiamin, 72 mg/kg; riboflavin, 144 mg/kg; pyridoxine, 132 mg/kg; cyanocobalamine, 0.4 mg/kg; ά-tocopherol, 330 mg/kg;
menadione, 48 mg/kg; niacin, 288 mg/kg; pantothenic acid, 80 mg/kg; biotin, 0.4 mg/kg; folic acid, 24 mg/kg; inositol, 600 mg/kg; stay C, 2000 mg/kg, iMineral premix contributed the following
per kg of feed: P, 2400 mg/kg; Ca, 2400 mg/kg; Mg, 300 mg/kg; Fe, 30 mg/kg; Zn, 84 mg/kg; Cu, 42 mg/kg; K, 1500 mg/kg; Co, 22 mg/kg; Mn, 32 mg/kg; Se, 0.02 mg/kg; Mo, 0.01 mg/kg; Al, 0.5
mg/kg; I, 8 mg/kg.
T0= Control (0% FRB); T12.5 = 12.5% FRB; T25 = 25% FRB; T37.5 = 37.5% FRB; T50 = 50% FRB.
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Once all of the dry ingredients were mixed by hand, soy lecithin

and fish oil were added. Water was then gradually added (500 ml/

kg) until the resulting dough could be easily extruded. The moist

mixture was pelleted in a 2-mm diameter meat grinder. The 10 cm

long “spaghetti-like” strands were oven-dried at 60°C for 18-24

hours. After drying, strands were broken, sieved to the appropriate

size, packed in sealed plastic bags, and stored at -20°C until use.

Shrimp were fed ad libitum three times per day (8:00 AM, 12:00

NN, and 4:00 PM) for 50 days. Excess feeds were siphoned, dried,

weighed every morning, and subtracted from the daily feed intake.
2.4 Evaluation of growth performance

The weight of shrimp was recorded at 10-day intervals for 50

days. At the end of the experiment, growth performance was

evaluated and calculated by following these equations:

Percent  Weight  Gain   (%WG) =
final  weight   (ɡ) − initial  weight   (ɡ)

initial  weight   (ɡ)
 �100

Specific  Growth  Rate   (SGR) =
ln(final  weight   (ɡ)) − ln(initial  weight   (ɡ))

number   of   days
 �100

Feed  Conversion  Ratio   (FCR) =
total   feed   intake   (ɡ)

weight   gain   (ɡ)

Percent   Survival   (%   S) =
final   number   of   fish
initial   number   of   fish

 �100

Protein   Efficiency  Ratio   (PER) =
weight   gain   (ɡ)
protein   intake   (ɡ)

 �100

Average  Daily   feed   intake   (ADFI) =
Supplied   feeds

days

At the conclusion of the feeding trial, all shrimp samples from

each tank were pooled, anesthetized at cold temperature, freeze-

dried, and ground for approximate analyses of the whole-body

composition following the standard methods (AOAC, 1990).

Nutrient retention of P. monodon was calculated by the following

equation:

Protein  Retention =
protein   gain   of   fish   (ɡ)

protein   intake   from   feeds   (ɡ)
 �100

Lipid  Retention =
lipid   gain   of   fish   (ɡ)

lipid   intake   from   feeds   (ɡ)
 �100
2.5 Ingredient digestibility

Apparent digestibility coefficients for dry matter (ADMD) and

crude protein (APD) of FRB as feed ingredient were measured using

1% chromium oxide (Cr2O3) as an inert marker. The method

described by Cho et al. (1982) and Bautista-Teruel et al. (2003)
Frontiers in Marine Science 04
was adapted using a combination of a reference diet to test

ingredients in a proportion of 70:30 (Table 2).

In the digestibility assessment of the test ingredient, 25 shrimp

were stocked in 250-l conical fiberglass tanks, with each dietary

treatment run in triplicate. The experimental set-up was a flow-

through culture system equipped with continuous aeration. Water

temperature and salinity were maintained at 24–28°C and 30–34 ppt,

respectively. Prior to the digestibility experiment, the shrimp were

acclimated for seven days. The shrimp were fed with experimental

diets ad libitum three times daily. One hour after feeding, uneaten

feed and feces were removed, and fecal materials from the collection

chamber were collected two hours after feeding. Collected feces were

gently rinsed with distilled water, damp dried on filter paper, and

oven-dried at 60°C. The dried feces were ground to a fine and

homogeneous powder and stored in a -20°C freezer until analyzed.

Chromic oxide was analyzed in the feces and two diets using

Ultraviolet-Visible-Near Infrared (UV-VIS-NIR) (Furukawa, 1966;

Divakaran et al., 2002). Crude protein in the feces and two diets

were analyzed following the official method stipulated in

AOAC (1990).

Dry matter and protein apparent digestibility coefficients

(ADCs) of diets were calculated using the following equation

(Cho, 1979):

%ADCdiet = 100 − 100� Cdiet

Ndiet

� �
� Nfeces

Cfeces

 !" #

where:

Cdiet = % chromic oxide in diet,

Ndiet = % nutrient in diet,

Nfeces = % nutrient in feces,

Cfeces = % chromic oxide in feces
TABLE 2 Composition of reference and test diets for in vivo digestibility
experiment in shrimp, P. monodon juveniles (g/100g feed).

Ingredient Reference Test Diet
(70% Reference:30% FRB)

Fish meal 25.0 17.5

Shrimp meal 10.0 7.0

Squid meal 10.0 7.0

Soybean meal 30.0 21.0

Corn starch 11.0 7.4

Gluten 5.0 3.5

Fish oil 4.0 2.8

Mineral mix 2.0 1.4

Vitamin mix 2.0 1.4

Cr2O3 1.0 1.0

FRB – 30.0

Total 100.0 100.0
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ADCs of ingredients were calculated using the equation (Bureau

and Hua, 2006):

%ADCingredient = ADCtestdiet + ADCtestdiet − ADCref : diet

� �� 0:7� Nref as   isð Þ
0:3� Ningr as   isð Þ

" #" #

where:

ADCtestdiet = Apparent Digestibility Coefficient of test diet,

ADCref.diet = Apparent Digestibility Coefficient of reference diet,

Nref (as is) = nutrient in the reference diet,

Ningr (as is) = nutrient in the test diet
2.6 Proximate composition analysis

The FRB proximate composition analysis was determined by

following the official methods stipulated in AOAC (1990). Crude

protein was determined by the Kjeldahl method (Foss Tecator

Digestion and Foss Kjeltec 8200 Auto Distillation Unit), while

crude lipid was determined by Soxhlet extraction (Foss Soxtec

2050 Automatic System). Moisture was determined by a moisture

analyzer (Mettler Toledo Halogen), and crude fiber was determined

by the ceramic fiber filter method (Foss Fibertec 2010 System). The

ash content was analyzed by furnace combustion (AOAC, 1984).

Nitrogen-free extract (NFE) was calculated (Aksnes and Opstvedt,

1998), and NFE plus fiber is expressed as the total carbohydrate

content. The gross energy of the diets and feces was also calculated

(NRC, 2011).
2.7 Amino acid analysis

The FRB, experimental diets, and shrimp tail muscle amino acid

profile were analyzed using Shimadzu High-Performance Liquid

Chromatograph LC-10A/C-R7A Amino Acid Analysis System

following the method detailed in AOAC Official Method 994.12

and Llames and Fontaine (1994) at the Nutrition Laboratory, IA,

CFOS, UPV. The Chemical Score was calculated based on the

methodologies outlined by Traifalgar et al. (2019) and Peñaflorida

(1989) utilizing the essential amino acid requirements of

P. monodon. The formula is presented below.

Chemical   Score  ( % ) =
A

E=   of   FRB
A

E=   of   shrimp
� 100

Where : A E= = essential   amino   acid
total   essential   amino   acid= � 100

The Chemical Score Index (CSI) was the score of the lowest

essential amino acid. The Essential Amino Acid Index (EAAI) of

the feedstuffs was determined using the following formula:

Essential  Amino  Acid   Index  (EAAI) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aa1
AA1

� aa2
AA1

�…� aan
AAn

n

r

where:

aa 1 = the A/E (essential amino acid/total essential amino acid)

ratio in the feed

AA1 = the A/E ratio in shrimp
Frontiers in Marine Science 05
n = number of essential amino acids

The EAAI was patterned after the formula for fish nutrition

research (Castell and Tiews, 1980), with whole egg as the reference

protein. In this study, however, whole juvenile P. monodonwas used

as the reference protein (Deshimaru and Shigeno, 1972).
2.8 Statistical analysis

The results of three replicate samples were analyzed by one-way

analysis of variance (ANOVA) using IBM SPSS version 26. Differences

between treatments were evaluated by Tukey’s test. In the case of two

replicate samples, the independent samples t-test was used to analyze

the means. Values were considered statistically significant at P< 0.05.
3 Results

3.1 Proximate composition and amino acid
profile of rice bran, FRB, and SBM

After fermentation, rice bran crude protein and crude lipid

increased by 169.2% (12.7 to 34.2%) and 40.3% (14.4 to 20.2%),

respectively (Table 3). Conversely, rice bran crude fiber, ash, and

NFE decreased by 87.1% (16.3 to 2.1%), 82.3% (12.4 to 2.2%), and

9.9% (34.4 to 31.0%), respectively. The proximate analyses of

dehulled and defatted soybean meal used in diet formulation

showed 12.0% moisture, 48.0% crude protein, 3.1% crude lipid,

3.0% crude fiber, 6.3% ash, and 27.6% NFE.

Generally, there was an increase in the amount of amino acid in

FRB compared to unfermented rice bran except for tryptophan

(Table 4). All known essential amino acids for shrimp were found

present in the FRB. The EAAI of FRB was 85.98, and the CSI was

25.20, with tryptophan as the limiting amino acid (Table 5). Using

EAAI, FRB was rated as a good-quality protein material.
3.2 Apparent digestibility coefficients

The apparent dry matter (ADMD), protein (APD), and

ingredient (ADI) digestibility coefficients of FRB by P. monodon
TABLE 3 Proximate composition (%) of rice bran (RB), fermented rice
bran (FRB), and soybean meal (SBM).

Nutrient Composition RB FRB SBM

Moisture 9.8 10.3 12.0

Crude Protein 12.7 34.2 48.0

Crude Lipid 14.4 20.2 3.1

Crude Fiber 16.3 2.1 3.0

Ash 12.4 2.2 6.3

NFE 34.4 31.0 27.6

Total 100.0 100.0 100.0
fr
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are presented in Table 6. The FRB was found to be highly digestible

with ADMD and APD coefficients at 83.05 ± 0.02% and 87.20 ±

0.30%, respectively. ADI coefficients were also high at 85.19 ± 0.08%

in dry matter and 90.67 ± 0.78% in protein. Generally, the apparent

digestibility coefficients of FRB were comparable to soybean meal

and higher than unfermented rice bran.

3.3 Amino acids composition of
experimental diets

The amino acid profile of the experimental diets, as detailed in

Table 7, adequately meets the essential amino acid requirements of P.

monodon. This means that the composition of amino acids present in

the diets sufficiently fulfills the nutritional needs of P. monodon.
3.4 Growth performance of P. monodon

Significant differences (P< 0.05) were observed among the

treatments in the growth parameters of P. monodon (Table 8). In

terms of weight gain (%) and SGR, T25 was significantly higher (P<

0.05) than T0 but not significantly higher (P > 0.05) than T12.5.

PER was significantly higher (P< 0.05) in T12.5 and T25 among

treatments. Conversely, FCR was significantly lower in the same
Frontiers in Marine Science 06
treatments compared to T0, T37.5, and T50. The DFI was highest in

T25 at 30.7 ± 0.18 mg/day. There were no significant differences (P

> 0.05) in survival among treatments. Generally, 0% and 50%

replacement levels were observed to be significantly similar in

terms of weight gain, SGR, PER, FCR, DFI, and survival.

The second-order polynomial regression analysis of weight gain

suggests an FRB replacement level of 21.08% would provide the

maximum growth for P. monodon juvenile (Figure 1).
3.5 Proximate and amino acid composition
of shrimp carcass

There were no significant differences (P > 0.05) in the whole-

body composition of shrimp fed with different levels of FRB

(Table 9). The crude protein, crude lipid, ash, and moisture were

found to be similar among treatments.

After the feeding trial, it was determined that the T50 diet was

comparable to the T0 diet in terms of growth performance and

shrimp whole body composition. The amino acid profile of shrimp

tail muscle fed with T0 and T50 diets was then analyzed for

comparison. The histidine, arginine, and lysine values were

reported to be significantly higher (P< 0.05) in P. monodon fed

with a T50 diet compared to T0 (Table 10). However, no significant

differences (P > 0.05) were observed in the total amino acids,

essential amino acids, and non-essential amino acids of

P. monodon when fed with T50 compared to T0.
3.6 Nutrient retention

Protein retention in shrimp fed with increasing FRB

replacement levels was found to be significantly different (P<

0.05) among treatments (Figure 2). Shrimp fed with the T25 diet

exhibited the highest protein retention (12.46 ± 0.05), followed by

those fed with the T12.5 diet (10.35 ± 0.11), both of which were

significantly higher than those fed with the T0 diet (9.35 ± 0.08),

T37.5 diet (9.32 ± 0.3), and T50 diet (8.97 ± 0.04). The protein

retention of shrimp fed with the T37.5 diet and T50 diet was not

significantly different than the T0 diet. In contrast, FRB dietary

protein replacement did not significantly (P > 0.05) influence lipid

retention of P. monodon juveniles.
3.7 Water quality parameters

The mean water temperature was 24.84 ± 0.03°C (range: 24.8-

25.8°C) at 0800Hwhile 27.14 ± 0.18°C (range: 25.8-27.8°C) at 1600H.

The lowest recorded water temperature was at 24.8°C, while the

highest was at 27.8°C. The mean dissolved oxygen (DO) was 4.84 ±

0.07 mg/l (range 4.75-6.25 mg/l), the mean salinity was 15.14 ± 0.06

ppt (range: 14-16 ppt), and the mean pH was 8.20 ± 0.01 (range: 8.12-

8.30). The average ammonia was 0.47 ± 0.12 ppm (range: 0.25-1.00

ppm), average nitrite was 0.57 ± 0.44 ppm (range: 0-2 ppm), and

average nitrate was 1.5 ± 0.33 ppm (range: 0-10 ppm).
TABLE 4 Amino acid profile (% AA in protein) of rice bran (RB),
fermented rice bran (FRB), and soybean meal (SBM).

Amino Acid RB FRB SBM

Essential Amino Acid

Phenylalanine 0.50 2.11 5.18

Valine 0.64 1.59 4.41

Tryptophan 0.17 0.05 0.43

Threonine 0.46 1.38 3.79

Isoleucine 0.44 0.93 4.50

Methionine 0.31 0.80 1.39

Histidine 0.34 1.60 2.90

Arginine 0.99 1.04 5.98

Leucine 0.94 2.76 7.17

Lysine 0.45 1.76 5.78

Non-essential amino acid

Tyrosine 0.47 1.82 2.72

Serine 0.62 1.47 5.21

Aspartine 1.08 2.99 11.07

Glutamic acid 2.08 4.87 18.72

Glycine 0.58 2.02 3.99

Alanine 0.72 2.57 4.00

Proline 0.60 nd* 5.40

Cystine 0.28 nd* 1.17
*not detected.
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4 Discussion

The nutritional composition of rice bran was improved after

fermentation by T. harzianum. The protein content was increased

to about 34.5%, and the fiber was decreased to about 2.1%. Rice bran

fermentation has been shown to improve its nutritional

composition. The application of solid-state fermentation (SSF) by

T. harzianum using rice polishing as a substrate was demonstrated

in the study of Ahmed et al. (2017), where higher proteins were also

attained. Solid-state fermentation appears to improve the

nutritional value by improving the digestibility and increasing the

protein content of the biomass material. Nutrient enrichment of

rice bran was also reported in other studies using different types of

fungus, Trichoderma viride (Iyayi and Aderolu, 2004), Rhizopus

oryzae (Oliveira et al., 2010; Schmidt and Furlong, 2012), Pleurotus

sapidus (Omarini et al., 2019), Trichoderma longibrachiatum and

Aspergillus niger (Hong et al., 2016). Improvement of nutritional

composition was also revealed in other agro-industrial waste like
Frontiers in Marine Science 07
fermented sweet potato meal (Traifalgar et al., 2019), fermented

copra meal (Apines-Amar et al., 2016), and fermented palm kernel

cake (Yana et al., 2010). The improvement in protein content due to

fermentation has been associated with the bioconversion of starchy

substrates into protein-rich microbial cellular components

(Jaganmohan et al., 2013).

In the present study, fermentation decreased the fiber content of

rice bran by about 7-fold compared to the unfermented rice bran.

The content of total dietary fiber (TDF) in rice bran is

approximately 20-30%, and nearly 90% of that content consists of

insoluble dietary fiber (IDF) comprising of cellulose, hemicellulose,

insoluble b-glucan, and arabinoxylans (Lai et al., 2007; Zhao et al.,

2018). The high content of these IDF in rice bran is responsible for

the low nutritional value and limited use of this biomass in feeds

(Dodd and Cann, 2009). Fermentation using fungi has been known

to decrease the IDF of agricultural biomass since these organisms

are known producers of xylanase enzymes that are more active than

those produced by yeasts and bacteria (Ravindra, 2001; Polizeli

et al., 2005). Among these fungi, T. harzianum has been reported to

produce cellulases and hemicellulases that are active in hydrolyzing

plant cellulose. This may explain the decreased fiber content of rice

bran due to fermentation in the present study (Kim et al., 2003;

Gottschalk et al., 2010; Pathak et al., 2014).

The nutritional quality of a feed ingredient for farmed animals

is quantified based on the digestibility coefficient that measures the

availability of nutrients for assimilation. Results suggest that the SSF

of rice bran has improved the digestibility coefficient of this

ingredient. The apparent ingredient digestibility coefficient for dry

matter and protein of P. monodon was about 85% and 90%,

respectively. These values are higher than those of raw,

unprocessed rice bran and soybean meal in L. vannamei
TABLE 6 Apparent digestibility coefficients (ADC) for dry matter,
protein, and ingredients of fermented rice bran (FRB) by P. monodon.

Apparent
Digestibility
Coefficients

FRB Rice
Brana

SBMa

% ADMD 83.05 ± 0.02 40.0 ± 1.50 60.1 ± 1.40

% APD 87.20 ± 0.30 76.4 ± 0.80 90.4 ± 0.90

% ADI (Dry Matter) 85.19 ± 0.08

% ADI (Protein) 90.67 ± 0.78
avalues reported by Akiyama et al. (1989) in L. vannamei.
TABLE 5 Essential Amino Acid Index (EAAI) and Chemical Score Index (CSI) of fermented rice bran (FRB).

Essential
Amino Acid

FRB
(% AA
in CP)

P. monodon requirement (%
AA in CP)

A/Ea

A/E Ratiob Chemical
ScoreFRB

P.
monodon

Arginine 1.04 5.30 7.41 15.96 0.46 46.42

Histidine 1.60 2.20 11.44 6.63 1.73 172.60

Isoleucine 0.93 2.70 6.65 8.13 0.82 81.76

Leucine 2.76 4.30 19.68 12.95 1.52 151.93

Lysine 1.76 5.20 12.56 15.66 0.80 80.17

Phenylalanine 2.11 3.70 15.03 11.14 1.35 134.82

Methionine 0.80 2.40 5.72 7.23 0.79 79.06

Threonine 1.38 3.50 9.83 10.54 0.93 93.22

Tryptophan 0.05 0.50 0.38 1.51 0.25 25.20

Valine 1.59 3.40 11.32 10.24 1.11 110.54

Total 14.01 33.20

EAAI 85.98

CSI 25.20
aA/E= essential amino acid/total essential amino acid x 100.
bA/E Ratio = A/E of FRB/A/E of shrimp,
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(Akiyama, 1989; Akiyama et al., 1989). This improvement in

digestibility could be attributed to the decrease in cellulosic

polysaccharides that intervene in the enzymatic digestion of food

nutrients (Singh et al., 2009). Enzymes secreted by T. harzianum

may also explain the high protein digestibility index of the

fermented rice bran in the present study (Polizeli et al., 2005).

The quality of protein in a fish diet depends on the amount and

balance of amino acids, which impact growth and production costs.
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Furthermore, besides its crucial role in protein synthesis and

nitrogen balance, it also plays a significant part in vital metabolic

processes in fish (Jobgen et al., 2006). Results of the present study

showed that SSF with T. harzianum increased the protein content of

rice bran about 3-fold compared to the raw material. The quantity

of total amino acids in FRB was also increased as compared to the

unfermented rice bran, indicating an improvement in the quality of

protein. Similar improvements in the protein content and amino

acid profile were observed when rice bran was fermented using A.

niger (Putra et al., 2022). The beneficial effect of SSF was also

reported in fermented copra meal (Dairo and Fasuyi, 2008),

fermented sweet potato meal (Traifalgar et al., 2019), and

fermented rice bran (Joseph et al., 2008). This improvement in

protein content and quality has been associated with the microbial

biomass that is known as natural protein concentrate as it contains

highly digestible proteins with complete essential amino acids

(Kurbanoğlu, 2001; Aggelopoulos et al., 2014).

The essential amino acid index of FRB was found to be high at

84%, rated as a good quality protein material, and comparable to

soybean meal (Oser, 1959; Peñaflorida, 1989). The chemical score

index of FRB showed tryptophan as the limiting amino acid. The

amino acid profile of the fermented material is dictated by the

microbial species and substrate used in the fermentation (Denardi-
FIGURE 1

Optimum soybean meal replacement level of fermented rice bran
(FRB) to achieve maximum growth in P. monodon.
TABLE 7 Essential amino acid composition (g/100 g sample) of experimental diets with comparison to P. monodon requirement.

Amino Acid FRB T0 T12.5 T25 T37.5 T50
P. monodon
requirement a

Phenylalanine 5.42 1.97 2.14 2.30 2.47 2.63 1.70

Valine 5.75 1.86 2.06 2.25 2.45 2.64 1.35

Tryptophan 0.11 0.49 0.46 0.43 0.39 0.36 0.20

Threonine 4.91 1.57 1.75 1.92 2.09 2.26 1.40

Isoleucine 3.02 1.70 1.75 1.80 1.85 1.90 1.01

Methionine 2.28 0.85 0.94 1.03 1.12 1.20 0.89

Histidine 4.39 0.93 1.10 1.27 1.44 1.61 0.80

Arginine 2.53 2.78 2.73 2.68 2.63 2.58 1.85

Leucine 8.93 3.35 3.64 3.93 4.22 4.51 1.70

Lysine 5.11 2.48 2.61 2.74 2.86 2.99 2.08
a (Millamena et al., 1996a, Millamena et al., 1996b, Millamena et al., 1997, Millamena et al., 1998, Millamena et al., 1999).
T0= Control (0% FRB); T12.5 = 12.5% FRB; T25 = 25% FRB; T37.5 = 37.5% FRB; T50 = 50% FRB.
TABLE 8 Growth performance of P. monodon fed with different levels of fermented rice bran (FRB).

Growth Parameters T0 T12.5 T25 T37.5 T50

Weight Gain (%) 150.89 ± 6.77bc 169.8 ± 0.56ab 177.36 ± 0.95a 150.08 ± 9.22bc 139.79 ± 2.69c

SGR 1.84 ± 0.05 bc 1.99 ± 0.00ab 2.04 ± 0.01a 1.83 ± 0.07 bc 1.75 ± 0.02 c

FCR 2.09 ± 0.04a 1.7 ± 0.03b 1.83 ± 0.00b 2.1 ± 0.07a 2.22 ± 0.05a

PER 1.06 ± 0.02b 1.29 ± 0.02a 1.26 ± 0.00a 1.11 ± 0.04b 1.04 ± 0.02b

DFI (mg/day) 29.53 ± 0.66ab 27.14 ± 0.03 b 30.7 ± 0.18a 29.29 ± 0.86 ab 29.16 ± 0.33 ab

Survival 80.00 ± 6.67 75.56 ± 2.22 88.89 ± 2.22 80.00 ± 0.00 80.00 ± 3.85
T0= Control (0% FRB); T12.5 = 12.5% FRB; T25 = 25% FRB; T37.5 = 37.5% FRB; T50 = 50% FRB.
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Souza et al., 2018). Trichoderma utilizes tryptophan to form indole

acetic acid, and the utilization of this amino acid by this fungus may

explain the low tryptophan level in fermented rice bran (Kumar

et al., 2017). In addition, deficiency in tryptophan among plant

protein sources also agreed with the findings of the previous studies

(Fetuga et al., 1973; Felker and Bandurski, 1977).

The use of soybean meal as a major plant protein source is

considered a standard in aquatic animal nutrition. The results of the

present study confirm the viability of FRB in replacing SBM in the

diet of juvenile P. monodon. FRB substitution of 25% soybean meal

in the diet of P. monodon showed significant improvement in

weight gain, specific growth rate, FCR, and PER. However, no
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significant effect on growth performance was observed when

replacing soybean meal at higher levels. This indicates that

fermentation could improve the nutritional value of rice bran and

be used as a partial replacement for soybean meal in the diet of P.

monodon. The results of this study also showed higher replacement

levels of FRB when compared to another study where only 20% of

soybean meal was replaced by FRB utilizing A. niger in catfish diets

(Putra et al., 2022). Other studies have also reported the positive

effects of replacing soybean meal with fermented agro-industrial

wastes on shrimp growth. For example, L. vannamei exhibited

improved growth when fed diets containing fermented sweet potato

meal (Traifalgar et al., 2019), while fermented copra meal was

identified as a practical alternative protein source for black tiger

shrimp diets (Apines-Amar et al., 2016). Moreover, our results align

with previous studies on terrestrial animals, which have

demonstrated enhancements in growth performance across

various species ; growth of broi ler chickens fed with

Saccharomyces cerevisiae FRB (Kang et al., 2015), higher egg

production in layers-fed diet with T. viride FRB (Iyayi and

Aderolu, 2004) and reduced feed cost in pigs fed with T.

longibrachiatum, A. niger, Pichia kudriavzevii and Lactobacillus

buchneri FRB (Hong et al., 2016).

Results on the carcass composition indicate no negative

influence of FRB in the nutritional composition of P. monodon.

Furthermore, the protein retention in shrimp was improved when

SBM was replaced up to 25%. However, higher SBM replacement

showed retention levels similar to the control. This could be

explained by the increased essential amino acids in the diets with

FRB, which led to efficient protein retention. This result is in

contrast to other studies where partial replacement of SBM by
TABLE 10 Amino acid content (% AA in protein) of P. monodon juveniles
after the feeding trial.

Amino Acid (AA) T0 T50

Essential Amino Acid (EAA)

Phenylalanine 2.15 ± 0.11 2.52 ± 0.11

Valine 0.66 ± 0.19 0.74 ± 0.19

Tryptophan 0.01 ± 0.00 0.01 ± 0.00

Threonine 0.43 ± 0.08 0.47 ± 0.08

Isoleucine 0.56 ± 0.13 0.59 ± 0.13

Methionine 0.74 ± 0.12 0.96 ± 0.12

Histidine 1.54 ± 0.01a 1.73 ± 0.02b

Arginine 2.74 ± 0.02 a 3.46 ± 0.02b

Leucine 2.08 ± 0.35 2.53 ± 0.35

Lysine 2.10 ± 0.01a 2.62 ± 0.01b

Total EAA 13.01 ± 0.96 15.64 ± 0.96

Non-essential amino acid (NEAA)

Tyrosine 1.00 ± 0.10 1.30 ± 0.11

Serine 0.73 ± 0.15 0.88 ± 0.15

Aspartine 1.22 ± 0.21 1.26 ± 0.22

Glutamic acid 2.41 ± 0.44 2.57 ± 0.44

Glycine 3.12 ± 0.17 3.36 ± 0.16

Alanine 1.02 ± 0.15 0.89 ± 0.14

Total NEAA 9.50 ± 1.22 10.27 ± 1.23

Total AA 22.50 ± 2.17 25.91 ± 2.18
T0= Control (0% FRB); T50 = 50% FRB.
TABLE 9 Whole body composition (%) of P. monodon juveniles after the feeding trial.

Proximate Composition T0 T12.5 T25 T37.5 T50

Moisture 78.07 ± 0.15 77.97± 0.15 77.52 ± 0.16 78.32± 0.14 78.10 ± 0.14

Crude Protein 73.25 ± 0.56 72.29 ± 0.61 74.51 ± 0.37 71.88 ± 0.96 72.83 ± 0.09

Crude Lipid 9.39 ± 0.42 8.89 ± 0.30 8.92 ± 0.42 10.00 ± 0.21 11.19 ± 0.98

Ash 21.54 ± 0.36 21.92 ± 0.68 22.03 ± 0.38 22.08 ± 1.09 21.71 ± 0.07
T0= Control (0% FRB); T12.5 = 12.5% FRB; T25 = 25% FRB; T37.5 = 37.5% FRB; T50 = 50% FRB.
FIGURE 2

Nutrient retention of Peneus monodon fed with different levels of
fermented rice bran (FRB).
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fermented agro-industrial wastes showed no significant effect on the

protein retention of shrimp (Apines-Amar et al., 2016; Traifalgar

et al., 2019).

The amino acid analysis of P. monodon juveniles after the

feeding trial showed that lysine in shrimp fed with 50% FRB

replacement of SBM was significantly higher than control. Lysine,

along with proline, alanine, glycine, serine, glutamic acid, and

leucine, have been shown to be the important taste compounds of

shrimp (Raksakulthai and Norman, 1992). The increase in these

amino acids would further enhance its desirable flavor, and the

decline can cause changes in the sensory characteristics of shrimp

(Peralta et al., 2008). Furthermore, the glutamic acid, a substance

responsible for the ‘umami’ taste in fish products (Lopetcharat et al.,

2001; Kim et al., 2003) of 50% FRB-fed P. monodon, was higher than

the control. These results suggest that FRB could improve the

sensory characteristics of P. monodon, as shown by an increase in

the amount of amino acid important to shrimp taste.

The present study has demonstrated that solid-state

fermentation could improve the nutritional value of rice bran.

Fermentation has increased the protein, decreased the fiber

contents, enhanced the amino acid profile, and improved the

digestibility coefficient of this feed ingredient. Nutritional

evaluation tests through a feeding trial indicate that fermented

rice bran could partially replace dietary soybean meal without

affecting the growth performance and biochemical composition of

P. monodon. Furthermore, a 25% replacement of SMB by FRB could

improve the growth of P. monodon. It is recommended that 50%

replacement of FRB could replace soybean meal without affecting

the growth of shrimp. However, further research is required to

explore the complete substitution of soybean meal with fermented

rice bran. Given that rice bran is abundantly produced as a by-

product of the rice industry in Asian countries, utilizing fermented

rice bran as a feed ingredient represents a renewable and eco-

friendly approach to achieving the sustainable production of P.

monodon in the Asian region.
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